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Abstract 
This paper is concerned with the problem of chaos control and synchronization for a 

novel 5-D hyperchaotic system, which is constructed by adding a feedback control to a 

4-D hyperchaotic Lorenz system. Based on the Lyapunov stability theory and using 

nonlinear control technique with two different kinds of parameters (known and unknown 

parameters), and we designed control for each kind to perform control and 

synchronization of this system. However, in unknown parameters, we assume that 

Lyapunov function is always formed as
 
( ) TV x X PX= , where 

5
P I=  is the identity 

matrix. While we focused on selecting a suitable Lyapunov functions candidate that 

ensured asymptotically global stability in known parameters. Then, nonlinear control 

technique is better than adaptive and active nonlinear control because it deals with 

known and unknown parameters as well as to the design of more than control compared 

with the rest of the controls. Moreover, numerical simulations are offered to show the 

strength of the proposed theoretical results. 

1. Introduction 

The 3-D Lorenz system is discovered in 1963 which consider the first mathematical 

and physical model of chaos, thereby getting the starting point and foundation rock for 

later research on chaos theory [7]. Number of chaotic systems and their applications in 

mathematics, physics, chemistry, engineering, computer science and biology is 

increasing, so much research has been done to introduce them. Most research in this field 

has been focused on the hyperchaotic system [14]. Hyperchaotic system was first 

reported by Rossler in 1979 which contain four dimension [7, 10, 11, 13, 14]. Since then, 

some other hyperchaotic systems have also been found [7]. As we know, chaos is an 

important topic in nonlinear science [5, 8]. But in sometimes, chaos effect is undesirable 

in practice, and it restricts the operating range of many electronic and mechanical 

devices [15]. In this case, therefore, it is necessary that the chaotic behavior should be 

controlled [15]. But, control methods were once believed to be impossible until the 

1990s when Ott et al. developed the OGY method to suppress chaos [3, 9], Pecora and 

Carroll introduced a method to synchronize two identical chaotic systems with different 

initial conditions [3, 4, 6, 8, 9, 12, 15]. Different control strategies for stabilizing chaos 

also have been proposed, such as adaptive control, time delay control and fuzzy control 

[3, 7, 9, 12, 16]. 

Every day, the number of articles that relates to this topic is increasing, and numerous 

articles devoted to explaining the new high-dimensional chaotic systems and more  
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complicated topological structure [13, 14]. And the dynamics 

of the hyperchaotic systems have not been completely 

understood by mathematicians until now [13]. Thus, it is 

necessary to get a novel study for hyperchaotic systems. 

Hence some of articles motivated to further study the 

properties of chaos and hyperchaos and some subtle 

characteristics of the new hyperchaotic system, so as to 

benefit more systematic studies of 5D system, and to reveal 

the true geometrical structures of lower dimensional chaotic 

and hyperchaotic attractors [13]. 

Recently, based on the Lorenz system and state feedback 

control, a new 5D hyperchaotic system was reported by Hu 

in 2009, and Yang et al. 2013 study the dynamical properties 

of this system [13], In 2014 Vaidyanathan et al. generating 

another a new 5D hyperchaotic system based on the Lorenz 

system and perform chaos control and synchronization via 

adaptive control when the parameters for this system are 

unknown [10]. In this paper, we achieved chaos control and 

synchronization of this system via nonlinear control strategy 

with known and unknown parameters and numerical 

simulations are presented to demonstrate the effectiveness of 

the proposed controllers. 

2. System Description 

Lately, on studying control and synchronization of chaos, 

Vaidyanathan et al. [10], 2014 introduced a novel 5-D 

hyperchaotic system, which is described by the following 

nonlinear differential equation. 

