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Abstract

In this paper, we studied the behavior of relativistic objects with anisotropic matter
distribution in the presence of an electric field considering a gravitational potential
Z(x) of Thirukkanesh and Ragel (2013) which depends on an adjustable parameter n.
The equation of state presents a quadratic relation between the energy density and the
radial pressure. New exact solutions of the Einstein-Maxwell system are generated. A
physical analysis of electromagnetic field indicates that is regular in the origin and
well behaved. We show as a variation of the adjustable parameter n causes a
modification in the charge density, the radial pressure and the mass of the stellar
object.

1. Introduction

One of the fundamental problems in the general theory of relativity is finding exact
solutions of the Einstein field equations [1,2]. Some solutions found fundamental
applications in astrophysics, cosmology and more recently in the developments
inspired by string theory [2]. Different mathematical formulations that allow to solve
Einstein’s field equations have been used to describe the behavior of objects
submitted to strong gravitational fields known as neutron stars, quasars and white
dwarfs [3.,4,5].

In the construction of the first theoretical models of relativistic stars are important
the works of Schwarzschild [6], Tolman [7], Oppenheimer and Volkoff [8].
Schwarzschild [6] found analytical solutions that allowed describing a star with
uniform density, Tolman [7] developed a method to find solutions of static spheres of
fluid and Oppenheimer and Volkoff [8] used Tolman's solutions to study the
gravitational balance of neutron stars. It is important to mention Chandrasekhar's
contributions [9] in the model production of white dwarfs in presence of relativistic
effects and the works of Baade and Zwicky [10] who propose the concept of neutron
stars and identify a astronomic dense objects known as supernovas.

The physics of ultrahigh densities is not well understood and many of the strange
stars studies have been performed within the framework of the MIT bag model [11].
In this model, the strange matter equation of state has a simple linear form given by

p= é(p-43) where O 1is the energy density, p is the isotropic pressure and B is the

bag constant. However, in theoretical works of realistic stellar models [12-15] it has
been suggested that superdense matter may be anisotropic, at least in some density
ranges. The existence of anisotropy within a star can be explained by the presence of
a solid core, phase transitions, a type III super fluid, a pion condensation [16] and
other physical phenomena. In such systems, the radial pressure is different from the
tangential pressure. This generalization has been used in the study of the balance and
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collapse of compact spheres [17-20].

Many researchers have used a great variety of
mathematical techniques to try to obtain exact solutions for
quark stars within the framework of MIT bag model, since
it has been demonstrated by Komathiraj and Maharaj [4],
Malaver [21], Thirukkanesh and Maharaj [22] and
Thirukkanesh and Ragel [23]. Feroze and Siddiqui [24] and
Malaver [25] consider a quadratic equation of state for the
matter distribution and specify particular forms for the
gravitational potential and electric field intensity. Mafa
Takisa and Maharaj [26] obtained new exact solutions to
the Einstein-Maxwell system of equations with a polytropic
equation of state.

Thirukkanesh and Ragel [27] have obtained particular
models of anisotropic fluids with polytropic equation of
state which are consistent with the reported experimental
observations.

More recently, Malaver [28, 29] generated new exact
solutions to the Einstein-Maxwell system considering Van
der Waals modified equation of state with and without
polytropical exponent. Mak and Harko [30] found a
relativistic model of strange quark star with the suppositions
of spherical symmetry and conformal Killing vector.

Our objective in this paper is to generate a new class for
charged anisotropic matter with an equation of state that
presents a quadratic relation between the energy density
and the radial pressure in static spherically symmetric
spacetime using a gravitational potential Z(x) of
Thirukkanesh and Ragel [23] which depends on an
adjustable parameter n. We have obtained some new classes
of static spherically symmetrical models of charged matter
where the variation of the parameter n modifies the radial
pressure, charge density and the mass of the compact
objects. This article is organized as follows, in Section 2,
we present Einstein’s field equations. In Section 3, we
make a particular choice of gravitational potential Z(x) that
allows solving the field equations and we have obtained
new models for charged anisotropic matter. In Section 4, a
physical analysis of the new solutions is performed. Finally
in Section 5, we conclude.

