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Abstract 
The one dimensional transverse field Ising model is an exact solvable model which is a 

demonstrating example of quantum critical point. The ground state of the transverse field 

Ising model allows two types of partitioning, one in real space and one in momentum 

space, which leads to two different types of entanglement entropies. Although qualitative 

behavior of the two entanglement entropies away from the quantum critical point agrees, 

only the real-space entanglement entropy exhibits observable features at the critical 

point. 

1. Introduction 

The transverse field Ising model is a well-known model which has been studied for 

many years [1-5]. 

Although transverse field Ising model is very simple, it contains a quantum critical 

point which separates the ferromagnetic and paramagnetic phases, and therefore 

becomes a demonstrating example of many interesting phenomena. 

In one dimension, it is well-known that transverse field Ising model is an exact 

solvable model. The exact solution of transverse field Ising model is usually based on the 

Jordan-Wigner transformation, which is a non-local mapping between the spin and 

fermion operators. Due to the non-local nature of Jordon-Wigner transformation [6], the 

TFIM with a periodic boundary condition cannot be exactly mapped to a free fermion 

model. The sign of the hopping term between the last and the first fermions will depends 

on whether the total fermion number is even or odd. The resulting fermion Hamiltonian 

is called “a-cycle” problem in [1]. In the a-cycle problem, the excitations are not 

independent of each other because it depends on the parity of the fermion number parity 

which is global information. In the previous treatment [2], one usually ignored the sign 

difference of the hopping term between the last and the first fermions. This 

approximation makes the a-cycle problem a genuine free fermion problem and is ready 

to be solved. The error of this approximation is infinitesimally small after the 

thermodynamic limit has been taken. Since the phase transition only appears after the 

thermodynamic limit is taken, the above treatment has been justified to discuss the 

physical properties of the system. 

Recent years, there is a lot of experimental progress in small quantum system such as 

ultra-cold atoms [7, 8], trap ions [9, 10] and superconducting elements [11, 12]. These 

techniques make it possible to realize model systems in a finite. Also the cold atoms 

experiments are carried out in relative high temperature comparing to the intrinsic energy 

scale of the model systems. Thus the finite size effects are experimentally accessible 

which requires a more careful treatment of the boundary hopping term such that the  
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result will be exact even for finite size system. In order to 

understand the periodic transverse field Ising model with 

finite size, one has to impose either a periodic or an 

anti-periodic boundary condition according to the even or 

oddness of the fermion number parity, as suggested in [13]. 

Because of this fermion number parity constraint, the usual 

Fermi distribution cannot be used to compute the finite 

temperature thermodynamic quantities. Fortunately, the 

ground state always contains even number of fermions, 

therefore it can be easily calculated and allows a detailed 

study of its entanglement properties. 

The entanglement entropy quantifies internal correlations 

in a bipartite quantum system. It has broad applications 

ranging from quantum information [14] to black-hole physics 

[15]. The entanglement entropy of the transverse field Ising 

model has been analyzed and shown to have interesting 

scaling behavior [16, 17] by partitioning the system in real 

space into two parts. Interestingly, by using a Bogoliubov 

transformation to construct the ground state of the transverse 

field Ising model, we identify another bipartite structure in 

momentum space as well. Such a momentum-space 

entanglement has been discussed in non-interacting fermions 

[18] and superfluids [19]. We compare the entanglement 

entropies in real and momentum spaces and found that, 

although the behavior is qualitatively similar away from the 

quantum critical point, only the real-space entanglement 

entropy exhibits features indicating the critical point. 

In this paper, we only consider the ferromagnetic 

transverse field Ising model with even number of lattice sites. 

We would like to mention that there are more effects due to 

the boundary hopping term and some of them wil survive 

even after taking thermodynamic limit. As pointed in [20], 

for anti-ferromagnetic transverse field Ising model with odd 

number of lattice sites, there exist the so called boundary 

frustration which makes the TFIM gapless in the 

paramagnetic phase. This point is considered with great 

details in [21], and we will not consider this complicated 

situation in the current paper. 

