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Abstract 
Einstein showed that, the effect of gravitational field on a space-time is explained 
mathematically using Ricci tensor. Also, it is clear that the effect of electromagnetic filed 
on a space-time is explained with electromagnetic tensor which satisfies Maxwell's 
equations. In real physics world, both electromagnetic and gravitational fields exist in a 
space-time simultaneously. So, the space-time should be considered, simultaneously 
using two second rank tensors. In this manuscript, a new approach for writing a general 
field equation for both gravitation and electromagnetism in a four dimensional space-
time is proposed. As a result, a relationship between electromagnetism and gravitation is 
obtained. 

1. Introduction 

Since 1914, that Albert Einstein proposed a new and complete definition of gravitation, 
there have been several attempts to unify electromagnetism and gravitation, included 
Kaluza theory with the fifth dimension and some attempts in the domain of Quantum 
mechanics. But all of them were unsuccessful in unifying electromagnetism with 
gravitation. For example, some years after the suggestion of Kaluza theory, at 1939 
Einstein refused to accept his theory in a letter mentioning that, his research is frustrated: 
As no arbitrary constants occur in the equations, the theory would lead to 
electromagnetic and gravitation fields of the same order of magnitude. Therefore one 
would be unable to explain the empirical fact that the electrostatic force between two 
particles is so much stronger than the gravitational force. This means that a consistent 
theory of matter could not be based on these equations, [1]. 

Einstein, himself, tried to do this unification, as he said: It would be a great step 
forward to unify in a single picture the gravitational and electromagnetic fields, then 
there would be a worthy completion of the epoch of theoretical physics, [2]. 

Einstein was trying to unify these two fields in a theory based on fields and not 
particles, as it has been mentioned in his paper in 1935: A complete field theory knows 
only fields and not the concepts of particles and motions, [3]. Actually, Einstein wanted 
the fields to be absorbed in geometry and to formulate electromagnetism in geometry, 
like gravitation. But electromagnetism has not been absorbed in geometry in none of the 
previous theories. 

Einstein showed that, the effect of gravitational field on a space time is explained with 
a symmetric rank 2 tensor, namely Ricci tensor. In addition, it is known that, the effect of 
electromagnetic filed on a space-time is explained with a rank 2 antisymmetric tensor, 
which satisfies Maxwell's equations. 
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In real physics world, both electromagnetic and 

gravitational fields exist in a space-time simultaneously. 
Therefore, the space-time should be considered, 
simultaneously by two second rank tensors which one of 
them is symmetric and the other one is antisymmetric. But 
what is the relationship between these tensors and how can 
they be introduced in a single equation? In the following, a 
new way is proposed for writing a general field equation for 
gravitation and electromagnetism in a four dimensional 
space-time while considering the above mentioned tensors. 

2. Mathematical Background 

The class of totally antisymmetric tensors is an important 
class of tensors of type (0, s). This class contains covariant 
tensors with antisymmetric property in every pair of their 
arguments, i.e. 

1 1( ,..., ,..., ,..., ) ( ,..., ,..., ,..., )s sT X X X X T X X X Xµ υ υ µ= −  (1) 

for all pairs of indices µ  and υ  and for all X’s [4]. By 
applying the alternating operator A to a general tensor T of 
type (0,s), this kind of tensor can be formed. Applying 
operator A to T give the linear combination defined by 

1

1

1 1

,...,

1
( ,..., ) sgn( ,..., ) ( ,..., )

! s

s

s sAT X X T X X
s

υ υ
υ υ

υ υ= ∑     (2) 

where in this summation, 1( ,..., )sυ υ  are an even or an odd 

permutation of (1,…,s) integer numbers, and based on that, 

1sgn( ,..., ) 1sυ υ = ± , and equation (2) is to be valid for every 

1( ,..., )sX X . 

When T is totally antisymmetric, applying the A operator 
to it simply reproduces T. However, when s n〉 (the 
dimension of the vector space), applying the A operator to T 
reduces T to zero; simply put, there is no totally 
antisymmetric tensor of type (0, s) for s n〉 . 

Antisymmetric tensors of type (0,s) are called s-forms. 
Since they must vanish when any two of their arguments 
coincide, it follows that the dimension of the vector space for 

s-forms can be obtained using:
 

!

!( )!

n

s n s−
.  

