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Abstract 
Tunneling of electrons through the Fibonacci series multiple quantum wells (FMQWs) 
has been studied theoretically within unified transfer matrix approach. The 
characterisation of light-emitting one-dimensional photonic quasicrystals based on 
excitonic resonances is reported. The structures consist of GaAs/AlGaAs multiple 
quantum wells satisfying a Fibonacci sequence. The resulting band structure causes 
photons to become confined within the wells, where they occupy discrete quantized 
states. We have obtained an expression for the transmission coefficient of the Fibonacci 
series MQW nanostructures using analytical Transfer matrix method (ATMM) and found 
the resonance state within the photonic wells. These resonant states occur due to split 
pairs and coupling between degenerate states. The active photonic quasicrystals are good 
light emitters. The lack of periodicity in the Fibonacci series MQW results in resonant 
tunneling and strong emission. The resonant state describe here can be used to develop 
new types of optical devices, photonic- switching devices, detectors and optoelectronic 
devices. 

1. Introduction 

Low dimensional carrier systems in the semiconductor heterostructures are gaining 
much importance in recent times due to the potential use of their unique properties in 
applications ranging from optoeltronics to high speed devices [1-4]. In this connection 
perpendicular transport of the carriers in semiconductor heterostructures has attracted 
much attention [5-8]. The MQW structures in particular, are becoming very important 
due to their potential use in the design and fabrication of quantum cascade lasers, 
resonant photo detectors, resonant tunneling diodes, single electron tunneling transistors 
[4] etc. Moreover, with the decrease in the dimensions of the CMOS devices the effect of 
tunneling of carriers becomes very important in order for estimating the various leakage 
currents flowing through the devices present in the VLSI chips. 

Photonic quasicrystals [5], [8] have attracted a great deal of attention recently due to 
their ability to localize and control the flow of light within their structure. Considerable 
effort has been placed into finding ways to harness their potential for developing new 
photonic devices. Photonic crystal heterostructures have provided a promising means for 
turning raw photonic crystals into functional devices [3], [4]. The Fibonacci sequence is 
a fundamental and a well-known example of a 1D quasiperiodic structure exhibiting 
aperiodic long range order [9-11]. 

Periodic crystals are formed by a periodic repetition of a single building block the so-
called unit cell exhibiting a long range translational and orientational symmetry [9]. Only  
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2-, 3-, 4-, and 6-fold non-trivial rotational symmetries are 
allowed in the periodic crystal and their direction patterns 
give sharp brag peaks reacting the symmetry and long range 
order. In contrast to periodic crystals, quasicrystals exhibit a 
long range order in spite of their lack of translational 
symmetry and often possess n-fold (n = 5 and > 6) rotational 
symmetries. Most of the quasicrystalline structures can be 
described by using aperiodic order where two or more 
different unit cells are used in the building block of the 
structure [12]. 

Leonardo Bonacci (1170-1250) known as Fibonacci was 
an Italian mathematician, considered to be the most talented 
western mathematician of middle age. He has been 
immortalized in the famous sequence – 0, 1, 1, 2, 3, 5, 8, 
13, …. rather than for what is considered his far greater 
mathematical achievement–helping to popularize our modern 
number system. He did not know about quasicrystals or the 
impact that quasicrystals would one day have a new form of 
matter. Quasicrystals are aperiodic but it exhibit long range 
order which underlying construction principal. Man made 
photonic quasicrystals are available in recent years with inter 
atomic spacing comparable to the wave length of light. One 
dimensional (1D) Fibonacci series photonic quasicrystals are 
active and can be directly translated into layered 
quasicrystals which are considered as aperiodic multiple 
quantum wells slab. Three dimensional (3D) photonic 
quasicrystals are also available but. They do not emit light, so 
these structures are passive quasicrystals [13-15]. 

Fibonacci sequence is the most well-known example of 1D 
aperiodic structures, along with Thue-Morse structures and the 
Cantor structure [13] ,[16], [25]. So we choose to study 
Fibonacci series MQW structure. Another interesting property 
of Fibonacci structures is their direct connection with the 2D 
and 3D quasicrystals, the Penrose lattices [17]. The Fibonacci 
numbers can be obtained from the recurrence relation Fn = Fn-1 

+ Fn-2 which is also true for n < 1. Here F0 = 0, F1=1, F2=1 and 
so on. The nth element in the Fibonacci series as an analytic 
function of n and s obtained from the relation 
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The one –dimensional Fibonacci lattice, being one of the 
most studied quasicrystals, is determined by the substitution 
rule: L→LS, S→L where L(large) and S(small) are two 
elements. 

