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Abstract 
The effect of small changes in the Coriolis and centrifugal forces on the stability of 

equilibrium points in the Robe restricted three body problem was studied. In this 

problem we considered both primaries as oblate spheroid. The critical mass 

obtained depends on the small changes in the Coriolis and centrifugal forces, 

oblateness of the rigid shell and the second the second primary as well as the 

density parameter k. The stability of the triangular points depends largely on the 

values of k. The destabilizing tendencies of the centrifugal force and oblateness 

factors were enhanced when k＞0 and weakened for k＜0. 

1. Introduction 

The restricted three body problem is to describe the motion of an infinitesimal 

mass when the primaries rotate around their center of mass under their mutual 

gravitational attraction and the infinitesimal mass moves in the orbital plane of the 

two primaries. The infinitesimal mass is attracted by the primaries but does not 

influence the motion of the primaries. The classical restricted three body problem 

has five equilibrium points; three collinear and two triangular. The collinear points 

are not stable for all values of the mass parameter µ  while the triangular points are 

stable for a critical mass value ...03852.0=< cµµ [1]. The properties of motion of a 

restricted three-body problem and their generalizations have been studied by several 

researchers ( Szebehely, [1]; Bhatnagar and Hallan, [2]; Khanna and Bhatnagar, [3]; 

Singh and Ishwar, [4]; Sharma, Taqiv and Bhatnagar [5], AbdulRaheem and Singh, 

[6], Narayan and Kumar [16], Sharma and SubbaRao [17] and [18], Singh and 

Umar, [19], Raman and Sharma, [20]).  

Robe [7] introduced a new kind of restricted three-body problem that 

incorporates the effect of buoyancy force. One of the primaries 
1m  is a rigid shell of 

mass filled with homogeneous incompressible fluid of density
1ρ . The second 

primary 2m  is a point mass located outside the shell. The third body m  is the 

particle of negligible mass of density 
3ρ which moves inside the shell under the 

influences of the gravitational attraction of the primaries and the buoyancy force of  
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the fluid of density
1ρ . Robe studied the motion of the 

infinitesimal mass when 2m  describes both circular and 

elliptic orbits. He obtained the equilibrium points and 

showed that, for the circular case, the equilibrium point is 

linearly stable when 
13 ρρ <  and unstable when

31 ρρ < . 

The third body m  which moves in the shell filled with 

the homogeneous incompressible fluid is a submerged body 

that experiences buoyancy force. The line of action of the 

buoyancy force passes through the centre of buoyancy. If 

the third body is neutrally buoyant it will remain at rest at 

any point where it is immersed in the fluid. 

The stability of a submerged body depends on the centre of 

buoyancy and centre of gravity of the body. If the centre of 

buoyancy lies above the centre of gravity then a stable 

equilibrium is obtained. Unstable equilibrium arises when 

centre buoyancy lies below centre of gravity (Berger [14]). 

Robes problem has been modified to define a new 

problem (Shrivastava and Garain [8], Plastino and Plastino 

[9], Giordano, Plastino and Plastino [10], Hallan and Rana 

[11] and Hallan and Mangang [12]).  

The classical problem has been generalized by taking 

into account the shapes and luminous properties of the 

primaries as well as the small changes in the Coriolis and 

centrifugal forces acting on the satellites in orbits. The 

degree of flattening of the primaries and the changes in the 

Coriolis and centrifugal forces, due to rotational motion, 

cause perturbations in the motions of the primaries and 

affect the stability of the restricted three body problem. 

In our model we consider both the first primary (rigid 

shell filled with an incompressible homogeneous fluid) and 

the second primary as oblate spheroids, together with small 

changes in the Coriolis and centrifugal forces to study the 

Stability of Triangular Equilibrium points of the Robes 

Restricted Three-Body Problem. 

The astrophysical consideration of our model is that it 

may be used for studying the small oscillations of the 

Earth’s inner core due to small changes in Coriolis and 

centrifugal forces as well as the oblateness of the primaries 

together with the attraction of the Moon. The model is also 

applicable to the study of the motion of an artificial satellite 

under the influence of Earth’s attraction. 

The paper consists of four sections. Section one 

establishes the relevant equations of motion that 

incorporates the effect of buoyancy force using some basic 

assumptions. In the second section we obtained the 

equilibrium points. Section three deals with the variational 

equations of motion of the problem and solutions of the 

resulting characteristic equation obtained. In section four, 

we obtained the critical mass of the mass parameter. This is 

followed by the conclusion on the findings. 

