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Abstract 
In this paper, we found new exact solutions to the Einstein-Maxwell system of equations 

for quark stars within the framework of MIT-Bag Model considering modified Tolman 

IV type potential for the gravitational potential Z which depends on an adjustable 

parameter n and a particular form for the electric field intensity. The anisotropic matter 

distribution satisfies a linear equation of state consistent with quark matter. The exact 

solutions can be written in terms of elementary and polynomial functions in presence of 

an electromagnetic field. All the obtained solutions have a singularity in the charge 

density but do not admit singularities in the matter and metric functions. We show as a 

variation of the adjustable parameter causes a modification in the charge density, the 

electric field intensity, the radial pressure, the tangential pressure, the metric functions 

and the mass of the stellar object. A graphical analysis indicates that the obtained models 

satisfy all physical features expected in a realistic star. 

1. Introduction 

From the development of Einstein´s theory of general relativity, the modelling of 

superdense mater configurations is an interesting research area [1,2]. In the last decades, 

such models allow explain the behavior of massive objects as neutron stars, quasars, 

pulsars, black holes and white dwarfs [3,4,5]. Malaver [3] studied the behavior of the 

thermal capacity Cv for Schwarzschild´s black hole when T>>TC and T<<TC where TCis 

the characteristic temperature of the Schwarzschild black hole and found that the value 

for Cv if T>>TC is the same that would be obtained in an ideal diatomic gas if only are 

considered the degrees of freedom rotational. Komathiraj and Maharaj [4] find new 

classes exact solutions to the Einstein-Maxwell system of equations for a charged sphere 

with a particular choice of the electric field intensity and one of the gravitational 

potentials. Sharma et al. [5] have obtained a class of solutions to the Einstein-Maxwell 

system assuming a particular form for the hypersurface (t=constant) containing a 

parameter λ. 

In theoretical works of realistic stellar models, is important include the pressure 

anisotropy [6-8]. Bowers and Liang [6] extensively discuss the effect of pressure 

anisotropy in general relativity. The existence of anisotropy within a star can be 

explained by the presence of a solid core, phase transitions, a type III super fluid, a pion 

condensation [9] or another physical phenomena as the presence of an electrical field 

[10]. The physics of ultrahigh densities is not well understood and many of the strange 

stars studies have been performed within the framework of the MIT-Bag model [11]. In 

this model, the strange matter equation of state has a simple linear form given by and B 

is the bag constant. Many researchers have used a great variety of mathematical  
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techniques to try to obtain exact solutions for quark stars 

within the framework of MIT-Bag model: Komathiraj and 

Maharaj [11] found two new classes of exact solutions to the 

Einstein-Maxwell system of equations with a particular form 

of the gravitational potential and isotropic pressure. Malaver 

[12, 13] also has obtained some models for quark stars 

considering a potential gravitational that depends on an 

adjustable parameter. Thirukkanesh and Maharaj [14] studied 

the behavior of compact relativistic objects with anisotropic 

pressure in the presence of the electromagnetic field. Maharaj 

et al. [15] generated new models for quark stars with charged 

anisotropic matter considering a linear equation of state. 

Thirukkanesh and Ragel [16] obtained new models for 

compact stars with quark matter. Sunzu et al. found new 

classes of solutions with specific forms for the measure of 

anisotropy [17]. With then use of Einstein´s field equations, 

important advances has been made to model the interior of a 

star. In particular, Feroze and Siddiqui [18, 19] and Malaver 

[20, 21] consider a quadratic equation of state for the matter 

distribution and specify particular forms for the gravitational 

potential and electric field intensity. Mafa Takisa and 

Maharaj [22] obtained new exact solutions to the Einstein-

Maxwell system of equations with a polytropic equation of 

state. Thirukkanesh and Ragel [23] have obtained particular 

models of anisotropic fluids with polytropic equation of state 

which are consistent with the reported experimental 

observations. Malaver [24, 25] generated new exact solutions 

to the Einstein-Maxwell system considering Van der Waals 

modified equation of state with and without polytropical 

exponent and Thirukkanesh and Ragel [26] presented 

aanisotropic strange quark matter model by imposing a linear 

barotropic equation of state with Tolman IV form for the 

gravitational potential. Mak and Harko [27] found a 

relativistic model of strange quark star with the suppositions 

of spherical symmetry and conformal Killing vector. 