1 2 1 4 5

2 1 1 3 2

3 1 2 3

4 1 3 4

5 1

( )x a x x x x

x cx x x x

x x x bx

x x x px

x qx

 = − + +
 = − −
 = −

 = − +
 =

ɺ

ɺ

ɺ

ɺ

ɺ

                     (1) 

Where 
5

1 2 3 4 5
( , , , , )x x x x x R∈ , and , , , ,a b c p q R∈  are 

positive, constant parameters. When parameters 10,a =

8 3,b = 28c = , 1.3p =  and 2.5q =  system (1) is 

hyperchaotic and has three positive Lyapunov exponents, i.e. 

1
0.4195,LE =

2 3
0.2430 , 0.0145LE LE= =  and the 

other Lyapunov exponents are
4 5
0 , 13.0405.LE LE= =−  

System (1) contains about twelve-term with three quadratic 

nonlinearities and has only one equilibrium (0, 0, 0, 0, 0)O , 

and the equilibrium is an unstable under these parameters. 

Hyperchaotic attractors are shown in Fig. 1 and Fig. 2. 

 

Fig. 1. The attractor of the system (1) in x1-x3-x5 space. 

 

Fig. 2. The attractor of the system (1) in x1-x3-x4 space. 
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3. Chaos Control 

The this section, we perform the controlling problem of 

system (1) via nonlinear control technique by two classes: in 

the first case, when the parameters are unknown, while in the 

second case, the parameters are known. 

In order to control the system (1) to zero, the feedback 

controllers of 
1 2 3 4
, , ,u u u u and 

5
u  are added to the 

hyperchaotic system (1). Then the controlled hyperchaotic 

system is given by: 

1 2 1 4 5 1

2 1 1 3 2 2

3 1 2 3 3

4 1 3 4 4

5 1 5

( )x a x x x x u

x cx x x x u

x x x bx u

x x x px u

x qx u

 = − + + +
 = − − +
 = − +

 = − + +
 = +

ɺ

ɺ

ɺ

ɺ

ɺ

               (2) 

3.1. Controlling 5-D Hyperchaotic System (2) 

with Unknown Parameters 

In the next theorem, we design nonlinear control without 

we know the values of these parameters. 

Theorem 1. If the nonlinear controllers are proposed as: 

1 2 3 4 5

2

3

4 4 1

5 5

( ) (1 )

0

0

( 1)

u a c x x x q x

u

u

u p x x

u x

 = − + + − +
 =
 =

 = − + −
 = −

          (3) 

Then the zero solution of the controlled hyperchaotic 

system (2) is globally asymptotically stable. 

Proof. According to the Lyapunov stability theory, we 

construct the following Lyapunov candidate function 

( ) TV x X PX=                             (4) 

and 
5

P I=  is identity matrix. 

With controller (3) we have the time derivative of the 

Lyapunov function as: 

2 2 2 2 2

1 2 3 4 5
( ) 2 2 2 2 2

T

V x ax x bx x x

X QX

= − − − − −

=−

ɺ

          (5) 

where 

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

a

bQ

 
 
 
 
 

=  
 
 
 
 
 

                   (6) 

Since a and b are positive parameters, therefore Q  is a 

positive defined matrix, So, we have ( )V xɺ  is a negative 

definite function. Hence, the controlled system (1) can 

asymptotically converge to the unstable equilibrium with the 

controllers (3). 

3.2. Controlling 5-D Hyperchaotic System (2) 

with Known Parameters 

Assuming that the parameters of the system (2) are known 

and the states system are measurable. According to Ref [10] 

the parameter values are taken as 

10, 8 3, 28, 1.3, 2.5a b c p q= = = = = . 

Theorem 2. If the nonlinear controllers are proposed as: 

1 2 4

2

3

4 4 1 3

5 1 5

2

0

0

( 1)

2

u ax x

u

u

u p x x x

u qx x

 = − −


 =

 =


 = − + +

 = − −

                   (7) 

Then the zero solution of the controlled hyperchaotic 

system (2) is globally asymptotically stable. 

