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Abstract 
A new approach to the problem of nuclear force nature is considered. It is shown that an 
attraction in the proton-neutron pair can occur due to the exchange of relativistic 
electron. The estimation of this exchange energy is in agreement with the experimental 
values of the binding energy of some light nuclei. At that neutron is regarded as a 
composite corpuscle consisting of proton and relativistic electron that allows to predict 
neutron mass, its magnetic moment and energy of its decay. The first part of these 
calculations has been published in [1]. It is shown that the standard Maxwell's theory of 
electromagnetic field describes two possibilities. If to use different methods of 
excitation, it is possible to initiate in free space (in empty ether) two different types of 
wave: a transverse electromagnetic wave (photons) or a pure magnetic wave (a splash of 
magnetic field), devoid of electrical field component. The spin of this magnetic photon is 
equal to ħ / 2 and its characteristic feature is in its very weak interaction with matter. This 
property allows to assume that the magnetic photon can be identified with neutrinos. At 
that one can find the physical cause of the difference of neutrinos and antineutrinos, as 
well as a possible similarity between electron- and muon-neutrinos. Given the nature of 
neutrinos we can calculate masses of pions and muons and can conclude that they are 
excited states of electrons. 

1. Neutron 

1.1. Main Properties of Proton and Neutron 

The main physical properties of proton and neutron was scrutinized. 
There are measuring of their mass, charge, spin, etc. 
Since the measured values of the masses of the proton and neutron are: 

mp = 1.6726231·10 –24 г 

mn = 1.6749286·10 –24 г                                                (1) 

Their magnetic moments are measured with very high accuracy too.} 
In units of the nuclear magneton they are [2]: 

ξp = 2.792847337 

ξn = – 1.91304272                                                    (2) 
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1.2. The Electromagnetic Model of Neutron  

For the first time after the discovery of the neutron, 
physicists was discussing whether or not to consider it as an 
elementary particle. 

Experimental data, which could help to solve this problem, 
was not exist then. 

And soon the opinion was formed that the neutron is an 
elementary particle alike proton [3]. 

However, the fact that the neutron is unstable and decays 
into a proton and an electron (+ antineutrino) gives a reason 
to consider it as a non-elementary composite particle. 

Is it possible to now on the basis of experimentally studied 
properties of the neutron to conclude that it is elementary 
particle or it is not? 

Let's consider the composite corpuscle, in which electron 
is spinning around proton with speed v→c. At that it has 
mass me and charge -e. 

The presence of the intrinsic magnetic moment of the 
rotating particle does not matter because of the particularities 
of the resulting solutions Eq.(18). 

Between the positively charged proton and negatively 
charged electron there must be a force Coulomb attraction: 
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It is caused by existing of the Coulomb interaction energy: 
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Where R0 is the radius of an orbit of the rotating particle. 
The magnetic field generated by the electron orbital 

motion creates a force which is opposing to the Coulomb 
force and tends to break the orbit. 

According to the Biot-Savart law an element of orbit dl 
with the current J creates at a distance R the magnetic field: 
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The force acting on an element coil dl and tending to rend 
the coil is 
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the entire coil will rupture by the force 
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The action of this force at v → c balances the Coulomb 
attraction. 

Integrating Eq.(6), we find that the element coil dl acquires 

the energy 

2

22 2m

v e
dE dl

c Rπ
= ⋅ .                             (8) 

At thus as it follows from Eq.(8), the energy of ring tearing 
at v → c will tend to 
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that together with the Coulomb energy Eq.(4) will provide 
the steady-state of the current ring. 

As the result, the Coulomb force and the magnetic force 
will be compensated. 

Only the Lorentz's force arising from the interaction of a 
moving charged electron and magnetic moment of the proton 
µp remains uncompensated. 

An observer moving in a magnetic field H′y "sees" in his 
reference system an electric field ([4], §24, Eq.(24.2)): 
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Where β = v / c. 
The Lorentz force conforming to this field is: 
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If the rotation is in the plane of the "equator" of the proton, 
the magnetic field is: 
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In equilibrium, the Lorentz force is balanced by the 
centrifugal force: 
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That allows us to determine the radius of the electron 
equilibrium orbit (at v → c) 

14
0 9.097 10 см

2
p

e p

R
c m m

αξ −= ≈ ⋅ .ℏ
          (14) 

Where α = e
2 / ħc is the fine structure constant, ξp is the 

anomalous moment of proton, me and mp are masses of 
electron and proton (in the rest). 

1.3. Spin of the Current Ring 

The angular momentum (spin) of the current ring 

S0 = [p0, R0]                                      (15) 
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is created by the generalized momentum of electron 
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and depends on the magnetic moment of the proton 
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After the substitution of value of the vector-potential A 
from Eq.(17) and the value of radius of current ring R0 from 
Eq.(14) to Eq.(16), at v → c we obtain p → 0 and 
respectively 

S0 = 0.                                         (18) 

In this connection it is unimportant, has the rotating 
particle an own magnetic moment or not. 

At zero spin, there is no direction for its orientation. 

1.4. Accounting for the Effect of the 

Precession of the Orbit 

The rotation of the electron must be characterized by two 
integrals of motion. 

At this moving, the energy of rotating particle W and its 
moment of rotation K must be kept constant. 