The objective of this paper is to obtain new exact solutions 

to the Maxwell-Einstein system for charged anisotropic 

matter with the barotropic equation of state that presents a 

linear relation between the energy density and the radial 

pressure in static spherically symmetric spacetime using 

modified Tolman IV form for the gravitational potential 

Zwhich depends on an adjustable parameter n. We have 

obtained some new classes of static spherically symmetrical 

models where the variation of the parameter n modifies the 

radial pressure, the tangential pressure, charge density and 

the mass of the compact objects. This article is organized as 

follows, in Section 2, we present Einstein´s field equations of 

anisotropic fluid distribution. In Section 3, we make a 

particular choice of gravitational potential Z(x) that allows 

solving the field equations and we have obtained new models 

for charged anisotropic matter. In Section 4, a physical 

analysis of the new solutions is performed. Finally in Section 

5, we conclude. 

2. Einstein Field Equations 

We consider a spherically symmetric, static and 

homogeneous and anisotropic spacetime in Schwarzschild 

coordinates given by  

2 2λ 2 2 2 2sin2 (r) 2 (r) 2ds = e dt +e dr + r (dθ + θdφ )ν−   (1) 

where ( )rν  and ( )rλ are two arbitrary functions. 

The Einstein field equations for the charged anisotropic 

matter are given by  

( )2λ 2λ

2

1 2
1

'λ
e + e = ρ

rr

− −−                  (2) 

( )2λ 2λ

2

1 2
1

'

r
ν

e + e = p
rr

− −− −                (3) 

2 2
te p

r r

λ ν λν ν ν λ− ′ ′ ′′ ′ ′ ′+ + − − = 
 

           (4) 

2

2

1
( )e r E

r

λσ − ′=                               (5) 

where ρ  is the energy density, rp is the radial pressure, E  

is electric field intensity and tp  is the tangential pressure, 

respectively and primes denote differentiations with respect 

to r. Using the transformations, 2x = cr , 2λ(r)Z(x)= e− and 

2 2 2ν(r)A y (x)= e with arbitrary constants A and c>0, 

suggested by Durgapal and Bannerji [28], the metric (1) take 

the form  

2 2 2 2 21
( ) sin

4

2 2 2 x
ds = A y x dt + dx + (dθ + θdφ )

cxz c
−   (6) 

and the Einstein field equations can be written as 

21
2Z

2

Z ρ E
=

x c c

− − +ɺ                             (7) 

21
4Z

2

rpy Z E
=

y x c c

−− −
ɺ

                           (8) 

2

4 4Z 2xZ
2

tpy y E
xZ +( + ) + Z =

y y c c
+

ɺɺ ɺ
ɺ ɺ                           (9) 

( )22 4cZ
xE E

x
σ = +ɺ                            (10) 

σ  is the charge density and dots denote differentiation with 

respect to x. With the transformations of [28], the mass 

within a radius r of the sphere take the form 

3/2
0

1

4c

x

M(x)= xρ(x)dx∫                        (11) 

In this paper, we assume the following lineal equation of 
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state within the framework of MIT-Bag model. 

1

3
rp = ρ                            (12) 

3. The New Obtained Models 

Following Tolman [29] andThirukkanesh and Ragel [26], 

we take the modified form of the gravitational potential,

( )Z x as  

( ) ( )
( )

1 1
( )

1 2

n
ax bx

Z x
ax

+ −
=

+
                           (13) 

where a and b are real constants and n is an adjustable 

parameter. We have considered the form of the electrical field 

proposed for Feroze and Siddiqui[19] 

2 2 (1 )c Z
E

x

−=                         (14) 

We have considered the particular cases for n=1, 2, 3.  

