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Abstract 
In this paper, we studied the behavior of relativistic objects with anisotropic matter 

distribution considering Tolman IV form for the gravitational potential Z. The equation 

of state presents a quadratic relation between the energy density and the radial pressure. 

New exact solutions of the Einstein-Maxwell system are generated. A physical analysis 

of electromagnetic field indicates that is regular in the origin and well behaved. We show 

as the presence of an electrical field modifies the energy density, the radial pressure and 

the mass of the stellar object and generates a singular charge density.  

1. Introduction 

From the development of Einstein´s theory of general relativity, the modelling of 

superdense mater configurations is an interesting research area [1,2]. In the last decades, 

such models allow explain the behavior of massive objects as neutron stars, quasars, 

pulsars, black holes and white dwarfs [3,4,5]. 

In theoretical works of realistic stellar models, is important include the pressure 

anisotropy [6-8]. Bowers and Liang [6] extensively discuss the effect of pressure 

anisotropy in general relativity. The existence of anisotropy within a star can be 

explained by the presence of a solid core, phase transitions, a type III super fluid, a pion 

condensation [9] or another physical phenomena as the presence of an electrical field 

[10].The physics of ultrahigh densities is not well understood and many of the strange 

stars studies have been performed within the framework of the MIT bag model [11]. In 

this model, the strange matter equation of state has a simple linear form given by 

( )1
4

3
p Bρ= −  where ρ is the energy density, p is the isotropic pressure and B is the 

bag constant. Many researchers have used a great variety of mathematical techniques to 

try to obtain exact solutions for quark stars within the framework of MIT bag model, 

since it has been demonstrated by Komathiraj and Maharaj [11], Malaver [12,13], 

Thirukkanesh and Maharaj [14], Maharaj et al. [15], Thirukkanesh and Ragel [16] and 

Sunzu et al. [17]. 

With the use of Einstein´s field equations, important advances has been made to model 

the interior of a star. In particular, Feroze and Siddiqui [18] and Malaver [19] consider a 

quadratic equation of state for the matter distribution and specify particular forms for the 

gravitational potential and electric field intensity. Mafa Takisa and Maharaj [20] obtained 

new exact solutions to the Einstein-Maxwell system of equations with a polytropic 

equation of state. Thirukkanesh and Ragel [21] have obtained particular models of 

anisotropic fluids with polytropic equation of state which are consistent with the reported 

experimental observations. More recently, Malaver [22,23] generated new exact 

solutions to the Einstein-Maxwell system considering Van der Waals modified equation 

of state with and without polytropical exponent and  Thirukkanesh and Ragel  
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[24] presented a anisotropic strange quark matter model by 

imposing a linear barotropic equation of state with Tolman 

IV form for the gravitational potential. Mak and Harko [25] 

found a relativistic model of strange quark star with the 

suppositions of spherical symmetry and conformal Killing 

vector. 

The objective of this paper is to obtain new exact solutions 

to the Maxwell-Einstein system for anisotropic matter with 

an equation of state that presents a quadratic relation between 

the energy density and the radial pressure in static spherically 

symmetric spacetime using Tolman IV form for the 

gravitational potential Z. We have obtained some new classes 

of static spherically symmetrical models where the presence 

of an electrical field modifies the radial pressure, charge 

density and the mass of the compact objects. This article is 

organized as follows, in Section 2, we present Einstein´s field 

equations. In Section 3, we make a particular choice of 

gravitational potential Z(x) that allows solving the field 

equations and we have obtained new models for charged 

anisotropic matter. In Section 4, a physical analysis of the 

new solutions is performed. Finally in Section 5, we 

conclude. 

2. Einstein Field Equations of 

Anisotropic Fluid Distribution 

We consider a spherically symmetric, static and 

homogeneous and anisotropic spacetime in Schwarzschild 

coordinates given by  

)θdφ+(dθr+dre+dte=ds 2(r)2(r)2 22222λ2 sinν−      (1) 

where )(rν  and )(rλ are two arbitrary functions.  

The Einstein field equations for the charged anisotropic 

matter are given by  

2

00
2

1
ET −−= ρ                              (2) 

2

11
2

1
EpT r −=                                    (3) 

2

3322
2

1
EpTT t +==                               (4) 

where ρ  is the energy density, rp is the radial pressure, E  

is electric field intensity and tp  is the tangential pressure, 

respectively. Using the transformations, 
2x = cr , 

2λ(r)Z(x)= e−
 and 

2 2 2ν(r)A y (x)=e  with arbitrary constants 

A and c>0, suggested by Durgapal and Bannerji [26], the 

metric (1) take the form  

2 2 2 2 21
( ) sin

4

2 2 2 x
ds = A y x dt + dx + (dθ + θdφ )

cxz c
−    (5) 

and the Einstein field equations can be written as 

21
2Z

2

Z ρ E
=

x c c

− − +&                               (6) 
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1
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rpy Z E
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&
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2
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2

tpy y E
xZ +( + ) + Z =

y y c c
+

&& &
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( )2
2 4cZ

xE E
x

σ = +&                              (9) 

σ  is the charge density and dots denote differentiation with 

respect to x. With the transformations of [26], the mass 

within a radius r of the sphere take the form 

∫
x

ρ(x)dxx=M(x)
0

3/24c

1
              (10) 

In this paper, we assume the following equation of state 

2αρ=pr
                               (11) 

Here α   is arbitrary constant. 