If v → c, one can write 

2

2 2 21 1

pemc
W const

r

µ

β β
= − =

− −
               (19) 

and 
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Where β = v / c and 
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If to remove β and t from these equations, we obtain: 
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where aC = ħ / mec is the Compton radius. 
After replacing of variable 

u = 1 / r                                         (23) 

and taking the derivative d /dΘ, we obtain 
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There we take into account that the derivative 

1

2

d c

dt Rπ
Θ = Ω =  

is the angular velocity of the particle rotation and we indicate 
ϑ = 1 / 2π. 

The solution of the equation 
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is the ellipse 

u = const (1 + ε cos Θ)                       (26) 

The Eq.(24) describes the "almost", elliptical trajectory, 
which precesses around the proton: 
per revolution of the electron, the orbit rotates on π·ϑ [5]. 

Thus, this precession of the ellipse with the frequency ω is 
superimposed on the rotation of the particle on the elliptical 
orbit with the frequency Ω: 
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To take into account the effect of this precession, instead 
of Eq.(14), we introduce the effective radius R*. 

Due to the fact that this radius is determined by the ratio of 
universal constants only, it can be calculated with a very high 
accuracy: 

* 149.8842871 10 см
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1.5. The Magnetic Moment of the Neutron 

Attempts to calculate the magnetic moment of the neutron 
have been made before [6, 7]. 

In the frame of the constructed electromagnetic model, the 
neutron magnetic moment can be calculated with very high 
accuracy. 

The current J in a ring with radius R0 creates a magnetic 
moment that is proportional to the square of the ring: 

*

0 2

eRµ = .                                   (29) 

We can rewrite it in units of nuclear Bohr magneton (µN = 
eħ / 2cmn, where mn is neutron mass).  

In these units the magnetic moment of the ring is equil to 
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The resulting magnetic moment of the neutron is equal to 
the sum of the proton magnetic moment and the magnetic 
moment of the ring: 

ξn = ξp + ξ0 = 2.79285 – 4.70637 ≈ – 1.91352,        (31) 

that very well agrees with the measured value of the 
magnetic moment of the neutron Eq.(2): 
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1.6. The Energy of Neutron Decay 

The depending on the relativistic factor (1 – v2/c2) –1/2 terms 
of energy of the current ring form the integral of motion Eq. 
(19). 

At substituting in Eq. (19) of the obtained value of the 
equilibrium orbit radius r = R0, we can easily see that at 
equilibrium the relativistic terms of energy balance each 
other and W=0. 

At the same time the Coulomb energy of the ring (Eq. (4)) 
and its magnetic energy (Eq.(9)) are independent on the 
relativistic coefficient (1 – v2/c2) –1/2. Their sum is not equal to 
zero: 
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At the decay of a neutron, this energy must go into the 
kinetic energy of the emitted electron (and antineutrinos). 
That is in quite satisfactory agreement with the 
experimentally determined boundary of the spectrum of the 
decay electrons, equal to 782 keV. 

1.7. The Mass of Neutron 

The kinetic energy of a relativistic particle in the general 
case can be written as [4]: 
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The maximum kinetic energy of electron produced in the 
decay of neutron was calculated above (Eq. (33)). 
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It follows from this equation that the mass of relativistic 
electron 
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where me is mass of electron in the rest. 
It is important that the sum of the masses of proton and 

relativistic electron in very good agreement with the 
measured value of the mass of the neutron (1): 
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1.8. Discussion 

This consent of estimates and measured data indicates that 
the neutron is not an elementary particle. It should be seen as 
a some relativistic analog of the Bohr hydrogen atom. With 
the difference: a non-relativistic electron in the Bohr atom 
forms a shell by means of Coulomb forces and in a neutron 
the relativistic electron is held by the magnetic interaction 
[8]. 

This must change our approach to the problem of nucleon-
nucleon scattering. The nuclear part of an amplitude of the 
nucleon-nucleon scattering should be the same at all cases, 
because in fact it is always proton-proton scattering (the only 
difference is the presence or absence of the Coulomb 
scattering). It creates the justification for hypothesis of 
charge independence of the nucleon-nucleon interaction. 

According to the principle which was developed by W. 
Gilbert and G. Galileo more than 400 years ago, a theoretical 
construct can be attributed to reliably established if it is 
confirmed by experimental data. 

This principle is the basis of modern physics and therefore 
the measurement confirmation for the discussed above 
electromagnetic model of neutron is the most important, 
required and completely sufficient argument of its credibility. 

Nevertheless, it is important for the understanding of the 
model to use the standard theoretical apparatus at its 
construction. 

It should be noted that for the scientists who are 
accustomed to the language of relativistic quantum physics, 
the methodology used for the above estimates does not 
contribute to the perception of the results at a superficial 
glance. 

It is commonly thought that for the reliability, a 
consideration of an affection of relativism on the electron 
behavior in the Coulomb field should be carried out within 
the Dirac theory. 

However that is not necessary in the case of calculating of 
the magnetic moment of the neutron and its decay energy. 

In this case, all relativistic effects described by the terms 
with coefficients (1 – v

2/c2) –1/2 compensate each other and 
completely fall out. 

The neutron considered in our model is the quantum 
object. Its radius R0 is proportional to the Planck constant ħ. 

But it can not be considered as relativistic particle, because 
coefficient (1 – v2/c2) –1/2 is not included in the definition of 
R0. 
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In the particular case of the calculation of the magnetic 
moment of the neutron and the energy of its decay, it allows 
to find an equilibrium of the system from the balance of 
forces, as it can be made in the case of non-relativistic 
objects. 