For n=1, using ( )Z x and eq. (14) in eq.(7), we obtain  

( )
( )

2 2

2

2 2
2

1

a b abx a bx
c

ax
ρ

+ + +
=

+
                      (15) 

Substituting (15) in eq. (12), the radial pressure can be 

written in the form 

( )
( )

2 2

2

2 2
2

3 1
r

a b abx a bx
P c

ax

+ + +
=

+
                    (16) 

Using (15) in (11), the expression of the mass function is 

( ) ( )
( )

3 2 2 2 3 2 2

2

16 8 12 6 12 6 6 3 2 2

( )
48 1 2

a bx a bx a ab ax a a b x a ab arctag ax

M x
a ac ax

 + − − + + + +
  =

+
              (17) 

for the electric field intensity 2
E  

( )2 2

1 2

c a b abx
E

ax

+ +
=

+
                                                                      (18) 

and for charge density  

( )( ) ( ) ( )

( ) ( )

2
2 2 2

2

4

2 1 1 4 2 5 2

1 2

c ax bx a bx a a b x a b

x ax a b abx
σ

 + − + + + +  =
+ + +

                                                      (19) 

The tangential pressure is given for 

( )( )
( )

( ) ( )
( )

( )

( )

2 22 2 3

2 2

2 2 2 5 44 1 1 4 2 5 3 8 2 12
2

1 2 1 2 1 2
t

a b a a b x a bxxc ax bx a b x a a b x a bxy y
P c c

ax y yax ax

 + + + + + − + − + − −    = + −
+  + + 

ɺɺ ɺ
   (20) 

Substituting (16), (14) and (13) with n=1 in (8), we have 

( )
( )( ) ( )

2 22 2

6 1 2 1 1

a b abx a bx
y

y c ax ax bx

+ + +
=

+ + −
ɺ                                                                   (21) 

Integrating (21), we obtain 

( ) ( ) ( )1( ) 1 1 1 2
A B C

y x c ax bx ax= + − + +                                                                   (22) 

where  

1

6
A B

c
= = −  and 

1

6
C

c
=                                                                  (23) 

The metric functions 2e λ  and 2e ν can be written as 
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( )
( ) ( )

2 1 2

1 1

ax
e

ax bx

λ +
=

+ −
                                                                 (24) 

( ) ( ) ( )2 2 22 2 2
1 1 1 1 2

A B C
e A c ax bx axν = + − + +                                       (25) 

The metric for this model is 

( ) ( ) ( ) ( )
( ) ( )

2 2 22 2 2 2 2
1

1 2
1 1 1 2 sin

4 1 1

A B C2 2 2ax x
ds = A c ax bx ax dt + dx (dθ + θdφ )

xc ax bx c

+
− + − + + +

+ −
                    (26) 

For case n=2, substituting ( )Z x and 2
E in eq.(7) we obtain  

( ) ( )
( )

3 3 2 3 2 2

2

4 7 2 4 2

2
1

a bx a b a x ab a x b

c
ax

ρ
 + − + − +
  =

+
                                    (27) 

With (27) in eq.(12), the radial pressure can be written in the form 

( ) ( )
( )

3 3 2 3 2 2

2

4 7 2 4 2

2
3 1

r

a bx a b a x ab a x b

P c
ax

 + − + − +
  =

+
                                      (28) 

Using (27) in (11), the expression of the mass function is 

( )
( )

( )

4 3 3 2 4 2 2 3 2

3 2 2

2

192 336 160 120 80 30 60

60 2 30 2 30 2 15 2 ( 3 )

( )
480 1 2

a bx a x a x a bx a x ab a ax

a x a bx a ab arctag ax

M x
a ac ax

 + − + − − −
 
 
+ + + + 
 =

+

                                     (29) 

for the electric field intensity 2
E  

( )2 2

2
2 2

1 2

c a bx a b a x b
E

ax

 + − +  =
+

                                         (30) 

and for charge density 

( ) ( ) ( ) ( )
( ) ( )

2
22 3 3 2 3 2 2

2

4 2 2

2 1 1 6 4 3 8 3 2

1 2 2

c ax bx a bx a b a x ab a x b

x ax a bx a b a x b
σ

 + − + − + − +
  =

 + + − +  

                      (31) 

The tangential pressure is given for 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