The parameters of this structure are given by τ = 
(√5+1)/2≈1.618, which is known as golden mean. 

∆=Sp- Lp and d=Sp+ (Lp-Sp)/τ, where d is the mean period of 
the lattice structure. When Lp = Sp the structure becomes 
periodic [24] and when Lp/Sp= τ (golden mean), it becomes the 
Fibonacci chain multiple quantum wells structures [9], [19]. 

Quantum mechanical tunneling through aperiodic and 
asymmetric MQWs is a long-standing problem in this 
context. Here we developed a model under most generalized 
assumptions and is based on Analytical Transfer Matrix 
Method (ATMM), which has been applied to any arbitrary 

potential well and barrier sequence successfully [28], [30]. 
This is a most general mathematical model that helps in 
computing the energy Eigen values inside asymmetric and 
aperiodic MQW structures and predicts the carrier 
distribution for each of the energy states in terms of the eigen 
function. This model also helps in studying the extent of 
carrier tunneling through the quantum barrier and also 
Fibonacci chain MQWS. Tunneling depends significantly on 
the barrier width. Scaling of structure dimension affects this 
variation very sharply [20-21], [31]. 

Photonic multiple quantum wells (MQWs) are a class of 
photonic crystal heterostructures that possess a distinct band 
structure. A MQW consists of a photonic well imbedded 
between two photonic barriers. The barriers are photonic 
crystals with band gaps that may be regarded as potential 
barriers for photons, whereas the photonic well consists of 
either a uniform dielectric material or another photonic 
crystal with a different band gap than that of the barrier. Due 
to the photonic band mismatch between the well and the 
barrier, photons become confined within the well and occupy 
quantized states. This so-called photonic confinement effect 
has been observed in both theoretical and experimental [22-
23] studies and is analogous to the electronic confinement 
effect that occurs in semiconductor quantum wells. It has 
been shown that the phenomenon of resonant photonic 
tunneling can occur for a MQW with sufficiently thin 
photonic barriers [24]. Resonant tunneling occurs when a 
photon with an energy corresponding to a bound state of the 
MQW tunnels through one of the barriers, where it occupies 
this bound state within the well for a finite period of time 
before escaping by tunneling back out; thus the photon is said 
to have occupied a quasibound or resonant state within the 
MQW [18]. As a consequence of this phenomenon, an 
incident photon with an energy matching a resonant state of 
the MQW will undergo perfect transmission through barriers. 
In the transmission spectrum of a MQW, resonant states 
appear as sharp peaks approaching unity [11–18]. Here, we 
study resonant photonic states in photonic multiple quantum 
well (MQW) heterostructures in Fibonacci series consisting 
of two different photonic crystals. Using the transfer matrix 
method [4], [29], we have obtained an expression for the 
transmission coefficient and hence tunneling probabilities of 
the MQWs Fibonacci chain heterostructures. From this, we 
have performed numerical simulations of the transmission 
spectra for GaAs/AlGaAs MQW heterostructures in 
Fibonacci sequence. In our simulations, we vary the 
thicknesses of the photonic barriers in order to study their 
effect on the resonant states of the system. The resonant 
states described here will be useful for developing new types 
of photonic-switching devices, optical filters, and other 
optoelectronic and photonic devices [25-28]. 

2. Theory 

Here we consider the most generalized MQW structures 
where the well and barrier widths are all unequal as shown in 
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Fig.1. The well and barrier materials are also different with 
different barrier heights and effective electron masses. The 
barrier widths are narrow enough so that the adjacent wells 
are coupled through the intervening barrier. Here we have to 
deal with five wave functions; those that represent the 
electrons inside the wells and those that describe the 
electrons in the barrier regions on either side of these wells. 
We have considered the general quantum structure as shown 
in Fig. 1 where the widths of the three barriers are 2d, 2b and 
2f (d≠ b≠ f.) The two wells having widths 2a and 2c (a ≠ c) 
lie between the barriers 2d, 2b 

 

Figure 1. Array of Aperiodic Multiple Quantum Wells. 

 

Figure 2. Array of Fibonacci series Multiple Quantum Wells. 