3. A New Class of Solutions 

Following Tolman [27] and Thirukkanesh and Ragel [24], 

we take the form of the gravitational potential, Z(x ) as  

( )( )
( )ax

bxax
xZ

21

11
)(

+
−+=                          (12) 

where a and b are real constants.  This potential is regular at 

the origin and well behaved in the interior of the sphere. We 

have considered the particular cases for 2E 0=  and 2E 0≠ .  

Case I: For 2E 0= , using Z(x )  in eq.(2) we obtain 

( ) ( )[ ]
( )2

222

12

6273

ax

bxaxaabba
c

+
++++=ρ        (13) 

Substituting (13) in eq.(11), the radial pressure can be 

written in the form 

( ) ( )
( )

2
2 2 2

2
r 4

3 a b 7ab 2a x 6a bx
P c

4 1 2ax

 + + + +
 = α

+
               (14) 

Using (13) in (10), the expression of the mass function is 

( )3/ 2x a b abx
M (x )

2 c (1 2ax )

+ +
=

+
                   (15) 

The equations (13) and (15) have been deduced for 
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Thirukkanesh and Ragel [24] with a linear barotropic 

equation of state.  

The tangential pressure is given for 

( ) ( )
( )

( ) ( )
( )

( )
( )

2 2 3

t 2

2 2

2

4xc 1 ax 1 bx 2 5a 3b x 4a a 2b x 6a bxy y
P 2c

1 2ax y y1 2ax

a b 2abx 2a bx
c

1 2ax

 + − + − + − −
 = +

+  + 

+ + +
−

+

&& &

(16) 

Substituting (14) and (12) in (7), we have 

( )
( )( )

( )
( ) ( )( )

2
2 2 2

3

a b abxy

y 4 1 ax 1 bx

c 3 a b 7abx 2a x 6a bx

4 1 2ax 1 ax 1 bx

+ +
=

+ −

 α + + + + +
+ + −

&

    (17) 

Integrating (17), we obtain 

( ) ( ) ( ) [ ]A B C

1y(x) c 1 bx 1 ax 1 2ax exp D(x)= − + + +          (18) 

where  

( )( )
3 2 2 2 29b c 16 ca b 24 cab 4ab 4a b

A
4 a b b 2a

α + α + α + + += −
+ +

, 

( )
2 2ca 4 cab a 4 cb

B
4 a b

α + α − + α= −
+

, 

( )
2 2

17 cb 4 ca 28 bc
C

8 b 2a

α + α + α=
+

 

and  

( )2
214

432
)(

ax

abcxbcac
xD

+
++−= ααα

                (19) 

The metric functions  
2

e
λ

 and 
2

e
ν

can be written as 

( )
( )( )

2 1 2ax
e

1 ax 1 bx

λ +
=

+ −                           (20) 

( ) ( ) ( ) [ ]2A 2B 2C2 2 2
1e A c 1 bx 1 ax 1 2ax exp 2D(x)

ν = − + + +       (21) 

Figures 1, 2 and 3 represent the graphs of rp ,
2

srv , 

( )M x  with eq. (11) and  
2

0E = . 
2

srv and ( )M x are the 

radial speed of sound and mass function,  respectively. The 

graphs has been plotted for a particular choice of parameters 

a = 0.0169, b = 0.00454, α=1/3 with a stellar radius of r=10 

km presented for Thirukkanesh and Ragel [24]. The metric 

for this model is     

( ) ( ) ( ) [ ]
( )

( )( )

2A 2B 2C2 2 2 2
1

2 2 2 2

ds = A c 1 bx 1 ax 1 2ax exp 2D(x) dt

1 2ax x
+ dx (dθ +sin θdφ )

4xc 1 ax 1 bx c

− − + + +

+
+

+ −

(22) 

 

Fig 1. Radial Pressure 

 

Fig 2. Radial speed of sound 

 

Fig 3. Mass. 

Case II: For 
2E 0≠ we have considered the form of the 

electrical field proposed for Feroze and Siddiqui [28] 

( ) ( )2 2c 1 Z 2c a b abx
E

x 1 2ax

− + +
= =

+
                    (23) 

With eq.(23), we have found the following expressions for  

( ) 2
r, P , M x ,ρ σ and 

tP  
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( )
( )

2 2

2

a b 2abx 2a bx
2c

1 ax

+ + +
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+
                  (24) 

( )
( )

2
2 2

2
r 4

a b 2abx 2a bx
P 4 c

4 1 ax

+ + +
= α

+
           (25) 

( ) ( )
( )

3 2 2 2 3 2 2

2

16a bx 8a bx 12a 6ab ax 12a 6a b x 6a 3ab 2arctag 2ax
M(x)

48a ac 1 2ax

 + − − + + + +
 =

+
(26) 

( )( ) ( ) ( )
( ) ( )