The another case exits at the evaluation of the neutron 
lifetime. The relativism affects on this parameter apparently 
and one can not obtain even a correct estimation of the order 
of its value. 

2. About Nature of Nuclear Forces 

2.1. The One-Electron Bond Between Two 

Protons 

Let us consider a quantum system consisting of two 
protons and one electron. 

If protons are separated by a large distance, this system 
consists of a hydrogen atom and the proton. 
If the hydrogen atom is at the origin, then the operator of 
energy and wave function of the ground state have the 
form: 

2 2
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If hydrogen is at point R, then respectively 
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In the assumption of fixed protons, the Hamiltonian of the 
total system has the form: 

2 2 2 2
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At that if one proton removed on infinity, then the energy 
of the system is equal to the energy of the ground state E0, 
and the wave function satisfies the stationary Schrodinger 
equation: 

(1 2)
0 1 2 0 1 2H Eϕ ϕ,

, ,=                                 (41) 

We seek a zero-approximation solution in the form of a 
linear combination of basis functions: 

ψ = a1 (t)  φ1 + a2 (t) φ2 ,                              (42) 

where coefficients a1 (t) and a2 (t) are functions of time, and 
the desired function satisfies to the energy-dependent 
Schrodinger equation: 
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where V1,2 is the Coulomb energy of the system in one of two 
cases. 

Hence, using the standard procedure of transformation, we 
obtain the system of equations 
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where we have introduced the notation of the overlap integral 
of the wave functions 
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and notations of matrix elements 
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Given the symmetry 

Y11 = Y22; Y12 = Y21 ,                       (47) 

after the adding and the subtracting of equations of the 
system (44), we obtain the system of equations 
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As a result, we get two solutions 
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From here 
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and 
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As 
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with the initial conditions 

a1(0) = 1; a2(0) = 0                        (55) 

and 

C1 = C2 = 1                                 (56) 

or 

C1 = – C2 = 1                               (57) 

we obtain the oscillating probability of placing of electron 
near one or other proton: 
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Thus, electron jumps into degenerate system (hydrogen + 
proton) with frequency ω from one proton to another. 

In terms of energy, the frequency ω corresponds to the 
energy of the tunnel splitting arising due to electron jumping 
(Fig. 1). 

As a result, due to the electron exchange, the mutual 
attraction arises between protons. It decreases their energy on 

2
E

ω∆ = ℏ                                      (59) 

The arising attraction between protons is a purely quantum 
effect, it does not exist in classical physics. 

The tunnel splitting (and the energy of mutual attraction 
between protons) depends on two parameters:  

∆ = |E0|·Λ(x),                                   (60) 

where E0 is energy of the unperturbed state of the system (ie, 
the electron energy at its association with one of proton, 
when the second proton removed on infinity), and function of 
the mutual distance between the protons Λ(x). 

This dependence according to Eq.(54) has the form:  
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−
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−
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The graphic estimation of the exchange splitting ∆E 
indicates that this effect decreases exponentially with 
increasing a distance between the protons in full compliance 
with the laws of the particles passing through the tunnel 
barrier. 

 
Fig. 1. The schematic representation of the potential well with two 

symmetric states. In the ground state, electron can be either in the right or in 

the left hole. In the unperturbed state, its wave functions are either 1ϕ  or 2ϕ  

with the energy E0. The quantum tunneling transition from one state to 
another leads to the splitting of energy level and to the lowering of the 

sublevel on ∆. 

2.2. The Molecular Hydrogen Ion 

The quantum-mechanical model of simplest molecule - the 
molecular hydrogen ion - was first formulated and solved by 
Walter Heitler and Fritz London in 1927 [9-11]. 

At that, they calculate the Coulomb integral 

Y11 = 1 – (1 + x) e –2x,                               (62) 

the integral of exchange 

Y12 = x (1 + x) e – x                                 (63) 

and the overlap integral 
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where x = R /aB is the dimensionless distance between the 
protons.  

The potential energy of hydrogen atom 
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and with taking into account Eq. (62)-Eq. (64) 
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At varying the function Λ(x) we find that the energy of the 
system has a minimum at x ≈ 1.3 where Λ x = 1.3 ≈ 0.43. 

As a result of permutations of these values we find that in 
this minimum energy the mutual attraction of protons reaches 
a maximum value 

∆max ≈ 9.3·10 –12 erg.                         (67) 

This result agrees with measurements of only the order of 
magnitude. 

The measurements indicate that the equilibrium distance 
between the protons in the molecular hydrogen ion x ≈ 2 and 
its breaking energy on proton and hydrogen atom is close to 
4.3·10 –12 erg.  

The remarkable manifestation of an attraction arising 
between the nuclei at electron exchange is showing himself 
in the molecular ion of helium. 

The molecule He2 does not exist. 
But a neutral helium atom together with a singly ionized 

atom can form a stable structure - the molecular ion. 
The above obtained computational evaluation is in 

accordance with measurement as for both - hydrogen atom 
and helium atom - the radius of s-shells is equal to aB, the 
distance between the nuclei in the molecular ion of helium, 
as in case of the hydrogen molecular ion, must be near x ≈ 2 
and its breaking energy near 4.1·10 –12 erg. 

