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Abstract 
The phenomenon of magnetic catalysis of chiral symmetry breaking in the quantum 

chromodynamic theory in the framework of logarithmic quark sigma model is studied. 

Thermodynamic properties are calculated in the mean-field approximation such as the 

pressure, the entropy density, the energy density, and the measure interaction. The 

pressure, the entropy density, and the energy density increase with increasing 

temperature and/or an external magnetic field. The critical temperature increases with 

increasing an external magnetic field. In addition, the chiral phase transition is crossover 

in the presence of an external magnetic field at absent of baryonic chemical potential 

when explicit symmetry breaking is included. A comparison is presented with the 

original sigma model and other works. A conclusion indicates that the logarithmic quark 

model enhances the magnetic catalysis phenomenon. 

1. Introduction 

The study of the influence of an external magnetic fields on the fundamental 

properties of quantum chromodynamic (QCD) theory such as the confinement of quark 

and gluons at low energy and asymptotic freedom at high energy is still a matter of great 

theoretical and experimental [ ]1 . The transition from composite objects to colored 

quarks and gluons has several characteristics of both theoretical and phenomenological 

relevance. One such characteristic is the equation of state which is the fundamental 

relation encoding the thermodynamic properties of the system [ ]1 4− . So far, most 

estimates have been carried out at vanishing chemical potential with the aid of effective 

theories such as the linear sigma model (LSM [ ]5 and the Numbu-Jona-Lasinio (NJL) 

model [ ]6,7 in the mean field approximation. 

The linear sigma model exhibits many of global symmetries of QCD theory. The 

model was originally introduced by Gell-Mann and Levy [ ]8  with the purpose of 

describing pion-nucleon interactions. During the last years an impressive amount of 

work has been done with this model. The idea is to consider it as an effective low energy 

approach for QCD theory that the model has some aspects of QCD theory such as the 

chiral symmetry. Thus, the model is successfully to describe the most of hadron 

properties at low energy such as in Refs. [ ]5,9,10 . Some observables that are calculated 

in this model are conflict with experimental data. So researchers interest to modify this 

model to provide a good description of hadron properties such as in Refs. [ ]11 15 .−  
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In Ref. [ ]16 ,  the authors have modified the linear sigma 

model by including the logarithmic mesonic potential and 

study its effect on the phase transition at finite temperature. 

In addition, the comparison with other models is done. On 

the same hand, the logarithmic sigma model successfully 

describes nucleon properties at finite temperature and 

chemical potential [ ]17 . 

To continue the investigation that started in Ref. [ ]18 . In 

this paper, we investigate the effect of external magnetic field 

on the thermodynamic properties in the framework of 

logarithmic quark sigma model at finite temperature and 

chemical potential. So for no attempts have done to 

investigate the thermodynamic properties in the framework 

of the logarithmic sigma model. 

This paper is organized as follows: The original sigma 

model is briefly presented in Sec. 2. Next, the effective 

logarithmic mesonic potential in the presence of external 

magnetic field is presented in Sec. 3. The results are 

discussed and are compared with other works in Secs. 4 and 

5, respectively. Finally, the summary and conclusion are 

presented in Sec. 6. 

2. The Chiral Sigma Model with 

Original Effective Potential 

The interactions of quarks via the exchange of σ − and 

π - meson fields are given by the Lagrangian density [5]  as 

follows: 

( ) ( ) ( )5 1

1
. . ( , ),

2
L r i g i Uµ µ µ

µ µ µγ σ σ σ γ σ π= Ψ ∂ Ψ + ∂ ∂ + ∂ ∂ + Ψ + Ψ −π π τ π                     (1) 

with 

( )
2 2

2 2 2 2
1( , ) ,

4
U m fπ π

λσ π σ ν σ= + − +π       (2) 

where ( ),U σ π  is the meson-meson interaction potential 

and ,σΨ  and π  are the quark, sigma, and pion fields, 

respectively. In the mean-field approximation, the meson 

fields are treated as time-independent classical fields. This 

means that we replace the power and products of the meson 

fields by corresponding powers and the products of their 

expectation values. The meson-meson interactions in Eq. (2) 

lead to hidden chiral (2) (2)SU SU×  symmetry with ( )rσ  

taking on a vacuum expectation value 

,fπσ = −                    (3) 

where 93fπ = MeV is the pion decay constant. The final 

term in Eq. (2) included to break the chiral symmetry 

explicitly. It leads to the partial conservation of axial-vector 

isospin current (PCAC). The parameters 2λ  and 2ν  can 

be expressed in terms of fπ , sigma and pion masses as, 

2 2
2

2
,
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f

σ π

π
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2
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2
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m
f π
πν

