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Abstract: Using molecular orbital approach, the third-order contribution tensor [G] has been calculated for the better 
knowledge of the [g] tensor of D4h complexes formed with d9

 ions. The results have been applied to the analysis of the [g] 
tensor of different D4h complexes, including the second-order contribution tensor [δg] coming out from the B2g and Eg bonding 
levels. The numerical values of GII, δgll and G┴, δg┴ indicate that, none of these tensors is negligible. 
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1. Introduction 

The experimental spin-Hamiltonian of d9 ions has 
generally been interpreted with the help of crystal field 
approach (CFA) [1]. In crystal field approach, the orbitals of 
the partly filled shell are supposed to be pure d orbitals and 
so the complex molecule is regarded as held by purely ionic 
forces. But some experimental facts [2–4] such as super 
hyperfine structure due to surrounding ions and the charge 
transfer bands in the optical absorption spectra can not be 
explained using the crystal field approach. Crystal field 
theory does not take into account the effect of interactions 
with the ligand electrons adequately. Moreover this theory is 
not fully applicable to those complexes which are 
characterized by strong interactions between the electronic 
orbitals of the central atom and ligands responsible for 
formation of molecular orbitals [5]. In molecular orbital 
(MO) approach, the structural unit for the wave function is 
the whole complex ion rather than single metal atom. In this 
approach, linear combination of atomic orbital (LCAO) [6] 
method is used to construct orbitals for the complex. This 
approach has proved most successful in explaining the 
complex hyperfine structure in the EPR spectra of covalently 
bonded metals [7]. 

However, for D4h complexes formed with a d9 ion, only the 
contributions arising from the second-order perturbation 
theory have been calculated till now using the MO approach. 
Comparing this second-order contribution with that found 

using the CFA, the basic hypothesis of this theory can be 
discussed in a reasonable way. It can be said that: (i) The 
reduction of the spin-orbit coefficient can be due to the 
covalency in the ground level B*

1g as well as in the B*
2g and 

E*
g levels. However only one reduced spin-orbit coefficient is 

required for interpreting the [g] tensor when the degree of 
covalency of these B*

2g and E*
g π-levels is small enough. (ii) 

The use of a reduced P coefficient for the experimental 
hyperfine tensor is not justified, even in the cases where only 
a small degree of covalency exists [8]. 

In order to improve the understanding of the [g] tensor of 
D4h complexes and its correlation with the optical absorption, 
we give here the calculation of the terms coming out from the 
third-order perturbation theory, using the MO approach. We 
were interested in knowing whether such terms contribute 
significantly to the [g] tensor and are reduced than the 
amount predicted by the theory based on the CFA [9, 10]. 

We apply this calculation to the D4h complexes, using the 
second- and third-order terms as well as the possible 
influences of the B2g and Eg bonding levels [11]. In the 
present paper the [g - go] tensor (go = 2.0023) is written as the 
sum of three tensors, [∆g], [G] and [δg]. The first two are the 
second- and third-order contributions respectively due to the 
admixture, via spin-orbit coupling of the B*

1g ground level to 
the B*

2g and E*
g antibonding levels; the third one is the 

second-order contribution coming out from the admixture of 
the ground level to the B2g and Eg bonding levels [12, 13, 14]. 
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2. Calculation of G Tensor for a D4h 

Complex 

 

Figure 1. The arrangement of local axis of the ligands of ML4 complexes 

with D4h symmetry. 

Eqs. (2) and (3) of [8] are applied here, to a D4h complex 
formed by a d9 ion placed in the middle of a square whose 
corners have four identical surrounding ligands (such as N-, 
O2-, etc) as shown in Figure 1, the valence shell of these ions 
being an np one. From an MO point of view the unpaired 
electron of these complexes is placed on the highest 
antibonding level, the B*

1g. In the present calculation we will 
only consider the contributions coming from the other 
antibonding levels, B*

2g and E*
g. The [G] tensor arises from 

the third-order contributions due to the mixture, via spin-
orbit coupling, of the B*

1g ground level to the B*
2g and E*

g 
antibonding levels. The orbitals can be written as: 

αi|di> - βi|φi> (i = 0, 1, 2)                         (1) 

where i = 0 refers to the ground level B1g*, and i = 1, i = 2 to 
B2g* and Eg* levels, respectively; |di> and |φi> are the 
appropriate d-function and the LCAO of the ligand ions, 

respectively. Due to symmetry considerations, the ns-np 
hybridization in ligand ions is allowed only in the B1g* level. 
Thus we can write: 

|φ0> = µ |φp> + (1- µ2)1/2|φs > (µ ≤1)              (2) 

The expressions of |φp>, |φs >, |φ1 > and |φ2> in terms of 
the atomic ns and np orbitals of the four ligand ions are 
obtained by the method of the group representation theory. 
All molecular orbitals considered are normalized. This 
provides the following relation: 

αi
2 + βi

2 - 2 αi βi Si = 0                            (3) 

between αi and βi. Here Si = <di|φ> is the group overlap 
integral. The spin-orbit operator used in the calculations has 
the form discussed in [8], where. 