In order to achieve a better agreement between calculated 
results with measured data, researchers usually produce 
variation of the Schrodinger equation in the additional 
parameter- the charge of the electron cloud. At that, one can 
obtain the quite well consent of the calculations with 
experiment. But that is beyond the scope of our interest as we 
was needing the simple consideration of the effect. 

2.3. Deuteron and Other Light Nuclei 

2.3.1. Deuteron 

According to this model, neutron is proton surrounded by a 
relativistic electron cloud. 

Therefore a deuteron consists of the same particles as the 
molecular ion of hydrogen. 

There is a difference. In the case of a deuteron, the 
relativistic electron cloud has the linear dimension R0 ≈ 10 –13 
cm (Eq. (14)). 

One might think that a feature occurs at such a small size 
of the electron cloud. 

When an electron jumps from one proton to another, a 
spatial overlap of the wave functions will not arise and 
therefore the overlap integral S (Eq. (64)) can be set equal to 
zero. 

In accordance with the virial theorem and Eq. (33), the 
potential energy of this system at the unperturbed state is 

2

0

0

e
E

R
= − .                                     (68) 

The function Λ(x) (Eq. (61)) at S=0 and taking into 
account Eq. (63) obtains the form 

Λ(x) = x (1 + x) e – x,                          (69) 

Where x = R /R0 is a dimensionless distance between the 
protons. 

When varying this expression we find its maximum value 
Λmax = 0.84 at x = 1,62. 

After substituting these values, we find that at the 
minimum energy of the system due to exchange of 
relativistic electron, two protons reduce their energy on 

2
6

0 max

0

2.13 10
e

erg
R

−∆ = ⋅ Λ ≈ ⋅ .                 (70) 

To compare this binding energy with the measurement 
data, let us calculate the mass defect of the three particles 
forming the deuteron 

δmd = 2mp + me* – md ≈ 3.9685·10 –27 g,        (71) 

where md is is mass of deuteron.  
This mass defect corresponds to the binding energy 

Ed = δmd ·c
2 = 3.567·10 –6 erg.               (72) 

Using the relativistic electron mass in Eq.(75) does not 
seem obvious. 

However, this is confirmed by the fact that at the fusion 
reaction proton and neutron to form a deuteron 

p + n → D + γ                                 (73) 

γ-quantum takes energy equal to 3.563·10 –6 erg [12-13]. 
Thus the quantum mechanical estimation of the bonding 

energy of deuteron Eq.(70), as in the case of the hydrogen 
molecular ion, consistent with the experimentally measured 
value Eq. (72), but their match is not very accurate. 

Schematic representation of the structure of light nuclei. 
Dotted lines schematically indicate the possibility of a 
relativistic electron hopping between protons.  

 
Fig. 2. Schematic representation of the structure of light nuclei.  

Dotted lines schematically indicate the possibility of a 
relativistic electron hopping between protons.  

2.3.2. Nucleus 3
2He 

As can be seen from the schematic structure of this nucleus 
(Fig. 2), its binding energy is composed by three pairwise 
interacting protons. Therefore it can be assumed that it equals 
to the tripled energy of deuteron: 

EHe3 = 3·Ed ≈ 10.70·10 –6 erg.                 (74) 

The mass defect of this nucleus 
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∆m (He3) = 3mp + me* – mHe3 = 1.19369·10 –26 g.      (75) 

Thus mass defect corresponds to the binding energy 

E (3
2He) = ∆m (He3)·c2 ≈ 10.73·10 –6 erg.             (76) 

Consent energies EHe3 and E (3
2He) can be considered as 

very good. 

2.3.3. Nucleus 4
2He 

As can be seen from the schematic structure of this nucleus 
(Fig. 2), its binding energy is composed by six pairwise 
interacting protons which are realised by two electrons. On 
this reason its binding energy can be considered as: 

EHe4 = 2·6·Ed ≈ 42.80·10 –6 erg.                  (77) 

The mass defect of this nucleus 

∆m (He4) = 4mp + 2me* – mHe4 = 48.62·10 –26 г.       (78) 

Thus mass defect corresponds to the binding energy 

E (4
2He) = ∆m (He4)·c2 ≈ 43.70·10 –6 erg.            (79) 

Consent of these energies can be considered as alright. 

2.3.4. Nucleus 6
3Li 

The binding energy of Li-6 can be represented by the sum 
of binding energy of He-4 and deuteron. The last placed on 
next shell and has a weak bounding with He-4: 

E Li6 ≈ E He4 +·Ed ≈ 47.26·10 –6 erg.                (80) 

The mass defect of this nucleus 

∆m (Li6) = 6mp + 3me* – mLi6 = 54.30·10 –26 g.        (81) 

and corresponding binding energy 

E (6
3Li) = ∆m (Li6)·c2 ≈ 48.80·10 –6 erg.              (82) 

That really confirms the weak link between the protons in 
different shells.  

It should be noted that the situation with the other light 
nuclei are not so simple. 

The nucleus 3
1T consists of three protons and two 

communicating electrons between them. 
Jumps of two electrons in this system should obey to the 

Pauli exclusion principle. 
Apparently this is the reason that the binding energy of 

tritium is not very much greater than the binding energy of 
He-3. 

Nuclear binding energy of Li-7 can be represented as E Li7 
≈ E He4 + ET. But it is quite a rough estimate. 

