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Abstract 
In this paper, a new method based on � -Least Square Support Vector Machines 

(�-LSSVM’s) is developed for obtaining the solution of the ordinary differential equations 

in an analytical function form. The approximate solution procedure is based upon forming 

of support vector machines (SVM’s) whose parameters are adjusted to solve a quadratic 

programming problem. The details of the method are discussed, and the capabilities of the 

method are illustrated by solving some differential equations. The performance of the 

method and the accuracy of the results are evaluated by comparing with the available 

numerical and analytical solutions.  

1. Introduction 

We consider the m-th order linear ODE by initial conditions as follows:  

������� � ∑ 
�
��
��� ������������ � ����, � ∈ ��, ��              (1) 

������� � �� , � � 0,1, … . . . , � � 1                   (2) 

where ����, 
���� are the given functions, ��  is the given scalar and ������� denotes the 

i-th derivative of function y(t) with respect to �.  

Nowadays, Many of the problems in studies fields; including engineering, medical 

sciences and medicine can be applied to a set of differential equations (DE’s) through a 

process of mathematical modeling is reduced. Because in most cases it is not easy to get 

the exact solution of DE’s, so numerical methods should be applied. There are a lot of 

mathematical methods to solve DE’s. Most techniques offer a discrete solution such as 

finite difference (for example predictor-corrector, or Runge-Kutta methods) or a solution 

of limited differentiability (for example finite elements). These methods define a mesh 

(domain discretization) and functions are approximated locally ([1]-[2]).  

Recently, researchers proposed some new methods that were based on artificial neural 

network (ANN) models. The ANN methods in comparison with other numerical methods 

have more advantages. The solution of DE’s in ANN methods are differentiable and 

continuous ([3]-[5]). Lagaris et al. [3] used neural networks to solve ODE’s and PDE’s. 

They used multilayer perceptron in their network architecture. Malek et al. [4] proposed a 

novel hybrid method based on optimization techniques and neural networks methods for  
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the solution of high order ODE’s. They offered a new solution 

method for the approximated solution of high order ODE’s 

using innovative mathematical tools and neural-like systems 

of computation. Fasshauer [6] proposed a new unsupervised 

training method by using Radial Basis functions (RBF) to 

solve DE’s. The methods based on genetic programming have 

also been proposed as well as methods that induce the 

underlying differential equation from experimental data. The 

technique of genetic programming is an optimization process 

based on the evolution of a large number of candidate 

solutions through genetic operations such as replication, cross 

over and mutation ([7]-[9]).  

Recently Suykens and Mehrkanoon proposed 

approximating solutions to ODE’s and PDE’s using LSSVM’s 

model. Also, they are extended them approaches in 

approximate solution to linear time varying descriptor systems 

([13]-[14]).  

In this paper, we introduce a new method based on SVM’s 

for solving DE’s. SVM’s are very popular methods in machine 

learning which solving pattern recognition and function 

estimation problems ([10]-[12]). We will utilizing �-LSSVM 

[15] method for solving ODEs. In last section will show that 

our results have better accuracy and loss error. 

2. �-LSSVM for Regression 

We consider a given training set { � , ��}��"  with input data  � ∈ ℝ and output data�� ∈ ℝ. The regression problem is to 

estimate a model of the form �̄(�) = %. &(�) + (. The primal 

problem of �-LSSVM regression is follow:  

min	 	 12 ∥ % ∥/+ 021(2
�� 3�/ + 4�/) 

5. �. �� −%.&( �) − ( ≤ � + 3� ,          (3) 

−�� +%.&( �) + ( ≤ � + 4� 
According to [15], the dual problem of (3) is  

min	 	 1211(2
7�

2
�� 8� − 9�):87 − 97; <=: � ,  7; + >�70 ? + �1(2

�� 8� + 9�) −1��2
�� (8� − 9�) 

5. �. ∑ (2�� 8� − 9�) = 0,                                         (4) 

8� ≥ 0, 9� ≥ 0, � = 1,2, … , A 
where =( , �) = &( ). &(�) is a given positive definite function (kernel function). We use the following differential operators 

in next section which employed in [13]:  

BC� ≡ ECF�ECE�, 
G&(C)( )H. &(�)(�) = BC��&( ). &(�)� = BC��=( , �)�, 

B��=( , �)� = &()( ). &(�), 
B��=( , �)� = &( ). &()(�), 

B���=( , �)� = &( ). &(�) = =( , �), 
B�=( , �)� = &()( ). &()(�). 