This space is denoted by *s
pTΛ . 

By applying the A operator to the basis elements of the 

following tensor product, a basis for 
*s
pTΛ  can be obtained: 

1( ... )sA e e
υυ ⊗ ⊗                                (3) 

The resulting basis elements can be written as the exterior 

or the wedge product of the ,eυ s as the following: 

1 2 .... se e e
υυ υ∧ ∧ ∧  1 2( .... )sυ υ υ〉 〉 〉           (4) 

By extending the summation only over strictly descending 

sequences, a general s-form can be written as: 

1 2

1... ... s

s
e e e

υυ υ
υ υΩ = Ω ∧ ∧  1 2( .... )sυ υ υ〉 〉 〉        (5) 

Considering that interchanging a pair of indices is equal to 
interchanging the corresponding elements in the wedge 
product, it can be deduced that interchanging the elements in 
a wedge product must be accompanied by a change of sign:  

e e e eυ τ τ υ∧ = − ∧                               (6) 

The expression for an s-form in a local coordinate basis is: 

1

1... ... s

s
dx dx

υυ
υ υΩ = Ω ∧ ∧                          (7) 

To obtain a (p+q) form, the wedge product of any p-form 
1Ω  and a q-form 2Ω can be formed by the rule 

1 2 1 2( )AΩ ∧ Ω = Ω ⊗ Ω                             (8) 

which must accordingly vanish identically if ( )p q n+ 〉 . 

By definition, 

1 1

1 1

1 2 1 2
... ...( ... ) ( ... )p q

p q
e e e e

υ τυ τ
υ υ τ τΩ ∧ Ω = Ω ∧ ∧ ∧ Ω ∧ ∧  (9) 

where 1( ,..., )pυ υ  and 1( ,..., )qτ τ  are strictly descending 

sequences. Since each of the q basis elements 1 ,..., qe e
ττ  must 

go through p interchanges before 1 2Ω ∧ Ω  can be brought to 

the form required of 2 1Ω ∧Ω , consequently: 

1 1

1 1

1 2 2 1
... ...

2 1

( 1) ( ... ) ( ... )

( 1)

q p

q p

pq

pq

e e e e
τ υτ υ

τ τ υ υΩ ∧ Ω = − Ω ∧ ∧ ∧ Ω ∧ ∧

= − Ω ∧ Ω
 (10) 

If we choose a suitable coordinate, it will be seen that our 
electrogravity (EG) equations, will be appropriate for 
infinitely small four dimensional regions. Let x1, x2 and x3 be 
the space coordinates and x4 be the time coordinate in 
appropriate unit. Here the appropriate unit is the coordinate 
in which the time unit is chosen so that the light speed is 
equal unit (c=1) in the local coordinate. If a unit measure is 
chosen, the coordinates with a given orientation of the 
coordinates have direct physical meaning in the sense of the 
theory of relativity. In theory of relativity the following 
expression, has a value which is independent of the 
orientation of the local system of coordinates: 

2 2 2 2 2
1 2 3 4ds dx dx dx dx= − − − +                   (11) 

Let ds be the magnitude of linear element pertaining to points 
of the four-dimensional continuum in infinite proximity. To 
the mentioned linear element or to the two infinitely 
proximate point events, there are correspond definite 
differentials dx1, dx2, dx3, and dx4. In this system the dxυ  is 
represented here by definite linear homogeneous expression 
of the dxơ: 
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dx dxυ υσ σ
σ

α=∑                           (12) 

Inserting these expressions in above equation, we obtain:  

2ds g dx dxστ σ τ
τσ

=∑                         (13) 

where g στ  are functions of xσ . These are independent from 

the orientation and the state of motion of the local system of 
the coordinates. ds is independent of any particular choice of 
coordinates. 

If it is possible to choose the system of coordinate in the 
finite region in such a way that the gµν has constant values: 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

gµυ

− 
 − =
 −
 + 

                       (14) 

It will be seen that a free material point moves, relatively to 
this system, with uniform motion on a straight line. But if a 
new space-time coordinates x1, x2, x3 and x4, is chosen, the gµν 

in the new system will not be constant, but functions of space 
and time, and the motion of free material point will be a 
curvilinear motion. This motion must be interpreted as a 
motion under the influence of the EG field. So it can be 
found the occurrence of an EG field connected with the 

space-time variables of gµυ . So the gµυ  representing the 

EG field at the same time define the metrical properties of 
the space-time. 