At that the binding energy of unstable nucleus Be-8 very 
precisely equal to twice binding energy of He-4. 

2.4. Conclusion 

The good agreement between the calculated binding 
energy of some light nuclei with measured data suggests that 
nuclear forces (at least in the case of these nuclei) have the 
above-described exchange character. These forces arise as a 

result of a purely quantum effect of exchange relativistic 
electrons. 

For the first time the attention on the possibility of 
explaining the nuclear forces based on the effect of electron 
exchange apparently drew I. E. Tamm \cite{Tamm} back in 
the 30s of the last century. 

However, later the model of the π-meson and gluon 
exchange becomes the dominant in nuclear physics. The 
reason for that is clear. 

To explain the magnitude and range of the nuclear forces 
need particle with a small wavelength. 

Non-relativistic electrons does not fit it. 
However, on the other hand, the model π –meson or gluon 

exchange was not productive: 
it gives not possibility to calculate the binding energy of even 
light nuclei. 

Therefore, the simple assessment of the binding energy 
given above and consistent with measurements is the clear 
proof that the so-called strong interaction in the case of light 
nuclei is a manifestation of the quantum-mechanical effect of 
attraction between protons produced by the relativistic 
electron exchange. 

3. Neutrinos 

3.1. Electromagnetic Waves 

The radiation and propagation of electromagnetic waves in 
vacuum is considered in detail in a number of monographs 
and textbooks. Taking as the basis for the consideration of 
these mechanisms the description given by the course of the 
Landau-Lifshitz [4], let us consider the mechanism of 
excitation and propagation of waves in vacuum in the 
absence of electric charges, electric dipoles and currents. A 
time variable magnetic dipole moment m will be the only 
source of electromagnetic fields in the following 
consideration. 

3.1.1. The Vector Potential Generated by a 

Magnetic Dipole 

In general, the potentials of the electromagnetic fields 
generated by electric charge distribution ρ and the current j at 
the point R with allowance for retardation, are written in the 
form: 

/

1
( , ) R

t c
c

R t dV
R

ϕ ρ
− +

= ∫
rn

                     (83) 

and 

/

1
( ) R

t c
c

R t dV
cR − +

, = ∫
rn

A j                    (84) 

 
Where r is the radius-vector within the system of charges 

and currents, n = R / R is the unit vector. 
Introducing the delayed time t* = t – R /c, we write down 

the first two terms of the expansion of the vector potential 
expression (84) in powers of rn /c: 
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cR c R t
∗ ∗∗

∂, = + .
∂∫ ∫A j rn j            (85) 

Using the definition j = ρv and passing to the point 
charges, we obtain: 

2

1 1
( ) ( )R t e e

cR c R t
∗

∂, = + .
∂

∑ ∑A v v rn               (86) 

Due to the fact that the expression of the second term can 
be transformed to 

1
( ) ( ) ( ) ( )

2
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( ) [[ ] ]
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∂ = + − = ∂ 
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                 (87) 

and using the definitions of the electric dipole d, the electric 
quadrupole moment Q and the magnetic dipole moment 

1
[ ]

2
e= ×∑m r v                                 (88) 

we obtain in accordance with ([4]Eq.71.3): 

** *

2

( )( ) ( )
( , ) .

6

tt t
R t

cR cRc R

 × = + +
m nd Q

A
ɺɺɺɺ

                 (89) 

Where the first two terms describe the electric dipole and 
electric quadrupole radiation.  

In our case, they are equal to zero, since there are no 
appropriate moments in the beginning condition of statement 
of the problem. 

So finally for our case we have 

[ ( ) ]
( )R t

cR

∗ ×, = .m t n
A

ɺ
                            (90) 

3.1.2. The Electric Field Generated by a 

Magnetic Dipole 

By definition, at ϕ = 0 ([4], Eq.46.4) 

1 ( )
( )

d R t
R t

c dt
∗

,, = − .A
E                            (91) 

If to denote 
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( )

d t
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∗
∗

∗ ≡ ,m
m t

i

ii

                              (92) 

we obtain 

2
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( ) [ ( ) ]R t t

c R

∗, = − ×E m n
ii

                        (93) 

3.1.3. The Magnetic Field Generated by a 

Magnetic Dipole 

By definition, at ϕ = 0 ([4], Eq.46.4) 

[ ( ) ]
( ) rot ( )
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[ ( ) ]
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cR

t
c R

∗

∗

 × , = , = ∇ × =
 
 

 = ∇ × × ⋅  

m n
H A
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i
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               (94) 

In general case, the rotor of the function F, depending on 
the parameter ξ, can be written as: 

[ ( )] grad
d

d
ξ ξ

ξ
 ∇× = × . 
 

F
F                         (95) 

Therefore, since the grad t* = ∇(t – R /c) = – n /c, we obtain 

( ) 1
rot ( ) grad [ ( )]
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cdt

∗
∗ ∗ ∗

∗

 
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         (96) 

The differentiation of the second term of Eq.(94) gives 

2

1 1 1
[ ( ) ] [ ( ) ]t t

c R cR

∗ ∗   ∇ × × = × × .     
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So the result is 

2 2

1 1
( ) [ ( ) ] [ ( ) ]R t t t
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  (98) 

3.1.4. The Electromagnetic Field of a 

Harmonic Magnetic Dipole 

Let the magnetic dipole varies harmonically 

( ) sint tω= ⋅ .m m                              (99) 

At this condition 

2
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ω ω
ω ω

= ⋅ ⋅
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And 

2

1
( ) [ ( ) ]R t t
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∗, = − ×E m n                         (100) 

2 2
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( ) [ ( ) ]R t t

R Rλ λ
∗   , = − − × ×    

H n m n            (101) 

where λ = c /ω is the length of electromagnetic wave. 
At large distances when R ≫ λ, the second term in 

brackets in the right-hand side Eq.(101) can be neglected. 
Thus, the magnetic dipole in the case of harmonic 

oscillations creates in the wave zone an electromagnetic 
wave in which the amplitudes of the electric and magnetic 
fields are equal and orthogonal to each other. 

