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Abstract 
For the formation of molecular clouds, the effects of finite ion Larmor radius (FLR) 

corrections, finite electron inertia and radiative heat-loss function on the thermal 

instability of an infinite homogeneous, viscous plasma incorporating the effects of 

thermal conductivity, permeability has been investigated. A general dispersion relation is 

derived using the normal mode analysis method with the help of relevant linearized 

perturbation equations of the problem. The wave propagation is discussed for transverse 

direction to the external magnetic field and the condition of modified thermal 

instabilities and stability are discussed in different cases. It is found that the thermal 

instability criterion is get modified into radiative instability criterion because of inclusion 

of radiative heat-loss functions. The viscosity of the medium removes the effect of FLR 

corrections from the condition of radiative instability. Numerical calculation shows 

stabilizing effect of heat-loss function, FLR corrections, viscosity and destabilizing 

effect of finite electron inertia on the thermal instability. 

1. Introduction 

Molecular cloud formation in interstellar medium is one of the most promising and 

fundamental phenomenon in astronomy and astrophysics. It is pertained that molecular 

clouds are formed due to thermal instability and gravitational instability, but thermal 

instability takes places in a medium which can turn out to be cooler owing to radiation 

and fluid reduction. Additional, reduction in the temperature constructs the arrangement 

unbalanced and directs to formation of novel configurations due to density strengthening. 

In this instability, the critical length scale is smaller than that of the other dynamical 

instability like the Jeans instability i.e. a system can become thermally unbalanced even 

if the organization is stable beside the gravitational instability. Hence, we can say that the 

physical basis of smaller scale configurations is owing to thermal instability quite than 

the energetically instability. It is straightly correlated with the structure of unlike stages 

in disperse interstellar and intergalactic intermediate, as well as in the solar atmosphere. 

The thermal and radiative instability arising due to various heat-loss mechanisms 

definitely be the cause of astrophysical condensation and the formation of large scale 

structures as well as small objects. Many authors investigated the phenomenon of 

thermal instability arising due to heat-loss mechanism in plasma. 
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Field [1] has discussed the importance of thermal 

instability in the formation of solar prominences, 

condensation in planetary nebula and condensation of 

galaxies from the intergalactic medium. Hunter [2] has 

discussed the role of thermal instability in star formation. 

Raju [3] has emphasis on the role of thermal instabilityin the 

formation of solar prominences. Aggarwal & Talwar [4] have 

investigated magnetothermalinstability in a rotating 

gravitating fluid taking radiative heat-loss function. Ibanez 

[5] has studied the sound and thermal waves in a fluid with 

an arbitrary heat-loss function. Hoven & Mok [6] have 

carried out the problem of thermal instability in a sheared 

magnetic field. Burkert & Lin [7] have pointed out the 

importance of thermal instability in the formation of clumpy 

gas clouds and they showed that the thermal instability can 

lead to the breakup of large clouds into cold dense clumps. 

Nejad-Asghar & Ghanbari [8] have discussed the formation 

of small scale condensation in the molecular clouds via 

thermal instability. Baruah et al. [9] have studied the thermal 

(radiative) instability in weakly ionized plasma with 

continuous ionization and recombination taking general heat-

loss function. Fukue & Kamaya [10] have carried out the 

problem of gravitational instability in a rotating gravitating 

fluid taking radiative heat-loss function. Bora & Talwar [11] 

have investigated arbitrary radiative heat-loss function and 

electron inertia. Prajapati et al. [12] have carried out the 

problem of self-gravitational instability of rotating viscous 

Hall plasma with arbitrary radiative heat-loss functions and 

electron inertia. Recently Kaothekar et al. [13] have carried 

out the effect of neutral collision and radiative heat-loss 

function on self-gravitational instability of viscous thermally 

conducting partially-ionized plasma. More recently 

Kaothekar & Chhajlani [14] have investigated the problem of 

Jeans instability of self gravitating partially ionized Hall 

plasma with radiative heat loss functions and porosity. 

In addition to this electron inertia parameter is important in 

the dynamics of interstellar matter, magnetic reconnections 

processes, in stability investigation of accelerated plasmas and 

in several other astrophysical situations. Kalra & Talwar [15] 

have investigated magneto-thermal instability of unbounded 

plasma with electron inertia and Hall effect. Tayler [16] has 

discussed a simple hydromagnetic stability problem involving 

finite conductivity, electron inertia and Hall effect. Chatterjee 

& Das [17] have pointed out the effect of electron inertia on 

the speed and shape of ion-acoustic solitary waves in plasma. 