T= 
4

0j

ξ
=
∑ (r j) Lj                                  (4) 

The index j = 0 refers to the central d9 ion and the index j = 
1- 4 to the surrounding ions. Lj is the angular momentum 
operator, when the origin of coordinates is the position of the 
ion j. In calculating the matrix elements of T, the matrix 
elements of ξ(rj) Lj between two atomic orbitals are neglected 
if either orbital does not belong to the ion j. The diagonal 
elements <do| ξ(r0) |d0> = ξ and <np1|ξ(r1)|npl> = ξL are taken 
as the free d9 ion and the free ligand ion spin-orbit 
coefficients, respectively. Both the assumptions depend on 
the fact that ξ(rj) is a function decreasing rapidly with 
distance from the position of the ion j and, hence, the major 
contribution to ξ (or to ξL) arises from regions practically 
unaffected by the chemical bonding. 

Taking into account all these considerations, the following 
expressions for the two components, GIl and G┴ of the [G] 
tensor are obtained [15, 16] 

( ) ( ) ( )2 22 2 2 2 2 4 2 2 2 2
11 1 2 0 1 2 1 2 2 0 2 2 0 2 0 2 24 / (1, 2) / (2, 2) /G K q q q K g qξ α α α ξ α α ξ α α= − ∆ ∆ − ∆ − ∆                           (5) 

( ) ( ) [ ] ( )2 22 2 2 2 2 2 2 2 2 2 2 4
0 1 0 1 1 1 2 0 1 2 1 2 2 2 0 0 2 2 0 2 2 2

1
2 / 2 / (1, 2) (1, 2) /

2
G g q q q K q K g q K qξ α α ξ α α α ξ α α α α⊥

 = − ∆ − ∆ ∆ − − ∆ − 
 

   (6) 

Where, 

0

0

1 ,i L
i

i i

q
c

β β ξ µ
α α ξ

= −  (i = 1, 2) c1 =2, c2 =√2           (7) 

2 1/20 0
0

0 0

1 [ (1 ) ]i
i i i

i i

K S c S V
c

β β β µ µ
α α α

 
= − − + − − 

 
    (8) 

1 2

1 2

(1, 2) 1
2

Lq
β β ξ

ξα α
= +                        (9) 

1 2 1 2
1 2

1 21 2

(1, 2) 1
2

K S S
β β β β

α αα α
= + − −                   (10) 

2
2

2

(2,2) 1 2K S
β
α

= −                               (11) 

1
1 1

xx
V R ns npδ

δ
=                                (12) 

Here ∆1 and ∆2 are the B*
2g→ B*

1g and E*
g → B*

1g optical 
transition energies, respectively and R is the central d9 ion- 
ligand distance. 

3. Calculation of [∆g] and [δg] 

Tensors for a D4h Complex 

An improved calculation of the [g] tensor, based on an MO 
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description, must consider not only the third-order 
contribution calculated above but also the second-order 
contribution due to the B2g and Eg bonding levels. The 
calculation of this contribution is quite similar to the second-
order contribution due to the B*

2g and E*
g antibonding levels 

[11, 17, 18]. 
The components of [∆g] and [δg] tensors can be written as: 

2 2
11 0 1 1 1

1

8
g K q

ξ α α∆ =
∆

; 
2 2
0 2 2 2

2

2
g K q

ξ α α⊥∆ =
∆

            (13) 

2 '2 ' '
11 0 1 1 1'

1

8
g K q

ξδ α α=
∆

; 
2 '2 ' '
0 2 2 2'

2

2
g K q

ξδ α α⊥ =
∆

           (14) 

Where, 

'
' 0
1 '

0

1 i L

i i

q
c

β β ξ µ
α α ξ

= +  (i =1, 2)                       (15) 

( )
' 1/2' 20 0

0 '
0 0

1 1i
i i i

i i

K S c S V
c

β β β µ µ
α αα

  = − + + − −    
   (16) 

∆'1 and ∆'2 are the B2g → B*
1g, and Eg →B*

1g, forbidden 
optical transitions. 