3.1.5. The Scattering of Electromagnetic 

Waves by Electrons 

Electromagnetic wave at falling on the charged particles 
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causes their moving. 
This movement of charges causes reemitted waves and 

eventually absorbtion of the incident wave. Electrons are the 
most efficient in this re-emission process. 

Let an electromagnetic wave with amplitude of the electric 
field E and with intensity of radiation 

2
0 4

c
J E

π
= .                                 (102) 

falls on a free electron. 
Under the action of the incident wave, this electron 

acquires acceleration: 

e

eE
v

m
= ,ɺ                                     (103) 

It will cause a wave of re-emission with the intensity [4]: 

2
2

3

2

3

e
J v

c
= .ɺ                                   (104) 

The ratio of the intensities of the reradiated wave and the 
incident one determines the cross section of this reaction: 

22
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3Th

e

J e

J m c

πσ
 

= = . 
 

                          (105) 

This mechanism is called the Thomson-scattering. The 
substitution of constants in the Eq. (105) indicates that the 
Thomson-scattering of photon by electron has value of about 
1 barn. 

3.2. The Magnetic Wave 

3.2.1. The Heaviside Function and Its 

Derivatives 

The Heaviside function is step function which is equal to 0 
for negative argument and to 1 for positive one. This function 
requires an additional definition at zero-point. It is generally 
accepted to consider it equals to 1/2 at zero: 

0 if 0

1
( ) if 0

2
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

>

                               (106) 

The first derivative from the Heaviside function 
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d

He t He t
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≡  is the Dirac δ-function: 
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( ) (0) if 0
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                     (107) 

It is not simple to find the second derivative from the 
Heaviside function, since the delta-function is non-

differentiable. 
The Heaviside function can be represented approximately 

as the analytical expression: 

2
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( )

1 t k

k

He t
e

− /
 → . +  ≪

                         (108) 

The coefficient k determines the sharpness of the step in 
zero-point. 

Using the representation Eq.(108), we find that the second 
derivative from 

( ) (0) ( )He t f tδ≈ ⋅ ,
ii

                        (109) 

where 

( )2( ) 1t k
f t e

− /= − .                          (110) 

At taking into account the property of δ-function: 

(0) ( ) (0)f t fδ ⋅ = ,                           (111) 

we obtain 

( ) 0He t =
ii

                                 (112) 

3.2.2. The Electromagnetic Fields of a 

Magnetic Dipole with Hopping  

Time-Dependency 

Let’s consider the field, which occurs if the time 
dependence of the magnetic dipole is described by Heaviside 
function m(t) = m He(t). 

Due to the character of the behavior of the derivatives of 
this function, we can write 

(0)δ= ⋅m mɺ                                  (113) 

and 

0= .mɺɺ                                        (114) 

At using of Eqs. (93) and (108) we can conclude that the 
abrupt appearance of a magnetic dipole should not give a 
rising of electric field 

( ) 0R t, = ,E                                   (115) 

and the magnetic field far from the dipole appears as a delta-
shaped splash 

2

[ ( ) (0) ]
( )

t
R t

cR

δ∗ × ⋅ × , = .
n m n

H                      (116) 

At a hopping occurrence of the magnetic dipole, a single δ-
shaped splash of magnetic field arises. 

This single δ-shaped splash or magnetic soliton reaches the 
observation point R at time t = R/c (where c is the velocity of 
soliton propagating), the spread of which is not accompanied 
by changes in the electric field. (A single δ-shaped splash of 
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magnetic field seems conveniently to call as magnetic 
soliton. 

A certain similarity of these objects exists, although 
usually solitons called heterogeneous solutions of nonlinear 
equations. In our case the single δ-shaped splash of magnetic 
field arises as the solution of linear Maxwell equations.) 

3.2.3. β-decay and K-capture 

In reality, the instant appearance of a magnetic dipole 
moment occurs during the β-decay. In accordance with the 
electromagnetic model of the neutron [1], the spin of 
relativistic electron equals to zero, when it together with 
proton forms neutron. The magnetic moment of electron in 
this its state do not observe. At β-decay of neutron, the 
relativistic electron acquires freedom, and together with it, 
spin and magnetic moment. As the emitted relativistic 
electron has velocity close to the speed of light, this process 
must have a saltatory character. 

Experiments show that the β-decay of neutron is 
accompanied by the emission of antineutrinos: 

n p e ν+ −→ + + .ɶ                               (117) 

Thus, the δ-shaped splash of magnetic field that generated 
by hopping occur-rence of magnetic moment can be 
identified with antineutrino. The main prop-erties of these 
particles are the same: they have no charge, no rest mass, and 
very weakly interact with matter. Spin of electron in initial 
bounded state equals to zero [1]. After decay in final free 
state, its spin is ħ / 2. Given the law of conservation of 
angular momentum, magnetic soliton, just as neutrinos, 
should carry away the angular momentum equals to – ħ / 2. 