2. Exact Solution of the Transverse 

Field Ising Model 

The 1D Ising Model with a transverse field is given by 

H = −h � ��� − 	 � ��
����

���


���  

Here �� = �� ��  and ��  for � = �, �, �  are three Pauli 

matrices. Here we assume the periodic boundary condition 

such that ���� = ��� . For convenience, we assume total 

lattice site number to be even. 

To solve this spin problem, we introduce the following 

Jordan-Wigner transformation as 

�� = exp ��� � ������
���
���  ���  ��� = exp ��� � ������

���
���  ��� 

Here ��± = ��
 ± � ��#. Then the Hamiltonian becomes 

H = ℎ&2 − h � �����


��� − 	4 �(��� − ��)
��� (����� + ����) 

+ 	4 exp,��&-. (�� − �)(��� + ��) 

Here &- = ∑ �����  is the total fermion number in the 

system. Due to the spin coupling, the total fermion number is 

not conserved in the fermion model. The presence of the last 

term makes the resulting Hamiltonian not a periodic one. In 

this paper, we only consider the entanglement entropy of the 

ground state which has even number of fermions. Therefore 

at zero temperature, we have exp (��&-) = 1 , which 

corresponds to the anti-periodic boundary condition. 

The Hamiltonian can be cast into a form as a BCS 

superconductor 

H = ℎ&2 + � 1− 	4 (�������+����� ��) − ℎ�����


��� + 	4 (������+����� ���)2 

with anti-periodic boundary condition ��� = �� . Making 

the Fourier transformation by 

�� = � �33 exp(�45) 

where 4 takes the following values 

4 ∈ 7± �& , ± 3�& , ⋯ , ± (& − 1)�& : 

The Hamiltonian becomes 

H = ℎ&2 + � 1;3(�3��3+��3� ��3)3<= + � 	2 sin 4 ��3�3−� sin 4 �3���3� 2 

with ;3 = − A� cos 4 − ℎ. 

It can be diagonalized by the Bogoliubov transformation as 

D �3��3� E = F G3 H3−H3∗ G3J D K3K�3� E 

Here we assume that G3 is real and H3 is complex. Then 

we find 
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G3 = LM3 + ;32M3  H3 = � sgn 4LM3 − ;32M3  

Here we define sgn4 to be the sign of 4 and M3 to be 

the quasi-particle dispersion 

M3 = LD	2E� + ℎ� + 	ℎ cos 4 

One can see that the dispersion becomes gapless when ℎ = 	/2, which is the quantum critical point of transverse 

field Ising model. 

The ground state is defined by condition K3|PQ = 0 for 

all 4. It can be rewritten as a standard BCS ground state 

form as 

|PQ = S(G3 + H3�3���3� )3<= |0Q 
3. Entanglement Entropy in Real 

Space and Momentum Space 

By partitioning a system into two parts in real space, the 

entanglement entropy between the two parts can be defined 

and it has been studied in the literature [22]. After 

transforming the transverse field Ising model into a fermion 

system, the ground state also exhibits interesting features in 

momentum space and another entanglement entropy can be 

introduced. In this section, we perform a detailed study of 

these two types of entanglement entropies. 

3.1. Entanglement Entropy in Real Space 

By considering two complementary parts of the lattice in 

real space, the system is bipartite and we follow [16, 17] to 

derive its real-space entanglement entropy. By calling the 

two parts T  (with U sites) and V (with & − U sites), the 

reduced density matrix of T is WX = YVZ(W) where W is the 

density matrix of the whole system and the subscript of Tr 

means only the corresponding degrees of freedom are traced 

out. The entanglement entropy is then �[ = −YVX(WX ln WX). 

The Majorana fermion operators ����� = �(��� − ��) and ��� = (��� + ��) are introduced to simplify the derivation. 