Shukla et al. [18] have studied the effect of electron inertia on 

kinetic Alfven waves. Damiano et al. [19] have pointed out the 

effects of electron inertia and FLR on Hall 

magnetohydrodynamicwaves. Uberoi [20] has discussed 

electron inertia effects on the transverse gravitational 

instability incorporating the rotation parameters. Deka & 

Dwivedi [21] have investigated the effect of electron inertial 

delay on Debye sheath formation. Dangarh et al. [22] have 

examined the analysis of Jeans instability of partially-ionized 

molecular cloud under influence of radiative effect and 

electron inertia. Patidar et al. [23] have carried out the effect of 

electron inertia on radiative instability of rotating two-

component gaseous plasma. Recently Pensia et al. [24] have 

carried out the effect of self-gravitating viscous radiative and 

thermally conducting gaseous plasma in the presence of fine-

dust-particles under the effect of finite electron inertia and 

heat-loss function. Litvinenko & McMahon [25] have 

investigated Hall MHD and electron inertia effects in current 

sheet formation at a magnetic neutral line. 

In addition to this the effect of finite ion Larmor radius 

(FLR) corrections is very important in astrophysical plasma 

situations. In several astrophysical plasma conditions such as 

in solar corona, interstellar and interplanetary plasmas the 

assumption of zero Larmor radius is not valid. Roberts & 

Taylor [26] has shown the stabilizing influence of finite ion 

Larmor radius (FLR) effects on plasma instabilities. Bhatia 

[27] has investigated the gravitational instability of a rotating 

anisotropic plasma with the inclusion of FLR corrections. 

Bhatia & Maheshwari [28] have investigated the 

gravitational instability of a rotating viscous finitely 

conducting plasma. Chhajlani & Sanghvi [29] have carried 

out the problem of magnetogravitational stability of self-

gravitating plasma with thermal conduction and FLR through 

porous medium. Herrnegger [30] has investigated the 

stabilizing effect of FLR on gravitational instability and 

shows that gravitational criterion is changed by FLR for 

wave propagation perpendicular to magnetic field. Vaghela & 

Chhajlani [31] have studied the stabilizing effect of FLR on 

magneto-thermal stability of resistive plasma through porous 

medium with thermal conduction. Chhajlani & Parihar [32] 

have carried out the stabilizing effect of FLR on 

magnetogravitational instability of anisotropic plasma with 

generalized polytrope laws. Farraro [33] has investigated the 

stabilizing effect of FLR on magnetorotational instability. 

Sharma & Chhajlani [34] have carried out the effect of FLR 

corrections on Jeans instability of quantum plasma. Recently 

Kaothekar & Chhajlani [35] have carried out the problem of 

Jeans instability of self-gravitating rotating radiative plasma 

with finite Larmor radius corrections. More recently 

Kaothekar et al. [36] have investigated the problem of Jeans 

instability of partially-ionized self-gravitating viscous plasma 

with Hall effect FLR corrections and porosity. Thus FLR 

effect is an important factor in discussion of thermal 

instability and other hydromagnetic instability. 

In the glow of above research, we find that in these studies 

(Bora & Talwar [11], Prajapati et al. [12], and Kaothekar et 

al. [36]) the joint influence of FLR corrections, electron 

inertia, radiative heat-loss functions, viscosity, permeability, 

thermal conductivity and magnetic field on the thermal 

instability is not investigated. Therefore in present work 

thermal instability of viscous magnetized plasma with 

electron inertia, FLR corrections, permeability, radiative 

heat-loss functions and thermal conductivity is studied. 

2. Equations of the Problem 

Allow us thin kinfinite homogeneous, radiating, viscous, 
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thermally conducting, plasma with finite electron inertia in 

the presence of magnetic field H (0, 0, H). The equations of 

the problem with these effects are written as- 

1
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dt K
ν

ρ ρ πρ
 ⋅= − − + ∇ − + × × 
 

v v
v

�

P
H H

∇∇∇∇∇ ∇∇ ∇∇ ∇∇ ∇  (1) 

1
.( ) 0

1 1

dp p d
L T

dt dt

γ ρ ρ λ
γ γ ρ

− + − =
− −

∇ ∇∇ ∇∇ ∇∇ ∇ ,        (2) 

p RTρ= ,                             (3) 

.
d

dt

ρ ρ= − v∇∇∇∇ ,                            (4) 