2 2 3 3 42

2

3 3 3 2 2 2

2

4 2 8 3 24 2 6 17 84 1 1

1 2 1 2

6 4 12 3 8 2

1 2

t

a b x a a b x a a ab x a bxxc ax bx y y
P c

ax y yax

a bx a a b x a ab x b

c
ax

 + − + − + − −+ −  = +  + +  

 − + − + − −
  +

+

ɺɺ ɺ

                        (32) 

Replacing (28), (30) and (13) with n=2 in (8), we have 
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( )
( )( )( )

2 2 24 3 2

6 1 2 1 1

a bx abx a b b
y

y ax ax bx

+ − +
=

+ + −
ɺ                                                               (33) 

Integrating (33), we obtain 

( ) ( ) ( )1( ) 1 1 1 2
A B C

y x c ax bx ax= + − + +                                                       (34) 

where  

( )
( )

2 1

3

a b
A

b a

−
=

+
, ( )( )

2 2 2 21 2 3 4

6 2

b a b ab a
B

a b b a

− + − −=
+ +

 and 
( )

( )

21 4

6 2

a b
C

b a

−
=

+
                                                                 (35) 

The metric functions 2e λ  and 2e ν can be written as  

( )
( ) ( )

2

2

1 2

1 1

ax
e

ax bx

λ +
=

+ −
                                                                 (36) 

and 

( ) ( ) ( )2 2 22 2 2
1 1 1 1 2

A B C
e A c ax bx axν = + − + +                                                (37) 

The metric for this model is 

( ) ( ) ( ) ( )
( ) ( )

2 2 22 2 2 2 2
1 2

1 2
1 1 1 2 sin

4 1 1

A B C2 2 2ax x
ds = A c ax bx ax dt + dx (dθ + θdφ )

cxc ax bx

+
− + − + + +

+ −
                      (38) 

With n=3, the expressions for ρ , rP , ( )M x , E ,σ , tP , 2e λ and 2e ν are given for  

( ) ( ) ( )
( )

4 4 3 4 3 2 3 2 2

2

6 16 4 15 9 6 6

2
1 2

a bx a b a x a b a x ab a x b a

c
ax

ρ
 + − + − + − + −
  =

+
                                   (39) 

( ) ( ) ( )
( )

4 4 3 4 3 2 3 2 2

2

6 16 4 15 9 6 6

2
3 1 2

r

a bx a b a x a b a x ab a x b a

P c
ax

 + − + − + − + −
  =

+
                               (40) 

( )
( ) ( )

( )

5 4 4 3 4 2 5 3 3 2 3 2 2

2 3 2

2

1440 3072 3472 1344 1456 1400 1400 210 210

210 210 105 105 2 arctan 2

( )
3360 1 2

a bx a bx a x a x a bx a x a bx ab a ax

a bx a x ab a ax

M x
a ac ax

 + − − + − + + −
 
 
− − + − 
 =

+

   (41) 

( ) ( )3 3 2 3 2 2

2
2 8 12 8 6 12 4

1 2

c a bx a b a x ab a x b a

E
ax

 + − + − + −
  =

+
                                             (42) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
32 4 4 3 4 3 2 3 2 2

2

4 3 3 2 3 2 2

2 1 1 4 76 32 54 60 17 38 2 8

1 2 8 12 8 6 12 4

c ax bx a bx a b a x a b a x ab a x b a

x ax a bx a b a x ab a x b a

σ
 + − + − + − + − + −
  =

 + + − + − + −
  

             (43) 
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( ) ( )
( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( )
( )

4 5 4 3 4 3 2 3 3 23

2

4 4 4 3 3 3 2 2 2

2

20 4 4 15 2 23 33 16 3 2 2 11 3 44 1 1

1 2 1 2

8 6 23 16 24 11 11 2 2

1 2

t

a bx a a b x a a b x a ab x a bxc ax bx y y
P c

ax y yax

a bx a a b x a a b x a ab x a b

c
ax

 − + − + − + − + − ++ −  = +  + +  

 − + − + − + − + −
  +

+

ɺɺ ɺ

   (44) 

( )
( ) ( )

2

3

1 2

1 1

ax
e

ax bx

λ +
=

+ −
                                                                              (45) 

( )
( )( )

1/32 2
2 2

1/3

1 2

1 1

A c ax
e

ax bx

ν +
=

+ − +
                                                                             (46) 

The metric for this model is  

( )
( )( )

( )
( ) ( )

( )
1/32 2

2 2 22
1/3 3

1 2 1 2
sin

1 1 4 1 1

2 2 2A c ax ax x
ds = dt + dx d d

cax bx xc ax bx
θ θ φ

+ +
− + +

+ − + + −                                   (47) 

Figures 1, 2, 3 and 4 represent the graphs of rP , ρ , 
2σ

and ( )M x , respectively for the case n=2. The graphs has 

been plotted for a particular choice of parameters a = 

0.01715, b = 0.00329with a stellar radius of r=3 km. 