2
2 2 2

2

4

2c 1 ax 1 bx 4a bx a 2a 5b x 2 a b

x 1 2ax a b abx

 + − + + + + σ =
+ + +

 (27) 

( )( )
( )

( ) ( )
( )

( )
( )

t

2 2 3

2

2 2

2

4xc 1 ax 1 bx y
P

1 2ax y

4 2 5a 3b x 8a a 2b x 12a bx y
2c

y1 2ax

2a 2b a 2a 5b x 4a bx
c

1 2ax

+ −
=

+

 + − + − −
 +
 + 

 + + + + −
+

&&
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     (28) 

Substituting (23) and (25) in (7), we have 

( )
( ) ( )( )

2
2 2

3

c a b 2abx 2a bxy

y 1 2ax 1 ax 1 bx

α + + +
=

+ + −

&
               (29) 

Integrating (29), we obtain 

( ) ( ) ( ) [ ]E F G

2y(x) c 1 bx 1 ax 1 2ax exp H(x)= − + + +     (30) 

Again for convenience we have let 

( )a b cb
E

2a b

α +
= −

+
,  ( )F c a b= −α + , 

( )2 26ab 4a 3b c
G

2a b

+ + α
=

+
 

and 

( )
( )

( )
2

2

8a x 2a b c
H x

4 1 2ax

+ − α
=

+
                           (31) 

The metric functions  
2

e
λ

 and 
2

e
ν

can be written as 

( )
( )( )

2 1 2ax
e

1 ax 1 bx

λ +
=

+ −                            (32) 

( ) ( ) ( ) [ ]2E 2F 2G2 2 2
2e A c 1 bx 1 ax 1 2ax exp 2H(x)ν = − + + +   (33) 

Figures 4, 5, 6, 7 and 8 represent the graphs of rp , ρ , 

2σ , ( )M x and 
2

srv with eq.11, respectively and  a = 

0.0169, b = 0.00454, α=1/3 with r=10 km . The metric for 

this model is  

( ) ( ) ( ) [ ]
( )

( )( )

2E 2F 2G2 2 2 2
2

2 2 2 2

ds = A c 1 bx 1 ax 1 2ax exp 2H(x) dt

1 2ax x
+ dx (dθ + sin θdφ )

4xc 1 ax 1 bx c

− − + + +

+
+

+ −
  (34) 

 

Fig 4. Radial Pressure. 

 

Fig 5. Energy density 

 

Fig 6. Mass 
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Fig 7. Charge density 

 

Fig 8. Radial speed of sound 

4. Physical Properties of the New 

Solutions 

In this section we discuss the physical properties that have 

to be satisfied by the realistic star [28]. With 
2

E 0= , the 

gravitational potentials are regular at the origin since 

( )
2 ac 3 bc

2 0 2 2 2
1e A c e

α + α−ν =  and 
( )2 0

e 1
λ =  are constants and 

( )( ) ( )( )2 r 2 r
e e 0

λ ν′ ′
= =  at r=0. In the centre 

( )3c a b
(0)

2

+
ρ =  

and ( )22

r

9 c a b
P

4

α +
=  both are positive if a > 0  and b > 0. 

For the case ( )2 2c 1 Z
E

x

−
= , 1)0(2 =λe , 

( )
( )

2

2
2

2

202

cba

ecAe

α
ν

−

= , in the origin 0=r , 

( ) ( ) 00
)(2

0
)(2 =

′
=

′
== r

r
r

r
ee

νλ . This shows that the potential 

gravitational is regular in the origin. In the centre 

( )bac += 2)0(ρ  , ( )22 bacPr += α  and the charge density 

presents a singularity. For both cases, the mass function is 

strictly increasing function, continuos and  ( ) 0=xM  at  r=0. 

In fig.1 and fig. 4, the radial pressure is finite and 

decreasing for two studied cases. To maintain of causality, 

the square of sound speed defined as 2 r

sr

dp
v

d ρ
= should be 

within the limit 20 1srv≤ ≤  in the interior of the star. In fig. 2 

and 8 this condition is maintained inside the stellar interior. 

In fig. 5, that represent energy density for the case 
2 0E ≠ , 

we observe that is continuous, finite and monotonically 

decreasing function. In fig. 7, the charge density is singular at 

the origin, non-negative and decreases. In fig.3 and 6, the mass 

function is strictly increasing function, continuos and finite. 

5. Conclusion 

In this paper, we have generated new exact solutions to the 

Einstein-Maxwell system considering Tolman IV form for 

the gravitational potential Z and an equation of state that 

presents a quadratic relation between the energy density and 

the radial pressure. The new obtained models may be used to 

model relativistic stars in different astrophysical scenes. The 

relativistic solutions to the Einstein-Maxwell systems 

presented are physically reasonable. The charge density σ is 

singular at the origin for the case 2
0E ≠ and the mass 

function is an increasing function, continuous and finite 

inside the stellar interior. The condition 20 1srv≤ ≤  inside the 

stellar interior. The gravitational potentials are regular at the 

centre and well behaved. 

The models presented in this article may be useful in the 

description of relativistic compact objects with charge, 

strange quark stars and configurations with anisotropic 

matter. 
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