The Schrödinger wave equation for this combination is of 
the form 

(h2/2m*) d/dx{dΨ/dx}+ (E-V) Ψ =0             (2) 

where m* is the effective mass, h, is the Planck’s constant E, 
is the energy Eigen value and V is the potential energy for 
the region where the equation is defined. The effective mass 
m*= mB inside the barrier region with potential energy is Vo 
and m*= mw outside the barrier and potential energy is zero. 

The solution of the Schrödinger equation for the Quantum 
well and barrier region obtained by putting the appropriate 
values of the potential energy V, which may differ from 
region to region. The solutions take the following form as 
given by Equations (3) to (7). 

ΨB1(x) = AB1 exp (ikB1x) + BB1 exp (-ikB1x)          (3) 

for - (b-2c-2d) <x< -(b+2c) in the first barrier 

ΨW1(x) = AW1 exp (ikw1x) + BW1 exp(-ikW1x)        (4) 

for - (b+2c)<x<-b inside the first well 

ΨB2(x) = AB2 exp (ikB2x) + BB2 exp (-ikB2x)        (5) 

for -b <x<+b inside the second barrier. 

ΨW2(x) = AW2 exp (ikw2x) +BW2exp (-ikW2x)      (6) 

for b<x< b+2a inside the second well 

ΨB3 (x) = AB3 exp (ikB3x)                 (7) 

For (b+2a) < x<(b+2a+2f) inside the third barrier 

Where		k��= √�	���	����	���
ћ� � and 	k� =√�	!"#$

ћ� 
 

Here mwi and mBn are the electron effective masses in the 
well and barrier regions respectively where n = 1, 2, 3 and i = 
1, 2. In the most general case the barrier heights Von and 
electron effective masses mwi and mBn in the different regions 
are all different. Now we applied boundary conditions and 
we got the the transfer matrix for the coefficients of the wave 
function at the leftmost slab to those of the right most slabs is 
given below: 

%&'()'(*=%+�� +�	+	� +		* %&'(��)'(��*                 (8) 

Where i=1,2,3,….etc 
Using equations (3-7) we obtained the coefficients of the 

wave function at the leftmost slab to those of the right most 
slabs. 

%A� B� *= 
�
	 .1 �ik� ��

1 ik� �� 1 2M45 % 1 1ik� �ik� * %A� ��B� ��*   (9) 

Where MJ is the jth transfer matrix corresponding to the jth 
junction written as: 

M4	=M��6b48M� 6a48M��6b4��8           (10) 

Where b4  and a4 are the widths of the jth barrier and jth 
well respectively. M��6b48  and M� 6a48  correspond to the 
transfer matrices for the jth barrier and jth well respectively. 

Here the total transfer matrix is expressed as the cascading 
of a series of individual barrier and well. 

From equation (9) & (10) it is readily found the 
transmission amplitude Q is given by 

Q= 
	

:;;�:��� 6<"	=;��<">;:�;8               (11) 

Where +(? are the elements of the total transfer matrix. 
This can be written in the Matrix form as: 

	U� A T�U	                                   (12) 

The complete transfer matrix T2 at the slice x = 2c and 

U2 = T
2U3 with U1 =T 

1U2 =T1T2 U3         (13) 

Doing this for all the slices X1……….Xn, we obtained the 
complete transfer matrix M that connects the wave function 
on the left side of the potential with the one on the right side, 

U1 = MUn+1  where M=T1 T2
 ………….. Tn           (14) 
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From the definition of transmission coefficient (T), we 
obtained the following expression from equation (11) 

T =
2

Q                                 (15) 

Assuming that there is no reflection of the wave in the 
region N and the amplitude of the incident wave is unity, we 
find: 

�&'C0 �= M% 1)'�*                         (16) 

The coefficient of wave functions can be derived from this 
equation. Here the Matrix equation is very complex and 
involves a large number of terms. At the coupling energy the 
electron wave tunnels through the barriers so that the 
transmission coefficients at the expected energy values are 
equated to unity putting τ = 1.The coupling energies between 
adjacent wells are derived iteratively to yield the energy for 
which electrons may be coupled to both the wells by 
penetrating through the intervening barrier of the Fibonacci 
series MQWS. 