2
2

2
( )

t
pe

c

tω
∂ ∂= × × + ∇
∂ ∂

v∇∇∇∇
ΗΗΗΗ Η ΗΗ ΗΗ ΗΗ Η ,            (5) 

. 0=∇∇∇∇ ΗΗΗΗ ,                        (6) 

Where p, ρ, υ, T, v (vx, vy, vz), λ , R, 1, , and peK cγ ω  

denote the fluid density, pressure, kinematic viscosity, 

temperature, velocity, thermal conductivity, gas constant, 

permeability and ratio of two specific heats, velocity of light 

and electron plasma frequency respectively. Here L(ρ, T) is 

the heat-loss function per gram of the material per second 

exclusive of thermal conduction and is in general a function 

of the local values of density and temperature. The operator 

( / )d dt  is the substantial derivative given as ( / )d dt  = ( t∂ +

.v ∇∇∇∇ ). 
�

P  is the pressure tensor taking into account the effect 

of finite ion gyration radius for the magnetic field along z 

axis as given by Roberts & Taylor [26] is 
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The parameter 0υ
 
has the dimensions of the kinematics 

viscosity and defined as 2
0 4L LRυ = Ω , where LR

 
is the ion-

Larmor radius and LΩ
 
is the ion gyration frequency. 

3. Perturbation Equations of the 

Problem 

The perturbation in fluid pressure, density, temperature, 

velocity, magnetic field, heat-loss function are given as δp, 

δρ, δT, v(vx, vy, vz), Hδδδδ  ( xHδ , yHδ , zHδ ) and L  

respectively. The perturbation state is given as 

p = p0 + δp, T = T0+ δT, ρ = ρ0 + δρ, v = v0 + v (with v0= 0), 

H= H0+ Hδδδδ , and L = L0 + L (with L0 = 0).           (8) 

Suffix ‘0’ represents the initial equilibrium state, which is 

independent of space and time, and can be dropped from the 

equilibrium quantities for the sake of simplifications. 

Substituting the perturbation state into equation (1) to (7) 

and linearizing them by neglecting higher order 

perturbations. 

The linearized perturbation equations of motion for such 

medium are 

1
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Where TL
 
and Lρ  respectively denote partial derivatives 

( )/L T ρ∂ ∂
 
and ( )/

T
L ρ∂ ∂

 
of the heat-loss function 

evaluated for the initial (unperturbed) state. 

4. Dispersion Relation 

We seek plain wave solution of the form 

exp ( ).xik x i tσ+                              (15) 

Where σ  is the frequency of harmonic disturbance and 

xk  is the wave number of the perturbation along x axis, 

such that 2 2
xk k= . 

The components of equation (13) may be given as 

( / ) vx x xH iH d kδ = , 

( / ) vy x yH iH d kδ = ,                          (16) 

( / ) vz x xH iH d kδ = − , 

Using equations (11), (12) and (16) we write 
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Using equations (10)-(18) in equation (9), we may write 

the following algebraic equations for the components of 

equation (9) 

2 2
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Taking divergence of equation (9) and using equation (10) 

to (18), we obtain as 
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The set of equations (19)-(21) can be written in the form. 
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We have made following assumptions 
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1
2( )c pγ ρ= , 

is the adiabatic velocity of sound in the medium, 

s δρ ρ= , 

is the condensation of the medium. 

The general dispersion relation can be obtained from the 

determinant of matrix of equation (23) is 
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The dispersion relation (24) represents the combined 

influence of viscosity, magnetic field, thermal conductivity, 

radiative heat-loss function, permeability and finite electron 

inertia, FLR corrections on thermal instability of plasma. In 

absence of FLR corrections dispersion relation (24) is 

identical to Prajapati et al. [12] for non-rotational, non-

gravitational and infinite conducting case. In absence of FLR 

corrections and viscosity dispersion relation (24) is identical 

to and for infinite conducting case. Also in absence of FLR 

corrections, viscosity and finite electron inertia dispersion 

relation (24) is reduces to that obtained by Field [1]. Now we 

discuss the general dispersion relation (24) for longitudinal 

and transverse wave propagation. 

5. Discussion 

5.1. Transverse Propagation kx=k 

In this case the perturbations are taken to be perpendicular 

to the direction of the magnetic field ( . . )xi e k k= . The 

dispersion relation (24) reduces to 
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The first component of the dispersion relation (26) gives 
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This represents a stable viscous mode modified by the 

presence of permeability of the medium. 