2. Equations of Motion 

Let the mass of the rigid shell and that of the point mass 

be 1m and 2m  respectively. Let the density of the 

incompressible fluid inside the shell be 1ρ and that of the 

infinitesimal mass be 3ρ with mass m. Let 1A and 2A

denote the oblateness coefficients of the rigid shell and the 

second primary respectively such that 1,0 21 <<< AA  

(McCuskey, [13]). 

Let 1M , 2M  and 3M  be the centers of 1m , 2m  and 3m

respectively such that 131 rMM =  and 
232 rMM = . Let G be 

the gravitational constant and ( )yx,  the coordinates of the 

infinitesimal mass m in the orbital plane. Let the line 

joining 1m  and 2m  be the x -axis. Then the total potential 

acting on m is  
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Let the coordinates of 1m  and 2m  be )0,( 1x and )0,( 2x

respectively. In the dimensionless rotational coordinate 

system we choose the unit of mass to be the sum of the 

masses of the primaries. We take the unit of length equal to 

the distance between the primaries and the unit of time is 

chosen such that 1=G . 

The equations of motion of the infinitesimal body are 

(AbdulRaheem and Singh, [1]) 

xynx Ω=− ɺɺɺ ϕ2  

yxny Ω=− ɺɺɺ ϕ2                               (2) 

where 
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with 
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1 yxr ++= µ  

( ) 222
2 1 yxr ++−= µ                            (4) 

We suppose that the origin is at the barycentre of 1m  

and 2m  be )0,( 1x and )0,( 2x  so that µ−=1x  and 

µ−= 12x . The mean motion is given as 

( )21
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Parameters ϕ and ψ  denote the Coriolis and 

centrifugal forces. We introduce small perturbations ε and 
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ε ′ in ϕ and ψ respectively such that εϕ += 1 , 1<<ε  and εψ ′+=1 , 1<<′ε . 

3. Equilibrium Points 

The equilibrium points occur when the velocity and 

acceleration of the system are zeros. That is, 

0,0 =Ω=Ω yx                               (5) 

3.1. Triangular Points 

The triangular points are given by the equations  

0,0 =Ω=Ω yx , 0≠y  

That is, for 0≠k , we have 
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Using equations (6) and (7) we obtain 
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When the primaries are neither oblate nor radiating and 

31 ρρ =  

3
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We assume the solutions of equations (7) are 
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where iα , ( )2,1=i  are very small perturbations. Knowing 

1r  and 2r  from equations (7) the exact coordinates of the 

triangular points are obtained by solving equations (4) for x 

and y. Thus 
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Using equations (9) in (10) and restricting ourselves to 

linear terms in 1A , 2A  and k, we obtain  
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Putting the values of 1r  and 2r  in equation (10) we have  
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The values of x  and y obtained in equations (11) are 

the triangular points and are denoted by 
4L  and 

5L  

respectively. They are located symmetrically with respect 

to the horizontal axis. It is seen from equations (11) that 

their location is affected by the perturbation in the 

centrifugal forces, oblateness of the two primaries and the 

density parameter. 

4. Stability of Triangular Points 

Let ( )ηξ , denote a small displacement in the triangular 

points ),( 00 yx . Then we write ξ+= 0xx , η+= 0yy . 

Substituting these values into equations (2), gives the 

variational equations of the problem as  
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( ) ( ) )2(,,2 0000 Oyxyxn yyxy +Ω+Ω=+ ηξξϕη ɺɺɺ  

Their characteristic equation is 

( ) ( ) 04
2000222004 =Ω−ΩΩ+−Ω+Ω− xyyyxxyyxx n λϕλ   (12) 

where the superscript �  indicates that the partial 

derivatives are evaluated at the triangular points ),( 00 yx . 

The partial derivatives are given by 

( ) 






 ++








+
−=Ω 11

3

2

0

4

3

43

3
2 ba

k
kxx µ

ψ
ψψψ  



35 Abdul Razaq Abdul Raheem and Faluyi Oludotun Omoniyi:  Effect of Perturbations on the Stability of Triangular  

Libration Points of the Robes Restricted Three-Body Problem when the Primaries are Oblate Spheroid 

( )













++














+−









+
−=Ω 22

3

2

0

3

16
4

4

3

43

3
2 ba

k

k
kyy µ

ψ
ψ

ψ
ψψ     (13) 

where 

( ) ( )































+
+−

+
+























+

+













−

++








−
−= 2

1
3

5

1

3

2

211
23

43
6

43

9

23

2429

43

25

2

9

4

1
A

k

k

k

A
A

k

k

AA
k

k
a

ψ
ψ

ψψ
ψ

ψ

ψψ

ψ
ψ

 