λ
= −                  (5) 

3. The Effective Logarithmic Potential 

in the Presence of Magnetic Field 

In this section, the logarithmic mesonic potential 2 ( , )U σ π  

is applied. In Eq. (6), the logarithmic potential is included 

with the external magnetic field at finite temperature and 

baryonic chemical potential [ ]2 as follows, 

2( , ) ( , ) ,eff Vaccum Matter MediumU U U U Uσ π σ π= + + +   (6) 

where 

( ) ( ) ( )
2 22

2 2 2 2 2 2 2
2 1 2 2

, log ,U m f
f

π π
π

σσ λ σ λ σ σ
 += − + + + +  
 

ππ π π                        (7) 

In Eq. 7, the logarithmic potential satisfies the chiral 

symmetry when 0mπ →  as well as in the original potential 

in Eq. 2. Spontaneous chiral symmetry breaking gives a 

nonzero vacuum expectation for σ  and the explicit chiral 

symmetry breaking term in Eq. 7 gives the pion its mass. 

fπσ = −                     (8) 

where 

2 2
2

1

7
,

12

m mσ πλ −
=                  (9) 

2 2
2
2 2

.
12

m m

f

σ π

π
λ −

=                 (10) 

For details, see Refs. [ ]17,18 . To include the external 

magnetic field in the present model, we follow Ref. [ ]2  by 

including the pure fermionic vacuum contribution in the free 
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potential energy. Since this model is renormalizable the usual 

procedure is to regularize divergent integrals using 

dimensional regularization and to subtract the ultra violet 

divergences. This procedure gives the following result 

4 2 2 2
2 2 2

u 2 2

3 ( )
( ) ( ln( )),

2(2 )

c f

Vac m

N N g g
U

σ πσ π
π

+= + −
Λ

 (11) 

where 3cN =  and 2fN =  are color and flavor degrees of 

freedom, respectively and Λ  is mass scale, 

2

2 (1,0) 2
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( ) [ ( 1, ) ( ) ln ]

2 42

d
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f u

xN
U q B x x x xζ
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In Eq. 12, we have used 
2 2 2( )

(2 )f

g
f q B

x
σ π+=  and 

( , )(1,0)
1( 1, ) |

fd z x

f zdz
x

ζζ =−− =  that represents the Riemann-Hurwitz function, 

and also fq  is the absolute value of quark electric charge in the external magnetic field with intense B . 
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where 
2 2

, ( ) 2P k z fE B P k q B M= + + , M  is the effective 

self-consistent quark mass and µ  is baryonic chemical 

potential. 

4. Discussion of Results 

In this section, the effective potential of the logarithmic 

sigma model is studied. For this purpose, the effective 

potential is numerically calculated in Eq. (6). The parameters 

of the present model are the coupling constant g and the 

sigma mass mσ . The choice of free parameters of g and 

mσ  based on Ref. [ ]2 .  The parameters are usually chosen 

so that the chiral symmetry is spontaneously broken in the 

vacuum and the expectation values of the meson fields. In 

this work, two different sets of parameters are considered in 

order to get high and a low value for sigma mass. The first 

set is given by 16.48Λ = MeV which yields 138mπ =  

MeV and 600mσ =  MeV. The second set as the first, 

yielding 400mσ =  MeV. The quantities such as the 

dimensionless of pressure 
4

P

T
, the dimensionless energy 

density, 
4T

En  and the dimensionless entropy density 
3

S

T
 are 

calculated. These quantities can be readily obtained by the 

effective potential that defines in Eq. ( )6 , gives the negative 

pressure ( , )eff nU Pσ π = − . Then the net quark number 

density is obtained from ndP

dµρ = , and the entropy density 

from ndP

dT
s =

 
while the energy density is 

n nE P TS µρ= − + + . These quantities are displayed in 

Figures (1, 2, 3, 4, 5, and 6). First of all, one observes that the 

quantities are calculated at zero and finite strong magnetic 

field in the two cases at vanishing of chemical potential and 

non-vanishing of chemical potential. 

 

Figure 1. The dimensionless pressure density is plotted as a function of 

temperature at µ=0 and µ=0.1 GeV at vanishing magnetic field. 