The second component of the dispersion relation (26) on 

simplifying gives 
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              (27) 

The above equation represents the combined influence of 

radiative heat-loss function, FLR corrections, finite electron 

inertia, permeability, thermal conductivity, viscosity, and 

magnetic field on thermal instability of plasma. If we neglect 

the effect of FLR corrections equation (28) is identical to 

Prajapati et al. [12] for non rotational case. In the present 

case we have considered the effects of FLR corrections, but 

Prajapati et al. [12] have not considered this effect. Thus the 

dispersion relation in the present analysis is modified due to 

the presence of FLR corrections, but the condition of 

instability is unaffected by the presence of FLR corrections. 

Thus we conclude that FLR corrections has no effect on the 

condition of radiative instability, but the growth rate of the 

dispersion relation given by Prajapati et al. [12] gets 

modified due to the presence of FLR corrections in our 

present case. Thus we conclude that FLR corrections modify 

the growth rate of radiative instability in the present case. 

Hence this is the new finding in our case than that of 

Prajapati et al. [12]. 

When constant term of equation (28) is less than zero this 

allows at least one positive real root which corresponds to the 

instability of the system. The condition of instability obtained 

from constant term of equation (28) is given as 

2
2
( 1) 0.T

k T
k TL Lρ

λγ ρ
ρ

  
− − + <      

            (28) 

The above inequality (28) is reduced form of Bora and 

Talwar [11]. 

 

Figure 1. The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for different values of 
*kλ  

with 
*
Tk  = 0.5 and 

* *
1 1.K v= =  
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Figure 2. The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for different values of 
*
Tk

 
with 

*kλ  = 0.1 and 
* *
1 1.K v= =  

 

Figure 3. The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for different values of 
*v

 
with 

*
Tk  = 0.5 and 

* *
1 1, 0.1.K kλ= =  

 

Figure 4. The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for different values of 
*
0v

 
with 

*kλ =0.1, 
*
Tk  = 0.5 and 

* *
1 1.K v= =  
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Figure 5. The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for different values of α having * 0.1kλ =  with * *
1 1, TK k=  = 0.5 

and * 1.v =  

In Figs. 1-5 the dimensionless growth rate (
*ω ) has been 

plotted against the dimensionless wave number (
*

k ) to see 

the effect of various physical parameters such as rotation, 

radiative heat-loss function, resistivity and FLR corrections. 

From Fig. 1 we see that as the value of *kλ  
increases the 

growth rate decreases. Thus the effect of parameter *kλ  
is 

stabilizing. It is clear from Fig. 2 we conclude that growth 

rate decreases with increasing parameter *
Tk . Thus the 

presence of *
Tk

 
stabilizes the growth rate of the system. From 

Fig. 3 we conclude that that growth rate decreases with 

increasing the value of viscosity. Thus the effect of viscosity 

is stabilizing. Figure 4 displays the influence of FLR 

corrections on the growth rate of thermal instability. From 

figure it is clear that the FLR corrections have a stabilizing 

effect on the growth rate of thermal instability. Figure 5 

displays the influence of finite electron inertia on the growth 

rate of thermal instability. From figure it is clear that the 

finite electron inertia has a destabilizing effect on the growth 

rate of thermal instability. Therefore, the parameters radiative 

heat-loss functions, viscosity have stabilizing influence on 

the system while the finite electron inertia have destabilizing 

influence on the growth rate of the system.

 Now we wish to examine the effect of finite electron 

inertia, FLR corrections and radiative heat-loss functions on 

the considered system with some simplifications and at the 

same time we wish to investigate the physics involved in 

such simplifications in the present problem. 

In absence of thermal conductivity ( 0)λ =  equation (28) 

reduces to 

4 3

2

2 2 4 2 2 2
0

2

2 2 4 2 2 2 2
0

1

1 1

1 1

2

2 2

2 2

1
2

1 1
2

1 1
( )

T

p

T

p

T T

p p T

L
k

K c

L
k k k c k

K c K

pLL L
k k k c k k c

c K K c TL

ρ

γαω α υ ω

γα υ υ υ ω

γ γα υ υ υ

    + − +   
     

      + − + − + +           

           ′+ + − + + − + −   
        

  
  
   

 

2 2 2 2 2 2

1 1

2 21 1T T

p p

L L
k V k V k k V k

K c K c

γ γυ ω υ
        + − + + −                 

 

2 2 0.T

p T

pLL
k c

c TL

ργα
    ′ + × − =    
      

                       (29) 

The condition of instability obtained from constant term of 

equation (30) is given as 

2 2 0.
T

pL
k c

TL

ρ  
′ − <  

   
                       (30) 

On comparing equation (28) and (30) we see that no new 

mode comes due to inclusion of thermal conductivity, but the 

condition of instability and growth rate of in stability both get 

modified by inclusion of thermal conductivity. 