As discussed earlier [8], '
iq  and '

iK  are not reducing but 
increasing factors and give a more important contribution of 
the B2g and Eg bonding levels to the [g] tensor. 

4. Numerical Application to the Three 

D4h Complexes 

The values of MO coefficients, as well as of the other 
parameters, appearing in the present theory can be seen in 
Table 1. The values of the group overlap integrals are the 
same as those calculated for the value of R = 2.4 A0 from 
diatomic overlap integrals [17, 18]. 

Table 1. Numerical values of the parameters involved in the calculation of the [g] tensor of the [CuCl4]
2- D4h Complex. 

α0= 0.834 β0= 0.677 q1= 0.916 k1= 0.807 
α1=0.973 β1= 0.294 q2= 0.905 k2= 0.807 
α2= 0.982 β2= 0.235 q’1 = 2.146 k’1= 1.984 
α’1= 2.38 β’1 = 0.956 q’2 = 3.050 k’2= 2.628 
α’2= 1.93 β’2 = 0.974 q(1,2) = 1.036 k(1,2) = 1.024 
S0 = 0.136 S1=0.058 S2=0.041 V =1.85 

The values of the optical transitions involved are taken as, ∆1 = 1.17 eV and ∆2 =1.36 eV [13]. However, from the position of 
the three charge transfer absorption bands observed, we can reasonably take ∆1

’
 = ∆2

’ = 35000 cm-1 [14]. Table 2 gives the 
experimental g and R values for different D4h complexes. Table 3 shows the numerical values of each of three tensors 
considered. 

Table 2. The experimental g and R values for different D4h complexes. 

S.N. 
Reference Distance 

System 
Experimental g Value 

Reference 
R (A0) gx gy gz 

1. 2.26 Bis(L-asparaginato) zinc(II) 2.0341 2.0649 2.2390 [19] 
2. 2.32 Tris-sarcosine calcium chloride    [20] 
  Site I 2.0276 2.0517 2.4019  

  Site II 2.0231 2.0368 2.5294  
3. 2.27 Cadmium (II) formate dihydrate    [21] 
  Site I 2.0970 2.1166 2.2887  
  Site II 2.0843 2.1045 2.2742  

Table 3. The values of the components of three [∆g], [δg] and [G] tensors involved in the determination of [g] tensor of D4h complexes. 

S.N. 
Reference Distance System Component of [g] Tensor Ref. 

R (A0) G11  G⊥  g11∆  g⊥∆  gδ 11  gδ ⊥  g-g0 (g-g0)e 

1. 2.26 Bis(L-asparaginato) zinc(II)       [19] 
  -0.0240 -0.0167 0.3421 0.0739 0.0317 0.0098 0.1612 0.1103 
2. 2.32 Tris-sarcosine calcium chloride Site I       [20] 
  -0.0231 Site II -0.0153 0.3412 0.0735 0.0342 0.0084 0.1618 0.1581 
  -0.0241 -0.0154 0.3416 0.0687 0.0346 0.0095 0.1592 0.1941 
3. 2.27 Cadmium (II) formate dihydrate SiteI       [21] 
  -0.0229 Site II -0.0146 0.3354 0.0779 0.0353 0.0091 0.1642 0.1651 
  -0.0253 -0.0145 0.3471 0.0667 0.0356 0.0085 0.1596 0.1520 

e = experimental 

5. Discussion 

The [g-g0] tensor calculated using formulae (5), (6), (13) 
and (14) and the excitation energies obtained for crystal field 

and charge transfer transitions by optical absorption spectrum 
of various D4h complexes are given in Table 3. 

Different contributions to [g-g0] tensor are also given in 
Table 3. Comparison of theoretical and experimental [g-g0] 
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shows that the perturbative approach used for calculating the 
SH parameters gives satisfactory results. As seen in Table 3, 
even the contribution to [g-g0] tensor arising from charge 
transfer levels [δg] is not negligible. However, second order 
contribution from crystal field levels [∆g] is dominant. Also, 
the third order term [G] is negative. From these facts it is 
seen that no contribution can be neglected in any careful 
analysis of the [g] tensor of these D4h complexes. 

6. Conclusion 

The results of the present work show that the perturbative 
procedure for deriving the spin-Hamiltonian parameter g 
using MO coefficients is quite satisfactory for the present 
complexes. 
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