In Figure 1, the dimensionless pressure density is plotted 

as a function of temperature at vanishing of magnetic field

( )B . At vanishing of chemical potential ( 0)µ = , the 

pressure increases with increasing temperature. The behavior 

is good qualitative agreement with recent lattice calculation 

in Ref. [ ]1 , in which the pressure increases with increasing 

temperature. Also, the behavior of pressure is in qualitative 

agreement with the original sigma model and the NJL model 

[ ]2 . On the same hand, the behavior of pressure is qualitative 

agreement work of Tawfik et al. [ ]3 ,  in which the hadron 

gas and the Polyakov linear sigma models are applied in their 

calculations. At 0µ ≠ , we note that the curve shifts to 

higher values, in particular, at higher-values of temperature. 
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In Figure 2, the effect of strong magnetic field is studied on 

the behavior of pressure, then one chooses magnetic field 

0.2eB =  GeV 2
 as in Refs. [ ]1, 2,3 . The qualitative 

agreement is noted between Figure 1 represents the case of 

vanishing magnetic field and Figure 2 represents the presence 

of strong magnetic field. The effect of magnetic field appears 

on the pressure value that the pressure increases strongly at 

higher-values of temperature. This behavior is qualitative 

agreement with Refs. [ ]1, 2,3 . 

 

Figure 2. The dimensionless pressure density is plotted as a function of 

temperature for at µ=0 and µ=0.1 GeV at strong magnetic field eB = 0.4 

GeV². 

 

Figure 3. The dimensionless energy density is plotted as a function of 

temperature for at µ=0 and µ=0.2 GeV at vanishing magnetic field. 

 

Figure 4. The dimensionless energy density is plotted as a function of 

temperature at µ=0 and µ=0.2 GeV at non-vanishing magnetic field eB =0.4 

GeV². 

In Figure 3, the dimensionless energy density is plotted as 

a function of temperature. The energy density increases with 

increasing temperature at vanishing and nonvanishing 

chemical potential. At vanishing of chemical potential 

( 0)µ = , the energy density increases with increasing 

temperature up to 0.225 GeV and then slowly decreases at 

larger values of temperature above critical temperature due to 

taking ratio 
4

nE

T
. By increasing magnetic field as in Figure 4, 

the behavior of the energy density is a qualitative agreement 

with the behavior at vanishing magnetic field as in Figure 3. 

The qualitative agreement with Refs. [ ]1, 2,3 is noted. 

 

Figure 5. The dimensionless entropy density is plotted as a function of 

temperature for at µ=0 and µ=0.1 GeV at vanishing magnetic field. 
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Figure 6. The dimensionless entropy density is plotted as a function of 

temperature for at µ=0 and µ=0.1 GeV at magnetic field eB = 0.4 GeV². 

In Figure 5, the dimensionless entropy density is plotted as 

a function of temperature. One notes that the entropy density 

increases with increasing temperature at vanishing and 

nonvanishing chemical potential. The effect of temperature 

appears on entropy density at higher values of temperatures. 

By increasing magnetic field as in Figure 6, the behavior of 

the entropy density is a qualitative agreement with the 

behavior at vanishing magnetic field as in Figure 5. Also, the 

entropy density decreases at higher temperature above 

critical temperature 0.2cT =  GeV. This due to taking ratio 

3

S

T
 

 

Figure 7. The dimensionless interaction measure is plotted as a function of 

temperature for different values of magnetic field eB = 0.2, 0.3, and 0.4 

GeV² are arranged from down to up. 

 

Figure 8. Critical of temperature is plotted as a function of magnetic field at 

vanishing of baryonic chemical potential. 

In Figure 7, the measure interaction is plotted as a function 

of temperature. The measure interaction increases with 

increasing temperature up to the top curve and then gradually 

decreases with increasing temperature. By increasing 

magnetic field, we note that the top of each curve shifts to the 

direction of increasing temperature. This behavior is an 

agreement with original sigma model and the NJL model 

[ ]2 . This behavior is interpreted as crossover phase 

transition. In Figure 8, the critical temperature increases with 

increasing magnetic field. Thus, the logarithmic quark 

enhances magnetic catalysis as well as in the original sigma 

model and the NJL model [ ]2 . By including Polyakov loop 

to take confinement into account. The results show that cT  

related to deconfinment also increases with increasing 

magnetic field as in [ ]26 . On other hand, the first lattice 

attempt to solve the problem taken two quark flavors and 

high values of pion mass ( 200 400mπ = − MeV) confirming 

that cT  increasing with increasing magnetic field [ ]27 . 

5. Summary and Conclusion 

In this work, the effective logarithmic potential have been 

employed to study thermodynamic properties in the presence 

of magnetic field. So, the novelty in this work, 

thermodynamic properties is investigated in the framework 

of logarithmic quark sigma model. The present results are 

agreement with first lattice calculations as in Ref. [ ]27  and 

other models as in Refs. [ ]2,26 . In addition, the present 

calculations are carried out beyond the zero chemical 

potential which are not taken many recent works. The 

conclusion indicates that the logarithmic quark sigma model 

enhances magnetic catalysis at finite temperature and 
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chemical potential. 
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