The transmission coefficient derived by Transfer Matrix 
method for the most general case simplified to some extent 
and becomes 

τ=[4kBkW/(mwmB)]4/[T1+2T2+2T3+2T4]      (17) 

Where T1 = {(kB
 / mB) + (kW

 /mW)} 8+{(kB
 / mB) - (kW

 /mW)}8 

+ 6{(kB
 / mB) 2 - (kW

 /mW) 2}4       (18) 

T2 = {(kB
 / mB) + (kW

 /mW)} 4{(kB
 / mB) 2 – (kW

 /mW) 2}2 [cos 
(4{bkB

 +ckW
 }) +cos (4{akB

 +bkW}) –2cos (4ckW
 ) - cos 

(4akB)-cos(4bkB)–cos(4{akW+bkB+ckW})]     (19) 

T3 = {(kB
 / mB) 2-(kW

 /mW)2}4[4cos(4akW
 )cos(4ckW) - 2cos 

(4bkB
 ){1+cos (4[a-c]kW

 )}-2{cos (4akW ) +Cos (4ckW) {1-
cos(4bkB)}                (20) 

T4 = {(kB/mB) - (kW/mW)}4{(kB/mB)2 – (kW
 /mW) 2}2[Cos 

(4{bkB
 -akW

 }) +cos (4{bkB
 -ckW

 })-cos (4ak - cos (4bkB
 ) - 

cos (4{bkB
 -akW-ckW})]             (21) 

In order to compute the coupling energies the transmission 
coefficient is equated to 1 and energy values are obtained by 
iterative method. 

The expression for the transmission coefficient simplifies 
and becomes: 

τ = 16(kB
 kW)2/ [( mB mW)2{(kB

 / mB) +(kW
 /mW)}4 + 

{(kW/mW)-(kB/mB)}4-2{(kW/mW)2-(kB/mB)2}2cos(4ckB)}] (22) 

The Eigen value energy equation takes the form 

(mW kB) / (mBkW) = tan (ckB) /tan (ckW)       (23) 

where c is the well width. 
The coupling energies and tunneling probabilities in 

Fibonacci series multiple quantum wells are obtained from 
the above equations (22) and (23). 

Resonant tunneling MQWs are quantum devices that have 
been investigated in recent years, and there is a great 

attention focused on transmission phenomenon. The resonant 
tunneling across the Fibonacci multiple quantum wells 
(FMQW) system reached when τ =1. The incident energy of 
the electron for which the resonant tunneling condition is 
satisfied is termed as resonant tunneling energy. Here we 
have found the resonant tunneling energies in the MQWs 
system from the τ vs E curve by a computer program using 
the search technique. Resonant tunneling across the MQWs 
system occurs for definite values of the incident energy of the 
incident electron in the entire region of the energy spectrum 
i.e. for both the regions E < V0 and E > V0. 

3. Results and Discussion 

In this section we present our results obtained numerically 
by using MATLAB programming for the transmission 
coefficient across Fibonacci chain multiple quantum wells 
containing asymmetric and aperiodic heterostructures. The 
general model of AMQW structure is tested on the FMQW 
structure. 

The materials chosen are AlGaAs/GaAs. The parameters 
used in the computation are given below. The effective mass 
of electrons in AlxGa1-x As depends on the mole fraction of x, 
where x represents the concentration of Al. The values of the 
parameters chosen are: Electron effective mass of AlxGa1-xAs 
as is m(AlGaAs) = (0.063+0.083x) and the energy band gap 
is given by the expression E(AlGaAs)= 
(1.9+0.125x+0.143x2). The mole fraction x= 0.47. The band 
gaps for AlGaAs and GaAs are respectively Eg (AlGaAs) = 
1.99eV and Eg (GaAs) = 1.42eV. The conduction band 
difference is ∆Ec =67% x= Eg (AlGaAs) – Eg (GaAs) = 0.38 
eV. The electron effective mass of GaAs is m*(GaAs) = 
0.067mo; and that for AlGaAs is m*(AlGaAs) = 0.106mo. 

Here we consider the wells are in Fibonacci series and 
barriers lengths are in same. The wells with are taken as 5nm, 
5nm, 10nm, 15nm, 25nm ….etc. up to 10 wells, denoted by 
FIB10.These computed band structures and transmission 
coefficient are shown in figures (Figure. 3-Figure. 6). 