 

Fig. 1. Radial Pressure. 

 

Fig. 2. Energy density. 

 

Fig. 3. Charge density. 

 

Fig. 4. Mass. 
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4. Physical Properties of the New 

Models 

Any physically acceptable solutions must satisfy the 

following conditions [23]: 

i. Regularity of the gravitational potentials in the origin. 

ii. Radial pressure must be finite at the centre. 

iii. rP > 0 and ρ >0 in the origin.  

iv. Monotonic decrease of the energy density and the radial 

pressure with increasing radius 

The new models satisfy the system of equations (7) - (10) 

and constitute another new family of solutions for a charged 

quark star with anisotropy. The metric functions 
2e λ

and 

2e ν
 can be written in terms of polynomials functions, and 

the variables energy density, pressure and charge density also 

are represented analytical. For 1n = , ( )2 0
1e

λ = , 

( ) ( )
1

2 0 2 2
31 1 ce A c

ν −= −  in 0r =  and 

( ) ( )2 ( ) 2 ( )

0 0
0r r

r r
e eλ ν

= =

′ ′
= =  in the origin. This analysis 

demonstrates that the gravitational potential is regular at 

0r = .In the centre ( )2c a bρ = + , ( )2

3
rP c a b= + . 

With 2n = , 
( )2 0

1e
λ = , ( ) ( )2 0 22 2

1 1
B

e A c
ν = −  in the 

origin 0r = and ( ) ( )2 ( ) 2 ( )

0 0
0r r

r r
e eλ ν

= =

′ ′
= = . This 

shows that the potential gravitational is regular in the 

origin .In the centre (0) 2cbρ = , 
2

3
rP bc= . 

With 3n = , ( )2
1

r
e

λ = , ( )2 0 2 2
2e A c

ν =  in the origin and

( ) ( )2 ( ) 2 ( )

0 0
0

r r

r r
e e

λ ν
= =

′ ′
= = . Again the gravitational 

potential is regular in 0r = . The energy density is 

( )2c b aρ = − and the radial pressure 
( )2

3
r

c b a
P

−
=  atr=0. 

In all the new classes of solutions, the mass function is 

continuous and behaves well inside of the star and the charge 

density σ has a singularity at the center.  

In figure 1, the radial pressure is finite and decreasing with 

the radial coordinate. In fig. 2, that represent energy density 

for the case n=2, we observe that is continuous, finite and 

monotonically decreasing function. In fig.3, the charge 

density σ is singular at the origin, non-negative and 

decreases. In fig.4, the mass function is strictly increasing 

function, continuous and M(x)= 0 at r=0. 

5. Conclusion 

In this paper, we have generated new exact solutions to the 

Einstein-Maxwell system considering modified Tolman IV 

form for the gravitational potential Z what depends on an 

adjustable parameter n and a linear equation of state which is 

relevant in the description of charged anisotropic matter. The 

new obtained models may be used to model relativistic stars 

in different astrophysical scenes. The relativistic solutions to 

the Einstein-Maxwell systems presented are physically 

reasonable. In all the obtained solutions the charge density σ 

admits a singularity at the centre of the stellar object and the 

mass function is an increasing function, continuous and 

finite. The gravitational potentials are regular at the centre 

and well behaved. 

We show as a modification of the parameter n of the 

gravitational potential affects the electric field, charge 

density, the radial pressure, tangential pressure, the metric 

functions and the mass of the stellar object. The models 

presented in this article may be useful in the description of 

relativistic compact objects with charge, strange quark stars 

and configurations with anisotropic matter. 
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