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Abstract 
We study the vortex spatiotemporal optical solitons in graded-index kerr medium. We 

consider the propagation of a pulse in inhomogeneous dispersive nonlinear optical fibers 

and we investigate the possibility of forming bistable spatiotemporal vortex solitons. We 

solve the multidimensional nonlinear Schrödinger equation by using a variational 

approach. The results show that vortex bistable spatiotemporal solitons can be stabilized 

under certain conditions. 

1. Introduction 

The existence of soliton waves for the first time in 1834 by an engineer named Scott 

Russell was reported. He was the designer of small ships. He observed waves in the 

Union shallow channel that the long journey had maintained that were later called 

solitons [1]. The first mathematical answer for solitons waves from solving of Kortweg-

de vries (KDV) equation was obtained in 1964 by Zabusky and Kruskal [2]. It should be 

noted that this equation has a major application in plasma. Later in 1973, Tappert 

discovered nonlinear Schrödinger equation (NLS) [3]. Hasagawa and Tappert can be find 

answers for this equation. Later, Mollenauer observed solitons in the Optical fiber for the 

first time in 1980 [4]. 

Studies shown that the solitons as information carriers in optical fibers cause data is 

transferred with better quality. Therefore the communication optical systems based on 

studying of solitons are important. Today, we try to have the communication systems 

based on optics and the science of photonics searching for ways to replace electronic 

circuits to all optical circuits [5]. So it is the importance of studying solitons more than 

ever and in this regard optical vortex solitons for all digital logic have been useful [6-7]. 

In a light wave, the phase singularity is known to form an optical vortex: The energy 

flow rotates around the vortex core in a given direction; at the center, the velocity of this 

rotation would be infinite and thus the light intensity must vanish. The study of optical 

vortex is important from the viewpoint of the fundamental and applied physics. The 

unique nature of vortex fields is expected to lead to applications in many areas that 

include optical data storage, distribution, and processing and also optical trapping of 

particles in a vortex field [8]. 

In physics, wave propagation is traditionally analyzed by means of regular solutions of 

wave equations. However, solutions of wave equations in two and three dimensions 

often possess singularities, that is, points or lines in space at which or change abruptly 

[8]. For example, at the point of phase singularity, the phase of the wave is undefined 

and wave intensity vanishes. Waves that possess a phase singularity and a rotational flow  
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around the singular point are called vortices. They can be 

found in the physical systems of different nature and scale, 

ranging from water whirlpools and atmospheric tornadoes to 

quantized vortices in super fluids and quantized lines of 

magnetic flux in superconductors [9]. They may be useful for 

creating an optical rotary switch based on the concept of 

vortex solitons [10-11]. 

When a pulse traveling from a medium the dispersion and 

diffraction effects affect the pulse propagation. These 

phenomena may be compensated with the self-focusing and self-

phase modulation respectively. In this case the pulse will 

propagate without change. The pulses that their shape remains 

intact in time or in one space dimension so called temporal or 

spatial solitons respectively [12]. If the shape of the pulses 

simultaneously in time and space remain constant well known as 

spatiotemporal solitons [13]. If the input pulse contains vortex 

we will also have the vortex solitons [10]. Vortex solitons are 

extending of a special type of soliton (dark solitons) in two-

dimensional space. Optical vortex solitons in a nonlinear 

medium, firstly in 1992, using self-defocusing nonlinearity were 

experimentally observed. Few years later were studied by Prof. 

Yuri. Kivshar and Luther. Davies again [10]. 

2. Theory and Formalism 

We consider the propagation of a pulse in the medium with 

Kerr nonlinearity unlike the studied cases in order to study the 

optical vortex solitons in a nonlinear medium such as fiber. We 

analyze the possibility of forming the vortex spatiotemporal 

optical solitons in graded index Kerr medium, for which the 

refractive index is of the form 

22 2
0 1 2( . ) ( ) ( ) ,n r n n x y n Eω ω= + + +                (1) 

Where the homogeneous part 0 ( )n ω  takes into account 

chromatic dispersion, 2n is the nonlinear parameter responsible 

for self-focusing or self-defocusing, and 1n  governs the 

change in refractive index in the transverse dimensions x and 

y. Light is assumed to propagate along the z axis. The medium 

can be guiding 1 0n >  or anti-guiding 1 0n < . 