 

Figure 3. Variation of transmission coefficient of electrons (τ=T) with 

normalized energy E/Vo for GaAs/AlGaAs/GaAs FMQWs for barriers with 

LB= 5 nm. (FIB10A). 
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Figure 4. Variation of transmission coefficient of electrons (τ=T) with 

normalized energy E/Vo for GaAs/AlGaAs/GaAs FMQWs for barriers with 

LB= 10nm. (FIB10B). 

 

Figure 5. Variation of transmission coefficient of electrons (τ=T) with 

normalized energy E/Vo for GaAs/AlGaAs/GaAS FMQWs for well with L= 5 

nm, 5nm, 10nm, 15nm, 25nm…etc up to 10 wells and barriers with 

LB=15nm. for FIB10C. 

 

Figure 6. Variation of transmission coefficient of electrons (τ=T) with 

normalized energy E/Vo for GaAs/AlGaAs/GaAS FMQWs for well with L= 5 

nm, 5nm, 10nm, 15nm, 25nm…etc up to 10 wells and barriers with 

LB=20nm. for FIB10D. 

Here we changed the barriers length of same Fibonacci 
structure FIB10 and found structures FIB10A, FIB10B 

FIB10C and FIB10D for barriers lengths 5nm, 10nm, 15nm 
and 20nm respectively and the variation of transmission 
coefficient of electrons with normalized Eigen energies [24] 
as shown above figures (Fig. 3 –Fig. 6). Here we observed 
that when E/Vo<1, the transmission coefficient T increases 
from 0 to1 in a non-linear fashion. 

Beyond the normalized energy (Enor = E/Vo) >1, there is 
resonance; i.e., there are quantized energy values where 
transmission reaches peak values sharply. When the barrier 
width decreases the peaks get more separated in energy and 
the normalized energy values vary continuously. If the widths 
of the lower band gap materials outside the barrier are 
reduced to the order of nanometers then the energy values 
inside the quantum wells will be quantized. This effect will 
be reflected in the nature of variation of the transmission 
coefficients with normalized energy and is expected to 
change significantly. This will have a crucial effect on carrier 
tunneling in FMQWs. 

4. Conclusions 

We have theoretically studied the transmission coefficients 
and the resonant photonic tunneling effect in Fibonacci series 
multiple quantum wells Nanostructures produced by 
AlGaAs/GaAs photonic quasicrystals (FIB10). By 
performing numerical simulations of effect of thickness of 
barriers and the transmission spectra for various FMQWs 
nanostructures. We have demonstrated that resonant photonic 
tunneling occurs in these structures, whereby photons with 
energies corresponding to bound states of the system undergo 
perfect transmission through the entire structure. Our studies 
have shown that these states occur in split pairs coupling 
energies with adjacent wells. 

The resonant energy states are obtained on the basis of the 
resonance condition [27-29] TN =1. The resonant energy 
states are found to group into allowed energy bands separated 
by forbidden gaps. During the resonance tunneling, the 
electron energy resonates at the bound states of the single 
quantum well [10], [30-31]. Here we see that the 
transmission coefficient exhibits a series of resonant peaks 
and valleys. The first series of resonant peaks are attributed 
to the resonant transmission tunneling through the 
fundamental quasibound state in the quantum well, while the 
second series is due to the tunneling through the first excited 
state. The width of the allowed band reduces significantly 
with increase in barrier width. Increase in barrier width 
causes decrease in the overlap interaction among the states of 
adjacent wells resulting in the decrease of band width. This 
spectral splitting is attributed to the coupling of the 
degenerate states in each photonic well, where the finite 
photonic barrier separating these wells allows for an overlap 
of the electromagnetic fields of the degenerate states. The 
degree of spectral splitting can be controlled by varying the 
thickness of barriers. The interwell barriers widths are 
determined from resonant Bragg condition which satisfying 
the constructive interference of the waves reflected from the 
FMQWS at excitonic resonance. 
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The energy-splitting phenomenon described here is in 
agreement with reported experimental results involving 1-D 
photonic crystals [12]. Our simulations have also shown that 
the total number of transmitted resonant states can be 
controlled by modifying the width of the photonic barriers in 
these nanostructures. Due to the enhanced light-matter 
coupling, we find that the values of transmission coefficient 
in the FMQWs for higher generation orders are significantly 
stronger than those in the PQWs under the Bragg or anti-
Bragg conditions [20]. The resonant state describe here in 
proposed device might be useful for developing new types of 
photonic-switching devices, optical filters, detectors and 
other optoelectronic devices. 
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