Proof. Construct a Lyapunov function: 

1
( ) TV x X P X=                              (8) 

and 

1

2.8 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1.12

P

 
 
 
 
 

=  
 
 
 
 
 

                        (9) 

With controller (7), we have the time derivative of the 

Lyapunov function as: 

2 2 2 2 2

1 2 3 4 5

1 2 1 5

( ) 5.6 2 2 2 2.24

(2 5.6 ) (5.6 2.24 )
i

V x ax x bx x x

c a x x q x x

=− − − − −

+ − + −

ɺ

   (10) 

Substituting the value of parameters in the above equation, 

we have 

2 2 2 2 2

1 2 3 4 5

1

( ) 56 2 16 / 3 2 2.24
T

V x x x x x x

X Q X

=− − − − −

=−

ɺ

   (11) 

and 

1

56 0 0 0 0

0 2 0 0 0

0 0 16 / 3 0 0

0 0 0 2 0

0 0 0 0 2.24

Q

 
 
 
 
 

=  
 
 
 
 
 

                       (12) 
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Hence, 
1
Q  is a positive defined matrix, 

Consequently, we have ( )V xɺ  is a negative definite 

function. This completes our proof. 

Numerical simulations are furnished to verify the 

effectiveness of the proposed controller based on fourth-order 

Runge -Kutta scheme with time step 0.5 . the parameter 

values are taken as; 

10, 8 3, 28, 1.3, 2.5a b c p q= = = = = , with initial 

conditions(10, 5 , 5,0 , 10)− − . Fig. 3 and Fig. 4 show the 

convergent with controllers (3) and (7) respectively. 

 

Fig. 3. The converges of system (2) with controllers (3). 

 

Fig. 4. The converges of system (2) with controllers(7). 

4. Chaos Synchronization 

To begin with, the definition of chaos synchronization 

used in this paper is given below. 

Definition [15, 16] For two nonlinear hyperchaotic 

systems: 

1
( )x f x=ɺ                                           (13) 

2
( ) ( , )y f y u x y= +ɺ                            (14) 

where , n
x y R∈ , 

1 2
, : n nf f R R→ . Assume that Eq. (13) is 

the drive system, Eq.(14) is the response system, and ( , )u x y

is the nonlinear control vector. The response system and 

drive system are said to be synchronized if for 

0 0
( ), ( ) ,nx t y t R∀ ∈ lim ( ) ( ) 0.

t
y t x t

→∞
− =  

Let the system (1) be the drive system and response 

systems are given as the following 

1 2 1 4 5 1

2 1 1 3 2 2

3 1 2 3 3

4 1 3 4 4

5 1 5

( )y a y y y y u

y cy y y y u

y y y by u

y y y py u

y qy u

 = − + + +
 = − − +
 = − +

 = − + +
 = +

ɺ

ɺ

ɺ

ɺ

ɺ

                (15) 

Subtracting system (1) from the system (15), we obtain the 

error dynamical system between the drive system and the 

response system which is given by: 

1 2 1 4 5 1

2 1 2 1 3 1 3 3 1 2

3 3 1 2 1 2 2 1 3

4 4 1 3 1 3 3 1 4

5 1 5

( )e a e e e e u

e ce e e e x e x e u

e be e e x e x e u

e pe e e x e x e u

e qe u

 = − + + +
 = − − − − +
 = − + + + +

 = − − − +
 = +

ɺ

ɺ

ɺ

ɺ

ɺ

     (16) 

where , 1, 2,...,5
i i i
e y x i= − = . 

System (16) describes the error dynamics. It is clear that 

the synchronization problem is replaced by the equivalent 

problem of stabilizing the system (16) using a suitable choice 

of the feedback controller. 