Our analysis begins with Maxwell’s equation, supplemented 

by equation (1). We introduce the envelope ( , )A r t′ of the 

electric field oscillating at the frequency  0ω  as 

0 0

1
ˆ( , ) ( , ) exp[i( )] . .

2
E r t eA r t z t c cβ ω′= − +           (2) 

Using a standard procedure and making the paraxial and the 

slowly varying envelope approximations, we obtain the 

following equation for the envelope of the electric field, 

( , )A r t′ : 

2
22 22

1 1 0 2 02
0

1
( ) 0,

2 2

A A A
i A n k r A n k A A

z t t

ββ
β ⊥

′ ′ ′∂ ∂ ∂ ′ ′ ′ ′+ − + ∇ + + =
∂ ∂ ∂

                                     (3) 

where 0 0 0 0( )n kβ ω= , 
01 (d / d )ω ωβ β ω =′= , and 

0

2 2
2 (d / d )ω ωβ β ω =′= , with 0 0( ) /n cβ ω ω′ = , and  

0 0 /k cω= . The gradient operator ⊥∇ , also acts on transverse 

coordinates. To normalize equation (3), we introduce a 

transverse length scale 
1/4

0 0 1 0(2 )h k n β −= and scale the 

transverse coordinates as 0( , ) ( , ) /X Y x y h= . Similarly, we 

introduce a longitudinal length scale using the diffraction 

length, 2
0 0dL hβ= , and scale longitudinal coordinate as 

/ dZ z L= . We also introduce a scaled local time 

1 0( ) /t z Tτ β= −  where 0 2 dT Lβ= . In terms of these 

normalized variables, equation (3) takes the form 

2
22 2

2

1
( ) 0,

2 2 2

U U s
i U r U U U

Z

δ υ
τ

∂ ∂+ ∇ + − + =
∂ ∂

     (4) 

where 0 2(X,Y,Z, ) ( , , , )dU k n L A x y z tτ ′= , and the 

parameters 2( ) 1signδ β= = ± , 1( ) 1s sign n= = ± , and 

2( ) 1sign nυ = = ± , according as whether the medium has 

anomalous or normal group velocity dispersion (GVD), is 

guiding or anti-guiding, and is self-focusing or self-defocusing 

respectively. Corresponding lagrangian [10] 

2
2 2 4* 21

Im
2 2 2 2

U U s
L U U r U U

z

δ υ
τ

∂ ∂= − < > + < ∇ + + −
∂ ∂

(5) 

To describe the stationary solutions carrying orbital 

momentum or vortex optical solitons, we adopt the following 

ansatz. 

2
2 2 m 2

2

r
( , , , ) / 2 ! sech( / ) r exp( ( )),

2

mU X Y Z m a w w i m r
a

τ ε π τ θ α βτ φ+= − + + + +                             (6) 

here 
2

Uε ≡< > , ( ), ( )Z Zα β  is the wave front curvature and

( )Zφ is the free phase. We introduce the cylindrical 

coordinates in the transverse plane, 
2

2r X Y= +  and 

1tan Y/ Xθ −= , we also introduce m defined by the circulation 

of the phase gradient around the singularity is an integer so 

called topological charge. 

Applying standard variational approach [14] we obtain the 
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first pair of equations, / 2d dZω βδω=
 
and / 2da dZ aα= . 

Using this result, the other variational equations (not shown), 

can be reduced, after some algebra, to the set of two coupled 

equations for the transverse width a and the pulse duration w, 

2

2 3 3

1 2
( , ),

3 ( 1)

d a
sa I a

dZ a m a

υε ω
ω

= − + − ≡
+
ɶ

       (7) 

2

2 2 3 2 2

4 1
( ) ( , ),

d
J a

dZ a

ω υδε ω
π ω ω

= − ≡
ɶ

            (8) 

here 2 2 2(2 )!/ 2 ( !)mm mε ε π+=ɶ . The first term on the right 

hand sides of equations (7) and (8) represent the diffraction 

and dispersion, respectively, while the last term, proportional 

to the pulse energy, show the contribution of nonlinearity. 