Now a four-vector can be defined using gµυ . Let’s use the 

following metric for this purpose:  

2 2 2 2 2
tt rrds g dt g dr g d g dθθ ϕϕθ ϕ= − − − ,      (15) 

A four vector, hµ , can be defined using gµυ  as following: 

1 2 3 4( , , , )h h h h hµ =  where, 1 tth g= , 2 rrh g= , 

3h gθθ= , 4h gϕϕ=  or ( )h gµ µµ=        (16) 

As an example, for Schwarzschild metric:  

 
2 2 2 2 2 2 2 22 1

(1 ) sin
2

(1 )

m
ds dt dr r d r d

mr

r

θ θ ϕ= − − − −
−  (17) 

This four-vector will be: 

 

2 1
( 1 , , , sin )

2
1

m
h r r

r m

r

µ θ= −
−

           (18) 

And for any arbitrary metric like  

2 2
11 1 12 1 2 13 1 3 14 1 4

2
21 2 1 22 2 23 2 3 24 2 4

2
31 3 1 32 3 2 33 3 34 3 4

2
41 4 1 42 4 2 43 4 3 44 4

ds g dx g dx dx g dx dx g dx dx

g dx dx g dx g dx dx g dx dx

g dx dx g dx dx g dx g dx dx

g dx dx g dx dx g dx dx g dx

= + + + +

+ + + +

+ + + +

+ + +

   (19) 

The four-vector will be: 

11 22 33 44( , , , )h g g g gµ =                    (20) 

As g R Rατ µ µα
υστ υσ=  where Rµ

υστ  is the Riemann tensor, one 

can write:  

h R Rµα µα
α υσ υσα=                           (21) 

By contracting (21), twice, it is obtained: R Rµα
υµα υ= , 

where we call curvature four vector to Rυ . Now to find the 

geometrical form of the antisymmetric tensor, which was 
mentioned in introduction, and its relationship with 

gravitational geometry, we define Sµυ  using the following 

wedge product: 

S R hµυ µ υ= ∧                             (22) 

where Sµυ  is an antisymmetric tensor. Now the EG tensor 

can be defined as following: 

S
S S h R

x

µυ τ τ
µσ τυ συ µτ µ συ

σ

∂
− Γ − Γ +

∂
                (23) 

where Rσυ  is the Ricci tensor. 

3. The EG Field Equations in the 

Absence of Matter 

The mathematical importance of the above mentioned EG 
tensor is that, if there is a coordinate system with reference to 
which the gµυ are constant ( 0K  coordinate), then all 

components of the EG tensor will vanish. If any new system 
of coordinates ( 1K ), is chosen, in place of the original one 

( 0K ), the gµυ will not be constant, but in consequence of its 

tensor nature, the transformed components of the EG tensor 
will still vanish in the new system ( 1K ). Relatively to this 

system, all components of the EG tensor vanish in any other 
system of coordinates. Thus the required equations of the 
matter-free EG field in any case must be satisfied if all 
components of the EG tensor vanish. 

So using eq. 23, the equations of matter-free field are: 

0
S

S S h R
x

µυ τ τ
µσ τυ συ µτ µ συ

σ

∂
− Γ − Γ + =

∂
         (24) 

In approximation, for considering the electromagnetic field 
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behaviors, it is better to focus on microscopic scales. If some 
electric charges are placed in the media, it is clear that, in this 
scale the effects of gravitational field are so much smaller 
than electromagnetic field, so the gravitational field can be 
ignored here. As the existing mass (the mass of electric 
charges m ′ ) is very small ( 0m ′ → ), then 0Tυσ →  where 

Tυσ  is the energy-momentum tensor, thus according to the 

Einstein field equation: 0Rσυ →  and expression (23) turns 

into: 

S
S S

x

µυ τ τ
µσ τυ συ µτ

σ

∂
− Γ − Γ

∂
                    (25) 

Using 25, in addition, the two following tensors can be 
written: 

S
S S

x

τ τυσ
µυ τσ µσ υτ

µ

∂
− Γ − Γ

∂                     (26) 

S
S S

x

σµ τ τ
υσ τµ υµ στ

ν

∂
− Γ − Γ

∂
                    (27) 