The K-capture process should be another implementation 
of magnetic δ-soliton. In this process originally, electron 
forms an atom shell and has its own magnetic moment and 
spin. At some moment, it is captured by proton of nucleus 
and forms neutron together with it. This process can be 
described by an inverse Heaviside function, different from 
that was considered before (Eq. 106): 
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>

                             (118) 

The inverse Heaviside function is equal to 1 at negative 
times and resets at t = 0. 

A magnetic δ-soliton with the reverse direction of 
magnetic field to respect of its propagation vector R should 
occur during this process. Such ”reverse” δ-soliton 
corresponds to neutrino in the K-capture reaction: 

p e n ν+ −+ → + .                                 (119) 

3.2.4. The Basic Physical Properties of 

Magnetic Soliton 
The electromagnetic photon has equal largest electric and 

magnetic components and its spin equal to ℏ . Therefore, it 

should be assumed that the spin of magnetic photon which 
have magnetic component only must be equal to / 2ℏ . 

The decay of neutrons gives β-electrons with the energy 
spectrum from 0 to 782 keV. Accordingly, the maximum 
energy that can carry soliton in this decay is 

610E erg−≈ .                                (120) 

Let us evaluate other basic physical properties of magnetic 
soliton. 

Its characteristic time 

2110 с
E

τ −≈ ≈ .ℏ
                          (121) 

Its spatial extent 

11310· сmλ −≈ .                       (122) 

The intensity of its magnetic field is very high 
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E
H Oe

π
λ

≈ ≈ .                      (123) 

In order to assess the penetrating ability of magnetic 
soliton, we shall tray to estimate the cross section of its 
scattering by free electron. 

The energy of interaction of the soliton with electron can 
be written as: 

E = µ B  H.                          (124) 

Where µ B = eħ / 2me c is magnetic moment of electron. 
One can assume that the electron energy after the 

acquisition of energy from soliton can be dissipated due to 
synchrotron radiation at the cyclotron effect. 

Therefore electron reradiation at analogy with Eq. (104) 
will have intensity: 

( )
2

2

3

2

3

e
J V

c
ϑ ω= .                          (125) 

Where V is the free electron velocity in a scattering 
material, ω = µ B H / ħ is the electron cyclotron velocity in 
soliton magnetic field, the coefficient ϑ ≈ τω takes into 
account the fact that the time of action of the soliton 
magnetic field on electron is much smaller than the cyclotron 
period. 

The intensity of the incident radiation can be written by 
analogy with Eq. (102) in the form 

2
0 4

c
J H

π
= .                            (126) 

At assuming that the electron involved in thermal motion, 
we get v ≈ 3·106 cm/s. 

As the result of simple calculations, we can estimate the 
ratio of the scattering cross section of magnetic soliton σ m 
on free electron to the cross section of the Thomson 
scattering calculated above σTh Eq. (105): 
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1210
Th

σ
σ

− .m Î                                (127) 

Those the capture cross section (scattering) of magnetic 
soliton in the substance can be roughly estimated as 

36 210 смσ − ,
m

Î                             (128) 

though of course this estimate is overstated because the re-
scattering effect of synchrotron radiation in the case of a path 
of open cyclotron orbit should be considerably weaker. 

3.2.5. Muon and Electron Neutrinos 

The difference between the muon-neutrinos and electron-
neutrinos was found by L. Lederman and his colleagues [15]. 
In this experiment, protons with energy of 15 GeV interacted 
with a target and produced a beam of high energy π± - 
mesons. 

They in turn decayed and created high energy µ ± -mesons 
and neutrino νµ. 

As a result, experimenters found that ν µ neutrinos cause 
reactions 

p n

n p

µ

µ

µν
ν µ

+

−

+ → +
+ → + .
ɶ

                         (129) 

At that, reactions 

p e n

n e p

µ

µ

ν
ν

+

−

+ → +
+ → + ,
ɶ

                         (130) 

were not detected. 
Authors of this measurement suggested that if between the 

muon- and electron-neutrinos would not be a difference, the 
electrons and positrons in these reactions would have to be 
produced as well as mesons in the reaction Eq. (129). 

This assumption may be wrong. As reactions have 
different thresholds, their probability must be different. 

Let us consider for example, the reaction of the birth of 
particle-antiparticle pairs. 

Let the energy of γ-quantum is so great that the reaction of 
birth of pair proton-anitiproton is possible: 

p pγ + −→ + .                               (131) 

The same γ-quantum can lead to the birth of electron-
positron pair: 

e eγ − +→ + .                                (132) 

However, this does not happen. 
This reaction is not energetically favorable. The reaction is 

energetically favorable if its products have the lowest kinetic 
energy and correspondingly take smaller volume in phase 
space. 

If these reactions would be equiprobable, products of 
reaction Eq. (131) have been hammered by three orders large 
number of products of reaction (132). 

This can also be attributed to reactions with neutrinos. 
In order to carry out the reaction of Eq. (129), neutrinos 

must have energies above 100 MeV. 
It is sufficient to overcome the threshold about 100 times 

smaller for the reaction of Eq. (130) 
Therefore, the conclusion that ν µ and ν e are different 

particles can only be made at taking into account differences 
in these probabilities. 