Also on comparing equation (30) with equation (29) of 

Aggarwal & Talwar [4] we conclude that the growth rate of 

radiative instability is get modified by inclusion of finite 

electron inertia, FLR corrections and in our case, but 

condition of instability is independent of finite electroninertia 

and FLR corrections. 

In absence of viscosity ( 0)υ =  equation (28) becomes 

2
3 2 2 4 2 2 2 2

0

2 2
2 4 2
0

( 1) ( )

( 1) ( 1)

T

T
T

T L k T
k c k V k

p p

T L k T k T
k k TL L

p p
ρ

ρ λαω α γ ω α υ ω

ρ λ λα υ γ γ ρ
ρ

  
 + − + + + +        

     + − + + − − +              

 

2
2 2

( 1) 0.TT L k T
V k

p p

ρ λγ
  + − + =   
  

                      (31) 

The condition of instability obtained from constant term of 

equation (32) is given as. The above equation is identical to 

Bora & Talwar [11] in absence of FLR corrections. 

The condition of instability obtained from constant term of 
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equation (32) is given as 

2 2
2 4 2
0

T
T

T L k T k T
k k TL L

p p
ρ

ρ λ λα υ ρ
ρ

     
 + + − +             

 

2
2 2

0.TT L k T
V k

p p

ρ λ  + + <  
 

                   (32) 

From equation (33) we see that FLR corrections and 

magnetic field tries to stabilize the radiative instability. This 

is same as given by Bora and Talwar [11]. From equations 

(33) conclude that condition of radiative instability and the 

growth rate given by Bora and Talwar [11] is modified by 

inclusion of FLR corrections, thus the present results are the 

improvement of Bora & Talwar [11]. 

In absence of viscosity, thermal conductivity and radiative 

heat-loss function ,( 0)TL ρυ η λ= = = =  equation (28) 

becomes 

2 2 2 2
2 2 4 2 2 2 2

02 2
1 1 ( ) 0.

pe pe

c k c k
k c k V kω υ

ω ω

    
    + + + + + =

        

  (33) 

The above equation (34) is the modified form of Uberoi 

[19] by inclusion of FLR corrections in our problem. The 

condition of instability obtained from equation (34) is given 

as 

2 2
2 4 2 2 2 2
02

1 ( ) 0.

pe

c k
k c k V kυ

ω

  
  + + + <
    

            (34) 

From equation (35) we see that magnetic field and FLR 

corrections stabilize the system. On comparing equations 

(28) and (35) we see that dispersion relation given by Uberoi 

[19] is modified by inclusion FLR corrections, radiative heat-

loss function, thermal conductivity and viscosity in our case. 

Hence we improve the result of Uberoi [19]. 

Thus we conclude that for transverse wave propagation the 

thermal criterion is affected by finite electron inertia, FLR 

corrections, radiative heat-loss functions, viscosity, magnetic 

field strength and thermal conductivity. But there is no effect 

of Hall parameter in transverse mode. From curves we find 

that FLR corrections and temperature dependent heat-loss 

function have stabilizing influence on the growth rate of self-

thermal instability, where as density dependent heat-loss 

function and finite electron inertia have destabilizing 

influence on the thermal instability of plasma. 

5.2. Conclusions 

Thermal instability for molecular cloud formation has been 

studied incorporating the effects of viscous, permeability, 

thermally, radiative heat-loss functions, FLR corrections and 

finite electron inertia. The transverse wave propagation to the 

direction of external magnetic field has been considered. It is 

find that thermal criterion remains valid and gets modified 

because of radiative heat-loss function and thermal 

conductivity. For transverse wave propagation FLR 

corrections, magnetic field strength and viscosity affect the 

condition of radiative instability. FLR corrections stabilize 

the system in case of non-viscous medium. Also, magnetic 

field stabilizes the system. Numerical calculation shows 

stabilizing effect of heat-loss function, FLR corrections, 

viscosity and destabilizing effect of finite electron inertia on 

the self-thermal instability. 
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