From eq. 24, it is seen that all components of the EG 
tensor vanished, so the summation of the above 3 tensors (25, 
26 and 27) must be vanished also. Now adding 25, 26 and 27, 
it is obtained: 

0

S SS
S S

x x x

S S S S

µυ σµ τ τυσ
µσ τυ συ µτ

σ µ υ
τ τ τ τ

µυ τσ µσ υτ υσ τµ υµ στ

∂ ∂∂
+ + − Γ − Γ −

∂ ∂ ∂

Γ − Γ − Γ − Γ =
      (28)  

and using S Sµυ υµ= −  in equation (28):  

0
S SS

x x x

µυ σµυσ

σ µ υ

∂ ∂∂
+ + =

∂ ∂ ∂
                 (29) 

4. The General Form of the EG Field 

Equations 

The field equations (eq. 24), which are obtained for matter 
free space-time, are to be compared with the field equation 

2 0ϕ∇ =  of Newton’s theory or 0Rµυ =  of Einstein gravity 

field equations in vacuum. We require the equation 

corresponding to Poisson’s equation: 2 4kϕ πρ∇ =  or 

1

2
R g R kTµυ µυ µυ− = −               (30) 

of Einstein general form of the gravitational field equation. 
For this purpose Tµυσ is defined as following: 

( )T g kT k T hα α
µυσ αυ σ σ µ′ ′= +                  (31) 

Where k and k′ are two constants related to the gravity and 

electromagnetism respectively, and 

T g T α
υσ αυ σ=                                 (32) 

is the energy-momentum tensor and T α
σ′  is the 

electromagnetic energy tensor. Thus, instead of eq. 24 we 
write: 

1

2

S
S S h R g h R T

x

µυ τ τ
µσ τυ συ µτ µ συ συ µ µυσ

σ

∂
− Γ − Γ + − = −

∂
 (33) 

Therefore equation (33) is the required general form of the 
EG field equations. 

Equation (33) in its special forms easily gives us the 
general form of the Einstein field equations in general 
relativity and all Maxwell’s equations as following.  

As Einstein has mentioned in his paper, (The Foundation 
of the General Theory of Relativity), The Christoffel symbols 
are used as the field components of gravitation in general 
relativity. So, in the absence of matter, by approximation, if 

the gravitational field is very small, then: 0τ
συΓ → , and 

according to the Einstein vacuum equation: 0Rσυ → . For 

example, it can be reached to this approximation in a region 
without any matter unless some electrical charges, like 
electron, that have a very small mass. So in the mentioned 
approximation, eq. 33 turns into: 

S
T

x

µυ
µυσ

σ

∂
= −

∂
                               (34) 

Let’s suppose that, we are working in a region that the 

total electric charge density of the area is qρ  and the current 

density is ij . In one special case, we suppose that all 

components of Tµνơ are zero except the four components of 

4 4T υ . Now a 4_vector 4 4T υ  can be defined as: 

4 4 1 2 3( , , , )qT k j j j jυ υρ= =                  (35) 

Now from eqs. 34 and 35: 

1 2 3( , , , )q

S S
k j j j j j

x x

µυ µυ
υ υ

µ µ
ρ

∂ ∂
= − = ⇒ =

∂ ∂
      (36) 

where Sµν is an antisymmetric tensor. 

Therefore, from eqs. 29 and 36, on identifying Sµυ with 

the electromagnetic tensor Fµυ , one will recognize eqs. 29 

and 36 as the Maxwell’s equations. Therefore, Sµυ can be 

identified as the electromagnetic tensor ( Fµυ ). 

Moreover, the equation 33 in its special form easily gives 
us the general form of the Einstein field equations for 
gravitation. 

5. Conclusion 

In this manuscript, a unified field equation (eq. 33), for 
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both electromagnetism and gravity (Electrogravity field 
equation) is presented. From general relativity it is well-
known that, the Christoffel symbols are considered as the 
field components of gravitation. So, in this research, it has 
been found a relationship between the gravitation and 

electromagnetism. We have found Fαβ  in terms of 
τ
µυΓ  as 

following: 

( )k k
k kF g h h

x x

τ τ
µυ µτµυ τ τ

αβ α τ µυ υ µτ β
τ υ

∂Γ ∂Γ
= − − Γ Γ + Γ Γ ∧

∂ ∂
  (37) 
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