2. Einstein Field Equations

Consider a spherically symmetric four dimensional space
time whose line element is given in Schwarzschild
coordinates by

ds’ = =e>7dt? + eV dr? + 12 (dO* +sin*0dp? ) (1)

Using the transformations, x=cr’ , Z(x):e_n(r) and

Azyz(x)=e2v(r) with arbitrary constants A and c, suggested

by Durgapal and Bannerji [31], the Einstein field equations
as given in (1) are
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Where 0 is the energy density, P, is the radial pressure,
E is electric field intensity, o is the charge density, p, is the

tangential pressure and dot differentiations with respect to x.
With the transformations of [31], the mass within a
radius r of the sphere take the form

1 X
M) = ! Vxpods ©6)

In this paper, we assume the following equation of state
_ 2
p=ap ™

Here @ is arbitrary constant.

3. The Models

Motivated by Thirukkanesh and Ragel [23], we take the

form of the gravitational potential, Z(x) as

Z(x)= (1 - ax )" where o a real constant and n is an

adjustable parameter. This potential is regular at the origin
and well behaved in the interior of the sphere. For the
electric field we make the choice

nx

(1 + ax )2 (8)

E*=

This electric field is finite at the centre of the star and
remains continuous in the interior. In this paper, we have
considered the particular cases for n=1,2, 3.

For the case n=1, using Z(x) and eq. (8) in eq.(2) we
obtain

_ 6ac + (12azc—1)x+6a3cx2
2(1 + ax)2

©)

Substituting (9) in eq.(7), the radial pressure can be
written in the form

=a [6ac * (lzazc—l)x+6a30x2]2

P
" 4(1+ax)4

(10)

Using (9) in (6), the expression of the mass function is
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- azx/al4a4cx2 +(4a3 —a)r—3J+3a2(1+ax)arctan\/E

1 Substituting (10), (8) and Z (x) in (3), we have
8C3/2[l4\/;(1 +ax) (1)

M(x)

a[()ac+(12azc—l)>(+6a30x2]2 B x . a (14)
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With (8) and Z (x) in (5), the charge density is

Integrating (14), we obtain
2 c(l - ax)(3 + ax)2

o= 12
(1+ax) (12 (@)= (1 +ax)*(-1+ax)? eX[{F (x)] (15)
The tangential pressure is given by where
.. . 4 o \
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The metric functions e and € can be written as

0= 6ac + (7azc —l)>(—4a3cx2 -5a’cx?

(19)
1 1+ax )
2= 1 (17) ( ax)
@ replacing (19) in (7), we have for the radial pressure
2v 2.2 24 2B
=A% 1+ -1+ 2F 18
¢ a ( ax) ( ax) exp[ (x)] (18) _ [6ac + (7a2c—1)x—4a3cx2 —5a4cx3]2
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With n=2, the expression for the energy density is 4(1 + ax)
and the mass function is
M (x) = a’~ax lZa4cx2 -2a°x%c + (4a3c - a)x - 3J+ 3a?(1 + ax)arctan +/ax @1
403/2a4\/;(1 + ax)
the charge density is given by For the tangential pressure we have
2c\l — ax 2 3+ ax 2 P,:4xc(1-ax)zi+4c(1—ax)(l-Zax)X-Zac(l—ax)- o
(l + ax)
The eq. (3) becomes
y_ a[6ac+(7a2c—1)x—4a3cx2—5a4cx3]2 _ X +a(2—ax) (24)
y 4c(1+ax)4(1—ax)2 4c(1+ax)2(1—ax)2 4(1—ax)
Integrating (24), we obtain
y(x)=c, (l + ax)c (— 1+ ax)D eXdG(x)] (25)
where for convenience we have let
S5a 2
c=>2 p :_ZOO'a c+2a+5a and
8a 8a
G(x)= ( 150 aa’® ¢ x° +300 aa®c?x* + (300'a5c -6a°c- 6aa7cz)x3 +
(24aa4c +3a’ - 18a5c)x2 + (6a2 -2aa-18a*c-42aa’c - 168 aa5c2)x (26)