3. Description of the Method 

To obtain a solution of (1) the collocation method is adopted which assumes a discretization of the interval ��, �� into a set of 

collocation points (training points)Δ = {� = � ≤ �/ ≤ �J ≤ ⋯ ≤ �" = �}. Let yM(�) = %. &(�) + ( denote the approximate 

solution to (1), with adjustable parameters % and (, the problem (1) is transformed to the following quadratic programming 

problem:  

min	 	 12 ∥ % ∥/+ 021("
��/ 3�/ + 4�/)	

s.t. %(&(�)(��) − ∑ 
N�N� (��)&(��N)(��)) − 
�(��)( − �(��) ≤ � + 3� , � = 2,3, … , P 

−%(&(�)(��) −1
N�
N� (��)&(��N)(��)) + 
�(��)( + �(��) 
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≤ � + 4�, � = 2,3, … , P 

%.&(�) + ( = �                  (5) 

%.&(��)(�) = �� , � = 2,3, … ,� 

In practice, the quadratic programming problem (5) is 

solved via its dual. 

Lemma: The solution to (5) is obtained by solving the 

following the quadratic programming problem: 

min	 12QRSQ + TQ 

5. �. UQ = 0,                                             (6) 

VQ ≤ 0 

where  

V = W−X"�×"� −X"�×"� 0"�×�0"�×"� −X"�×"� 0"�×�Z U = �
�(�)"�× 0"�× −[�×�, T = ��[ − �(�)"�× 2�["�× −��×� 
S = \]"�×"� 0"�×"� Ω"�×�0"�×"� 0"�×"� 0"�×�Ω�×"� 0�×"� Δ�×�

_ , Q = \9̀a_ 
where, [ = (1,1, … ,1) and [ = (1,0, … ,0). 

Proof: The Lagrangian of the constrained optimization problem (5) becomes 

b(%, (, 3, 4, 9, 8, a, a) = 12 ∥ % ∥/+ 021("
��/ 3�/ + 4�/) 

+19� c%(&(�)(��) −1
N�
N�

(��)&(��N)(��)d"
��/ − 
�(��)( − �(��) − � − 3�) 

+18� c−%(&(�)(��) −1
N�
N�

(��)&(��N)(��)d"
��/ + 
�(��)( + �(��) − � − 4�) 

−1a��
��/ �%. &(��)(�) − ��� − a(%. &(�) + ( − �) 

where 9�, 8� and a� for � = 2,3, … , P are Lagrange multipliers and 3� and 4� are slack variables. Then, optimality conditions 

are as follows, 

EbE% = 0 ⇒ % = 1("
��/ 8� − 9�)(&(�)(��) −1
N�

N� (��)&(��N)(��)) +1a��
�� &(��)(�) 

EbE( = 0 ⇒ 1("
��/ 8� − 9�)
�(��) − a = 0 

EbE3� = 0 ⇒ 3� = 9�0 , � = 2,… , P EbE4� = 0 ⇒ 4� = 8�0 , � = 2,… , P 

We are imposing `� = 8� − 9� and then dual of (6) are as follows:  

min	12 �1 	"
��/ 1	"

7�/ `� 7̀(�∇��=�(�� , �7) −1 	�
N� 
N(��)�∇��N� =�(��, �7) −1 	�

N� 
N(�7)�∇���N=�(��, �7) +1 	�
N� 1	�

N� �∇��N��N=�(�� , �7)) 
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+1	�
�� 1	"

7�/ a� 7̀(�∇7�� =�(�, �7) −1 	�
N� 
N(�7)�∇7���N=�(�, �7)) 

+1	"
��/ 1	�

7� `�a7(�∇�7�=�(�� , �) −1 	�
N� 
N(��)�∇��N7� =�(�� , �)) 

+1	�
�� 1	�

7� a�a7�∇��7�=�(�, �)� +1	"
��/ `�(g[� − �(��)) +1 	"

��/ 2g9� 
5. �. ∑ 	"��/ `�
�(��) − a = 0,                                      (7) 

`� + 9� ≥ 0, 9� ≥ 0, � = 2,… , P 

If using the following matrix form for problem (7), we can give the Dual problem (6), 

]�,7 = �B��=�:��, �7; −1
N�
N�

(��)�B��N� =�:��, �7; −1
N�
N� :�7;�B���N=�:��, �7; 

+11
N�
N�

�
N�

(��)
N:�7;GB��N��N=H:��, �7;, �, h = 2,… , P 

Ω,N = �BN�� =�:�, �7; −1
N�
N� :�7;GBN���N=H:�, �7;, h = 2,3, … , P 

Δ�7 = �B��7�=�(�, �), �, h = 1,… ,�. 

The obtained approximation solution is as follows,  

�M(�) = 1`�"
��/ c�B��=�(�� , �) −1
N�

N� (��)�B��N� =�(�� , �) d+1a7�
7� �B7�� =�(�, �) + ( 

4. Numerical Results 

In this section, we used the performance of the approach 

methods on two problems, first order and second order IVP. 

Therefore we solved two problems with �-LSSVM model and 

then compared by SVM and LSSVM models [13] to shows 

that which of them are better. For all the problems, the RBF 

kernel is used (=( , �) = exp	( − (l�m)non )). Also, we use the 

set of midpoints of training points (
(pqFpqrs)/ , � = 1,2, … , P − 1) 

as test point and compute the mean squared error (MSE) for 

the validation: 

tuv(w�) = �(w�) − �M(w�) 
MATLAB 2015a is used to implement the code and all 

computational were carried out on a windows 8 system with 

Intel Pentium- ULV, 1.8 GHz CPU and4.00 GB RAM.  