( ) ( )
( )

( )






















+
++









+
++

+
−























+














−++

−
+

−= 2

3

8

2
2

3

5

1

3

2

1
3

5

1
83

233

23

43
12

43

9

23

23166

3
43

9

4

1
A

k

k
A

k

k

k

A
A

k

k

k

A
b

ψψ
ψψ

ψ
ψ

ψ
ψ

ψ

ψψψ

ψψ
ψ

 

( ) ( )21
3

2

21
3

2

3

2

3

22
23

43
6

23

415

2

1

23

818
3

3

16
4

44

1
AA

k

k
AA

k

k

k

kk
a +









+
++







+






















−
+−









−
+














+−














−

= ψ
ψ
ψψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ

( )

( ) ( ]1

3

2

3

5

1

3

2

23

4

9
83

434

3 A
k

A
k

k

+














−

−
+

+













−

+
ψ

ψ

ψ
ψψ

ψψ
 














+−














−

=
ςψ

ψ

ψ
3

16
4

44

1
3

2

3

22

k
b

 

( ) 1

3

2

1

3

2

21
3

2

3

23
23

4

9
83

43

43

23

3
24

23

415

2

3

44

1

3

5

A
k

A
k

k
AA

k

k

k

k
a

+














−

+








+
+













−

−






+






















−
−−









−
−














−

=
ψ

ψψ

ψ
ψ

ψ

ψ

ψ
ψψ

ψ
ψ

ψ
 

 

( ) ( )
( ]2

3

2

1

3

2

23

432

6
23

435

3 A
k

k

A
k

k

+

+













−

−
+

+













−

−
ψ

ψψ

ψ

ψψ
 

( ) ( )( ]21
3

2

21

3

2

3

5

23

43
13

23

4

9 AA
k

k
AA

k
+

+
+














+++

+














−

−
ψ
ψψ

ψ

ψ

ψ
. 
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The roots of the characteristic equation (12) are 

functions of µ , 1A , 2A , k and are controlled by ∆ . Three 

cases can be discussed for ∆ : 

I. When 0>∆ , we have that the roots are negative 

showing that the triangular points are linearly stable. 

II. When 0<∆ , we have that the real parts of two of 

the four roots are positive and equal showing that 

the triangular points are unstable. 

III. When 0=∆ , we have that the double roots give 

secular terms, showing that the triangular points are 

unstable. 

5. Critical Mass 

The solution of the equation 0=∆ gives the critical 

mass value cµ of the mass parameter. That is 
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For simplicity we substitute εϕ += 1 , εψ ′+= 1 and 

restrict ourselves to linear terms in εε ′, and k . Neglecting 

the product εiA  and ε ′
iA  in equation (16) we find  
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Fig 4. Variation of critical mass with the parameters. 

Equation (17) gives the critical mass value of the mass 

parameter. It reflects the effect of  perturbations in the 

Coriolis and centrifugal forces and the oblateness of the 

first (rigid mass) and  second primaries on the critical mass 

of the Robes restricted three-body problem, indicating a 

destabilizing effect on the triangular equilibrium points. 

The destabilizing tendencies of the centrifugal force and 

oblateness factors are further enhanced while the stabilizing 

property of the Coriolis is overpowered when 0>k . The 

stabilizing tendency of the Coriolis force and the 

destabilizing powers of the centrifugal force and oblateness 

factors are weakened when 0<k . Fig.4 shows the variation 

of the critical mass cµ with the density parameter k  for 

constant valuesε ,ε ′ , 1A  and 2A . 

When 0=k  we confirm the result of AbdulRaheem and 

Singh (2006) for 01 =q , 02 =q . 

6. Conclusion 

The effect of perturbations in Coriolis and centrifugal 

force, oblateness of the first (rigid shell) and second 

primaries on the stability of the triangular equilibrium 

points of the Robes restricted three-body problem was 

studied. The value of the critical mass obtained depends on 

the small change in the Coriolis and centrifugal forces, 

oblateness coefficients of the rigid shell and second 

primary as well as the density of the fluid and that of the 

infinitesimal mass in the shell. 
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It was observed that the perturbation in the centrifugal 

force and oblateness factors have destabilizing tendencies 

on the triangular equilibrium points. Though the Coriolis 

force has stabilizing power, the overall effect overwhelms 

this power. These destabilizing tendencies are further 

enhanced or weakened, depending on whether the density 

of the fluid in the shell is less than that of the infinitesimal 

mass or the density of the infinitesimal mass is less than 

that of the fluid. 
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