Assuming that these reactions come under the influence of 
high-energy mag-netic solitons, they both should be possible 
given their differences in probabili-ties. There should be no 
fundamental difference between them. 

Moreover, if the neutrinos is magnetic solitons, it would be 
interesting to repeat the Lederman’s experiment at other 
conditions: to create a beam of muon-neutrinos with energies 
less than 100 MeV (ie below the threshold of birth of 
muons). In this case, we can expect the appearance only 
electrons and positrons in the yield of this reaction as it is 
prescribed by reaction Eq. (130). 

Seeing neutrinos ν µ and ν e are magnetic solitons, they 
are characterized by different energies. Thence their mutual 
transformations seem impossible. It can be assumed that the 
problem of the solar neutrinos deficit should be solved not at 
a searching of their interference mechanism, but at a 
clarifying of definition of energetically favorable 
composition of the Sun core [16] and reactions inside it. 

4. Mesons as Excited States of 

Electron 

4.1. Excited States of Electron 

The chain of reactions pion→muon→electron generates 
three neutrinos. 

Charged pions (π ± -mesons), spin of which are zero, have 
not magnetic dipoles. 

At the moment of conversion of π-meson into muon (µ-
meson), the muon magnetic moment mµ = eħ / 2mµ c arises 
abruptly. It is accompanied by the emission of muon 

antineutrinos µν ∗ .  

Further at the decay of muon, muon neutrino µν
 
is 

radiated. 
It is caused by the muon magnetic moment disappearance. 

At the same time the electron magnetic moment arises, which 
leads to the emission of the electron antineutrino eν ∗ . 

The fact that there are no other products except the 
neutrino and antineutrino in these reactions, leads us to the 
assumption that pion and muon should be excited states of 
electron. 

These mesons have masses 
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π

µ

±

±

=
=

                           (133) 

Let us assume that the excited state of the electron is 
formed due to the fact that a point particle with mass 
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em
M

β
=

−
 (where β = v /c) and charge e rotates in a circle 

of radius R with a speed v → c.  
We will assume that stable excited states will be those for 

which the de Broglie wavelength is placed on the 
circumference of an integer times: 
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π
λ

= ,                               (134) 

where λD = 2πħ / P is the de Broglie wavelength, 
P is generalized momentum of the particle, n = 1,2,3... is 

integer. 
At that the invariant kinetic angular momentum (spin) of 

particle 

[ ( )]
e

n
c

= × − ,S R p A                       (135) 

where p = me c is mechanical momentum of particle,  
A = [m × R] /( 3 21R β−  is the vector potential of the 
magnetic field generated by the rotating charge (see Eq (17)). 

Considering the magnetic moment of gyrating charge e 

[ ]
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e
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= ×m R v                             (136) 

we obtain 
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 
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 − 
ℏ                        (137) 

Where α = e2 / ħc is fine structure constant. 

4.2. Excited State with n = 1 and S = 0 

According to Eq. (137) the condition S = 0 corresponds to 

such a particle velocity at which the coefficient 
2

1

1 β−
 is 

equal to 2/α. The mass of the particle, because of its 
relativistic increasing, is equal to 

0

2
274.08e eM m m

α
= = .                          (138) 

This value is very close to the mass of π ± -meson Eq. 
(133), which spin is zero: 

0 1.003
M

M
π ±

≈                                    (139) 

4.3. Excited State with n = 2 and S = ħ / 2 

At n = 2 and S = ħ / 2, the coefficient 
2

1

1 β−
 must be 

equal to 3/2α.  
At that mass of the particle, because of its relativistic 

increasing, is equal to 

1 2

3
205.56

2 e eM m m
α/ = = .                       (140) 

This value is very close to the mass of µ ± -meson (spin 
ħ / 2): 

1 2 0.9941
M

M
µ±

/ ≈                              (141) 

4.4. Excited State with n = 3 and S = ħ 

At n = 3 and S = ħ, the coefficient 
2

1

1 β−
 must be equal 

to 4/3α.  
At that mass of the particle, because of its relativistic 

increasing, is equal to 

1

4
182.72

3 e eM m m
α

= = .                  (142) 

Mesons with these values of mass are not described in the 
literature. 

5. Conclusion 

In physics of the 20th century, some of these far-fetched 
theory became commonly accepted [17]. The reason for this 
is probably that not all method may confirm the value of a 
theory. Since the construction of a table representing the 
quark structure of elementary particles illustrates the ability 
to systematization but not proof of the correctness of the 
quark description. The main symptom of a quasi-theories is 
that they can not give an explanation of the individual 
primary characteristics of the objects and try to explain the 
general characteristics of the phenomenon as a whole. The 
fact that the electromagnetic model of the neutron allows us 
to predict all of its most important characteristics, forces us 
recognize that the neutron is not an elementary particle. The 
ability to calculate the pion mass, based on its spin, also says 
that the pion is not an independent elementary particle, and 
is, together with a muon, just excited electronic states. For 
this reason, an use of presentation of structure of elementary 
particles based on quarks with fractional charge appears to be 
erroneous. 

The force of attraction between the protons arising at the 
relativistic electron exchange allow us to explain the 
mechanism of occurrence of nuclear forces (in the case of 
light nuclei). This gives possibility do not use gluons for it 
and to simplify this theory. 
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