3. Discussion and Results 

Soliton solutions a0 and w0 can be found in the stationary limit 

of equations (7) and (8) with left-hand sides vanishing. When 

s=0 in equation (4), the transversely localized solutions, 

0a < ∞ , exit for 1υ = +  only, while for s=1 the field is trapped 

in the waveguide irrespectively of the sign ofυ . In particular, for

0ε = , the linear guided mode with a0=1 appears as the cw 

solution with 0ω = ∞ . In contrast, the soliton solution pulses of 

final width, 0ω < ∞ , exist only if 1δυ = + . We obtain 

2
0 0 /aω δυε= ɶ  and the solution is given by the positive roots of 

3 0,sa a γ′ ′− + =                                 (9) 

here 2
0a a′ =  and 22 / 3( 1)mγ δε= +ɶ . For s=0, the so-called 

“spinning light bullets” [15] appear as the only stationary with

1δ υ= = +  and 2 2
0 2 / 3( 1)a mε= +ɶ . For s=1 the cubic 

polynomial equation (14) has no positive solutions for 

2 / 3 3γ > , and the first solution, 2
0 1/ 3a = , appears at 

2 / 3 3γ = . Further decreasing the pulse energy, 0 2 / 3 3γ< < , 

bring two solitons, i.e., the solliton became bistable. Then, 

passing through the linear guided mode at 0γ =  and inverting 

the sign of nonlinearity, 0γ < , we obtain single solution. 

 

Figure 1. The profile of the vortex spatiotemporal optical solitons versus 

radius coordinate for different topological charges. 

 
Figure 2. The pulse duration versus the energy for different topological 

charges in self-focusing medium 1δ υ= = + . 

 
Figure 3. The spatial width versus the energy for different topological 

charges in self-focusing medium 1δ υ= = + . 

Figure 1 shows the vortex spatiotemporal optical solitons 

versus radius coordinate of studied medium for example an 

optical fiber for the different topological charges (m). For 

one of the topological charges, By decreasing  radius 

coordinate r, the intensity of the vortex spatiotemporal optical 

solitons decreased and limit zero in r=0 which is 

corresponding to the phase singularity and the vortex 

spatiotemporal optical soliton core, as it is shown from figure 

1. Also it is clearly shown in this figure, the intensity 

distribution similar to donut as same as optical vortex 

solitons for one of the topological charges. It can be observed 

that, for the higher order of m, the intensity of vortex 

spatiotemporal optical soliton increased. 

We plot in figure 2 the change of the pulse duration versus 

the pulse energy for different order of topological charges 

(m). It is obvious that the threshold of the energy of pulse 

increasing by increasing of the order of topological charges. 

Also, the pulse duration decreasing with increasing to the 

energy of pulse for given order of topological charge. Figure 

3 shows the pulse width versus the pulse energy for different 

order of topological charges. As in figure 3 can be seen by 
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taking each of the topological charge, for the characteristic 

energy pulse two answers for pulse width. We have included 

the concept of bistable vortex spatiotemporal optical solitons 

in nonlinear self-focusing kerr medium. 

4. Conclusion 

We assume the propagation of a pulse in the graded index 

medium with Kerr nonlinearity in order to study the optical 

vortex solitons in a nonlinear fiber unlike the studied cases. 

We study the vortex spatiotemporal optical solitons in 

nonlinear media and analyze the possibility of forming the 

optical vortex solitons in such media. We see forming the 

optical vortex solitons from the profile of the electric field of 

incident pulse versus radius coordinate of the graded index 

fiber with Kerr nonlinearity. We consider the multi-

dimensional nonlinear Schrödinger equation and we solve 

this equation by variational method. The result shown that 

formation of bistable vortex spatiotemporal optical solitons 

in self-focusing medium depending on the amount of pulse 

energy. So that, there are two values for pulse width in a 

specified amount of pulse energy for each of topological 

charge. 
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