+3a-6a’c-6aa*c® -36aqa’c-a )/

24a3c(1+ax)3(—1+ax)

. . 2v .
The metric functions 62/] and € are given by
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ez/‘ :;2 (27) I[),Pr,]‘4(.}6‘),0‘2,PZ,€2/1 and ezv
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2
With n=3, we can find the following expressions for P=a [18‘” + (6“2"’ '3)" '28(“3"’" 2)4' 2a"ex’ +14“5°’x4] (30)
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4. Physical Analysis

In this section we discuss the physical properties that
have to be satisfied by the realistic star [27]. With n=1, the
gravitational potentials are regular at the origin since
2304aa*c* —2a+48aa*c+24a

384ca’ and  e?0)=1 are
constants and (wb))’ :(EZV(r))' =o at r=0. In the center
p(0)=3ac . p is positive if a> 0.
For the n=2,

ezv(o) :Azclze
case

Q2AO =,

3. 4.2 _ 2. . .« .
3a-6a’c—6aa"c” -360a"c—a , in the origin _ O ,
24ca’ r=

ezv(o) - Azczze

\ \ . This shows that the potential
(62/](r))r=o - (€2V(r))r=0 =0 p

gravitational is regular in the origin. In the centre

£(0) =6ac-
. 22(0) —
With n=3, e?'=1 ,
_T2a+5288a*c?a* —4704aa" > +2352aa*c—144aa* c* +144aa’ c=36a-288ca’
ezv(o) :Azc3ze 768ca®

in the origin and (ez’](r))r:o = (ezv(r))r:o =0 . Again the

gravitational potential is regular at # =0 . In the center
£(0)=9ac .

The following figures represent the graphs of P, o,
M(x) and the square of speed of sound v for some

values of a, a and C. To maintain causality, the square of

sound speed defined as vszr: aF, should be within the

dp

limit 0 <V <1 in the interior of the star. In figures 1, 2, 3

and 4 we generated the plots for the radial pressure, radial
speed of sound, charge density and mass, respectively with
0=1/4, a=0.2 and C=1. We have considered the cases
n=1,2,3.

In Fig.1, the radial pressure is finite and decreasing for

three studied cases. In Fig.2, the condition 0 < vszr <1

maintained inside the stellar interior. In Fig. 3, that
represent charge density, we observe that is continuous,
finite and monotonically decreasing function. In Fig.4, the
mass function is strictly increasing function, continuos and
finite.
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Fig 1. Radial Pressure
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Fig 4. Mass

5. Conclusion

In this paper, we have generated new exact solutions to
the Einstein-Maxwell system considering a gravitational
potential Z what depends on an adjustable parameter n and
an equation of state that presents a quadratic relation
between the energy density and the radial pressure. The
new obtained models may be used to model relativistic
stars in different astrophysical scenes. The charged
relativistic solutions to the Einstein-Maxwell systems
presented are physically reasonable. The charge density o is
nonsingular at the origin and the radial pressure is
decreasing with the radial coordinate. The mass function is
an increasing function, continuous and finite and the
condition 0<v2<1 is maintained inside the stellar
interior. The gravitational potentials are regular at the
centre and well behaved.

We show as a modification of the parameter n of the
gravitational potential affects the electrical field, charge
density and the mass of the stellar object. The models
presented in this article may be useful in the description of
relativistic compact objects with charge, strange quark stars
and configurations with anisotropic matter.
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