Example 1. Consider the following first order IVP [5]:  

�x(�) + 2�(�) = sin	( �), �(0) = 1, � ∈ �0,10� 
Exact solution of this example is  

�(�) = 65 exp	( − 2�) + 25 sin	( �) − 15 cos	( �) 

The approximate solution by the proposed � -LSSVM 

method are compared with the analytic solution; also we are 

compared numerical results of �-LSSVM, SVM and LSSVM 

methods with together where are shown in Table 1. In this 

example, we suppose ~ = 5 , 0 = 10�  and � = 10��  for 

different amounts P. The results of this example shows that �-LSSVM method for any P is the best method to relieve 

high accuracy and SVM model is not good; because, for P > 25 give to us the high error amounts and is not suitable. 

Also in Fig. 1 the error function �(�) − �M(�) for P = 	50 

and 100 is depicted which shows the solution is very accurate  

Table 1. The comparison of our proposed method with SVM and LSSVM 

methods for example 1. 

N Error SVM LSSVM �- LSSVM 

25 
MSE(Training) 1.18 × 10�� 8.64 × 10�� 7.81 × 10�� 

MSE(Test) 1.57 × 10�� 1.24 × 10�� 1.36 × 10�� 

50 
MSE(Training) - 1.22 × 10�� 4.60 × 10�� 

MSE(Test) - 1.33 × 10�� 5.81 × 10�� 

75 
MSE(Training) - 5.08 × 10�� 1.90 × 10� 

MSE(Test) - 5.21 × 10�� 2.14 × 10� 

100 
MSE(Training) - 3.09 × 10�� 4.30 × 10�/ 

MSE(Test) - 3.12 × 10�� 4.52 × 10�/ 
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Example 2. Consider the following second order IVP [3]:  

�xx(�) + 15 �x(�) + �(�) = −15 exp	( − �5) cos	( �), �(0) = 0, �x(0) = 1, � ∈ �0,5� 
The exact solution of this example is  

�(�) = exp	( − �5) sin	( �) 
Table 2. The comparison of our proposed method with SVM and LSSVM 

methods for example2. 

N Error SVM LSSVM �- LSSVM 

20 MSE(Training) 9.86 × 10�� 9.85 × 10�� 9.82 × 10�� 

MSE(Test) 1.01 × 10�� 1.01 × 10�� 1.00 × 10�� 

25 MSE(Training) 9.17× 10�� 1.03 × 10�� 9.57 × 10�� 

MSE(Test) 9.35× 10�� 1.05 × 10�� 9.77 × 10�� 

50 MSE(Training) - 1.16 × 10�� 6.61 × 10�� 

MSE(Test) - 1.17 × 10�� 6.68 × 10�� 

75 MSE(Training) - 6.74 × 10�� 1.37 × 10�� 

MSE(Test) - 6.78 × 10�� 1.66 × 10�� 

The approximate solution by the proposed � -LSSVM 

method are compared with the analytic solution; also we are 

compared numerical results of �-LSSVM, SVM and LSSVM 

methods with together where are shown in Table 2. In this 

example, we suppose ~ = 0.5, 0 = 10�  and � = 10��  for 

different amounts P . This Table shows that � -LSSVM 

method for any P is the best method to relieve high accuracy 

and SVM model is not good; beacuse, for P > 25 give to us 

the high error amounts and is not suitable. Also, error amounts 

for any P in LSSVM is losser �-LSSVM. But, for P = 20 

results not continues an antiseptic process. In Figures 2 the 

error function �(�) − �M(�)  is depicted which shows the 

approximate solution convergence to exact solution. Also, In 

Figures 3 the error function �′(�) − �′� (�) is depicted which 

shows the approximate solution is differentiable. 

5. Conclusion 

In this paper a new method based on �-LSSVM has been 

applied to find solutions for m-th order differential equations 

with initial conditions. The solution via �-LSSVM method is 

a differentiable, closed analytic form easily used in any 

subsequent calculation. The neural network here allows us to 

obtain the solution of differential equations starting from 

training data sets and refined it without wasting memory space 

and therefore reducing the complexity of the problem. If we 

compare the results of the numerical methods with our 

methods, we see that our method has some small error. Other 

advantage of this method, the solution of differential equation 

is available for each arbitrary point in training interval (even 

between training points).  

 

Fig. 1. The error function �(�) − �M(�) for example1 when [0; 10] is discretized into 50 and 100 equal parts. 

 

Fig. 2. The error function �(�) − �M(�) for example 2 when [0; 5] is discretized into 25, 50 and 75 equal parts. 
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Fig. 3. The error function �′(�) − �′�(�) for example2 when [0; 5] is discretized into 25, 50 and 75 equal parts. 
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