The entanglement entropy between the two parts can be 

extracted from the correlation function ]�^��_ = `^� + �a^� 

where 

a = b Π= Π� ⋯ Π[��−Π� Π= ⋯ ⋮⋮ ⋮ ⋱ ⋮−Π[�� ⋯ ⋯ Π=
f , Πg = D 0 P(h)−P(−h) 0 E 

And the correlation function P(h) is given by 

P(h) = ℎ U(h) + 	2 U(h + 1), U(h) = 1& � cos 4M33  

The above correlation matrix is anti-symmetric and can be 

diagonalized as 

ai = jajk = S⊗ H^
[��
^�= F 0 1−1 0J 

Here 0 ≤ H^ ≤ 1. Then, we can define a new set of 2U 

Majorana operators �n^ = ∑ ĵ g �g�[g��  with the correlation 

matrix given by ]�n^�n�_ = `^� + �ai^� 
Here ĵ g is the matrix element of j. This is equivalent 

to a set of U decoupled fermions �̃^ = (�n�^�� + ��n��̂ )/2 

with the correlations 

]�̃^�̃�_ = 0, ]�̃�̂ �̃�_ = `^� 1 + H^2  

The entanglement entropy is the sum of the contributions 

from each independent fermion and is given by 

�[ = � p(1 + H^2 )[��
^�=  

where p(�) = −� ln � − (1 − �) ln(1 − �). 

3.2. Entanglement in Momentum Space 

On the other hand, the system exhibits a bipartite structure 

in momentum space as we will explain here. The ground 

state has a BCS-type structure and can be cast into a Schimdt 

decomposition [9]: 

|PQ = S(G3 + H3�3���3� )3<= |0Q 
= � � S (G3)��gq(H3)gq∑ gq�q

|h3Q⨂|h�3Q s
�=  

Here G3 and H3 are given above. We have define |h3 = 0Q = |0Q, |h3 = 1Q = �3�|0Q 
One can verify that the coefficients satisfy 

� t S (G3)��gq(H3)gq∑ gq�q
t�s

�= = S � |G3|�(��gq)|H3|�gq = 1�
gq�=3<=  

Due to this structure, the momentum space is bisected into 

regions with 4 > 0 and 4 < 0, which will be called A and B 

respectively. The reduced density matrix for A is defined as Ww = YVx|PQyP|, which is given by 
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Ww  � � � S )G3*�)��gq*)H3*�gq
∑ gq�q

|h3Qyh3| s
�=

 

A direct computation of the entanglement entropy from Ww can be quite complicated, but we can circumvent this 

difficulty by considering 

Trw)Wwg* �  � t S |G3|�)��gq*|H3|�gq
∑ gq�q

t
�s

�= � S � |G3|�)��gq*g|H3|�gqg�
gq�=3<=

 

The entanglement entropy in momentum space is then given by 

�w � �YVw)Wwln Ww* = � limg{�
||h YVw) Wwg* � �)|G3|� ln |G3|� + |H3|� ln |H3|�*

3<=  

4. Results and Discussions 

In Figure 1 we plot the two types of entanglement 

entropies of the transverse field Ising model ground state 

with PBC in real and momentum spaces. The fermion 

number constraint does not play a significant role in the 

ground state, so the results from different boundary 

conditions are essentially the same. For the real-space 

entanglement entropy, we bisect the system so that the 

subsystem size is U � &/2 (the black curve). This choice is 

to allow a fair comparison to the momentum-space 

entanglement entropy of the 4 u 0  states (the red line), 

which naturally bisects the system in momentum space. 

 

Figure 1. The entanglement entropies of the ground state from real-space 

partition, SL (black), and from momentum-space partition, SA (red), as 

functions of h/J. The subsystem size for SL is chosen as N/2, and here N = 20 

lattice sites for both cases. 

The real-space entanglement entropy has been shown to be 

proportional to the logarithm of the subsystem size at the 

critical point [23]. Moreover, it should diverge at the critical 

point in the thermodynamic limit. In a small system with & � 20 lattice sites, a sharp peak in the real-space 

entanglement entropy is already observable at % � 	/2. On 

the other hand, the momentum-space entanglement entropy 

evolves smoothly across the critical point. Away from the 

critical point, however, the two entanglement entropies show 

qualitatively similar behavior. The transverse field Ising 

model thus provides an interesting example of a quantum 

system supporting several types internal entanglement. From 

the results presented here, different entanglement may react 

to a critical point differently. 

Measurements of internal entanglement in many-body 

systems have advanced significantly with interesting 

experimental results [24], and the different types of 

entanglement entropy for the transverse field Ising model 

may find broader applications in other quantum systems. 
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