4.1. Chaos Synchronization of System (16) 

with Unknown Parameters 

Suppose that the parameters are unknown, In light of this, 

we design nonlinear controllers which ensure convergence 

between system (1) and system (15), then we obtain the 

following theorem: 

Theorem 3. The two hyperchaotic systems (1) and (15) 

will approach global and asymptotically synchronization with 

following control: 

1 3 4 2 3 3 2 4

2 1

3 1 4

4 4 1

5 5 1

( )

( )

( 1)

( 1)

u e e x e x e e

u a c e

u x e

u p e e

u e q e

 = − + +
 = − +
 =

 = − + −
 = − − +

       (17) 

Proof. Let us consider the Lyapunov function is: 

( ) TV e e Pe=                                   (18) 
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and 
5

P I= is the identity matrix. 

Now the time derivative of the Lyapunov error function is: 

2 2 2 2 2

1 2 3 4 5
( ) 2 2 2 2 2V e ae e be e e= − − − − −ɺ           (19) 

Therefore, ( ) TV e e Qe=−ɺ  and Q is a positive definite 

matrix(Q is defined as Eq. 6). 

Hence, the two hyperchaotic systems (1) and (15) are 

asymptotically globally synchronized. 

4.2. Chaos Synchronization of System (16) 

with Known Parameters 

In this subsection, supposed that all the variables and 

parameters of the drive and response systems are available 

and measurable. 

Theorem 4. The zero solution of the error system (16) is 

asymptotically stable if a nonlinear control is designed as 

following: 

1 2 4

2 3 1

3 2 1

4 4 1 3 1 3 3 1

5 5 1

2

( 1)

2

u ae e

u x e

u x e

u p e e e x e x e

u e qe

 = − −
 =
 = −

 = − + + + +
 = − −

       (20) 

Proof. Let us consider the Lyapunov function is: 

2
( ) TV e e P e=                                    (21) 

and 

2

1 0 0 0 0

0 10 / 28 0 0 0

0 0 10 / 28 0 0

0 0 0 1 0

0 0 0 0 1 / 2.5

P

 
 
 
 
 

=  
 
 
 
 
 

              (22) 

With controller (20), we have the time derivative of the 

Lyapunov function as: 

2 2 2 2

1 2 3 4

2

5 1 2

1 5

( ) 2 10 / 14 10 / 14 2

2 / 2.5 [10 / 14 2 )

2(1 1/ 2.5 )

i
V e ae e be e

e c a e e

q e e

=− − − −

− + −

+ −

ɺ

     (23) 

Substituting the value of parameters in the above equation, 

we have the time derivative of the Lyapunov function is: 

2 2 2 2 2

1 2 3 4 5

2

( ) 20 10 / 14 40 / 21 2 2 / 2.5
T

V e e e e e e

e Q e

=− − − − −

=−

ɺ

  (24) 

and

 

2

20 0 0 0 0

0 10 / 14 0 0 0

0 0 40 / 21 0 0

0 0 0 2 0

0 0 0 0 2 / 2.5

Q

 
 
 
 
 

=  
 
 
 
 
 

          (25) 

which is a positive definite matrix. 

Hence, based on Lyapunov stability theory, the error 

dynamics converge to the origin asymptotically. 

Numerical simulations are used to investigate the 

controlled error dynamical system (16), using fourth-order 

Runge-Kutta scheme with time step 0.5 . We choose the 

parameters 10, 8 3, 28, 1.3, 2.5a b c p q= = = = = and the 

initial values of the drive system and the response system are 

(10,5, 5, 0, 10)− − and (-10, -5, 10, 10, 10,) respectively. From 

Fig. 5 and Fig. 6, we can see the convergent for system (16) 

with controllers (17) and (20) respectively. 

 

Fig. 5. The converges of system (16) with controllers(17). 

 

Fig. 6. The converges of system (16) with controllers(20). 
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5. Conclusions 

In this paper, many controls were designed via the 

nonlinear control strategy for control of a new 5-D 

hyperchaotic system. Based on the Lyapunov stability theory 

and kind of parameters, obviously from these controllers, we 

have the controlling with unknown parameters achieved easy 

while in knowning parameters more complex. The 

effectiveness of these proposed control strategies was 

validated by numerical simulation results. 
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