

American Journal of Computer Science and Information Engineering

2016; 3(1): 1-6

http://www.aascit.org/journal/ajcsie

ISSN: 2381-1110 (Print); ISSN: 2381-1129 (Online)

Keywords
Ordinary Differential Equation,

�-Least Squares Support Vector

Machine,

Quadratic Programming

Problem,

Constrained Optimization

Problem

Received: January 25, 2016

Accepted: February 20, 2016

Published: March 28, 2016

�-Least Square Support Vector
Method for Solving Differential
Equations

Mojtaba Baymani
1, *

, Omid Teymoori
1
, Seyed GHasem Razavi

2

1Department of Computer and Mathematics, Quchan University of Advanced Technology, Quchan,

Iran
2Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Email address
m_baymani@qiet.ac.ir (M. Baymani), omid.teymoorikase@gmail.com (O. Teymoori),

gh.razavi@ymail.com (S. G. Razavi)
*Corresponding author

Citation
Mojtaba Baymani, Omid Teymoori, Seyed GHasem Razavi. �-Least Square Support Vector

Method for Solving Differential Equations. American Journal of Computer Science and

Information Engineering. Vol. 3, No. 1, 2016, pp. 1-6.

Abstract
In this paper, a new method based on � -Least Square Support Vector Machines

(�-LSSVM’s) is developed for obtaining the solution of the ordinary differential equations

in an analytical function form. The approximate solution procedure is based upon forming

of support vector machines (SVM’s) whose parameters are adjusted to solve a quadratic

programming problem. The details of the method are discussed, and the capabilities of the

method are illustrated by solving some differential equations. The performance of the

method and the accuracy of the results are evaluated by comparing with the available

numerical and analytical solutions.

1. Introduction

We consider the m-th order linear ODE by initial conditions as follows:

������� � ∑
�
��
��� ������������ � ����, � ∈ ��, �� (1)

������� � �� , � � 0,1, … . . . , � � 1 (2)

where ����,
���� are the given functions, �� is the given scalar and ������� denotes the

i-th derivative of function y(t) with respect to �.

Nowadays, Many of the problems in studies fields; including engineering, medical

sciences and medicine can be applied to a set of differential equations (DE’s) through a

process of mathematical modeling is reduced. Because in most cases it is not easy to get

the exact solution of DE’s, so numerical methods should be applied. There are a lot of

mathematical methods to solve DE’s. Most techniques offer a discrete solution such as

finite difference (for example predictor-corrector, or Runge-Kutta methods) or a solution

of limited differentiability (for example finite elements). These methods define a mesh

(domain discretization) and functions are approximated locally ([1]-[2]).

Recently, researchers proposed some new methods that were based on artificial neural

network (ANN) models. The ANN methods in comparison with other numerical methods

have more advantages. The solution of DE’s in ANN methods are differentiable and

continuous ([3]-[5]). Lagaris et al. [3] used neural networks to solve ODE’s and PDE’s.

They used multilayer perceptron in their network architecture. Malek et al. [4] proposed a

novel hybrid method based on optimization techniques and neural networks methods for

2 Mojtaba Baymani et al.: �-Least Square Support Vector Method for Solving Differential Equations

the solution of high order ODE’s. They offered a new solution

method for the approximated solution of high order ODE’s

using innovative mathematical tools and neural-like systems

of computation. Fasshauer [6] proposed a new unsupervised

training method by using Radial Basis functions (RBF) to

solve DE’s. The methods based on genetic programming have

also been proposed as well as methods that induce the

underlying differential equation from experimental data. The

technique of genetic programming is an optimization process

based on the evolution of a large number of candidate

solutions through genetic operations such as replication, cross

over and mutation ([7]-[9]).

Recently Suykens and Mehrkanoon proposed

approximating solutions to ODE’s and PDE’s using LSSVM’s

model. Also, they are extended them approaches in

approximate solution to linear time varying descriptor systems

([13]-[14]).

In this paper, we introduce a new method based on SVM’s

for solving DE’s. SVM’s are very popular methods in machine

learning which solving pattern recognition and function

estimation problems ([10]-[12]). We will utilizing �-LSSVM

[15] method for solving ODEs. In last section will show that

our results have better accuracy and loss error.

2. �-LSSVM for Regression

We consider a given training set { � , ��}��" with input data � ∈ ℝ and output data�� ∈ ℝ. The regression problem is to

estimate a model of the form �̄(�) = %. &(�) + (. The primal

problem of �-LSSVM regression is follow:

min	 	 12 ∥ % ∥/+ 021(2
�� 3�/ + 4�/)

5. �. �� −%.&(�) − (≤ � + 3� , (3)

−�� +%.&(�) + (≤ � + 4�
According to [15], the dual problem of (3) is

min	 	 1211(2
7�

2
�� 8� − 9�):87 − 97; <=: � , 7; + >�70 ? + �1(2

�� 8� + 9�) −1��2
�� (8� − 9�)

5. �. ∑ (2�� 8� − 9�) = 0, (4)

8� ≥ 0, 9� ≥ 0, � = 1,2, … , A
where =(, �) = &(). &(�) is a given positive definite function (kernel function). We use the following differential operators

in next section which employed in [13]:

BC� ≡ ECF�ECE�,
G&(C)()H. &(�)(�) = BC��&(). &(�)� = BC��=(, �)�,

B��=(, �)� = &()(). &(�),
B��=(, �)� = &(). &()(�),

B���=(, �)� = &(). &(�) = =(, �),
B�=(, �)� = &()(). &()(�).

3. Description of the Method

To obtain a solution of (1) the collocation method is adopted which assumes a discretization of the interval ��, �� into a set of

collocation points (training points)Δ = {� = � ≤ �/ ≤ �J ≤ ⋯ ≤ �" = �}. Let yM(�) = %. &(�) + (denote the approximate

solution to (1), with adjustable parameters % and (, the problem (1) is transformed to the following quadratic programming

problem:

min	 	 12 ∥ % ∥/+ 021("
��/ 3�/ + 4�/)	

s.t. %(&(�)(��) − ∑
N�N� (��)&(��N)(��)) −
�(��)(− �(��) ≤ � + 3� , � = 2,3, … , P

−%(&(�)(��) −1
N�
N� (��)&(��N)(��)) +
�(��)(+ �(��)

 American Journal of Computer Science and Information Engineering 2016; 3(1): 1-6 3

≤ � + 4�, � = 2,3, … , P

%.&(�) + (= � (5)

%.&(��)(�) = �� , � = 2,3, … ,�

In practice, the quadratic programming problem (5) is

solved via its dual.

Lemma: The solution to (5) is obtained by solving the

following the quadratic programming problem:

min	 12QRSQ + TQ

5. �. UQ = 0, (6)

VQ ≤ 0

where

V = W−X"�×"� −X"�×"� 0"�×�0"�×"� −X"�×"� 0"�×�Z U = �
�(�)"�× 0"�× −[�×�, T = ��[− �(�)"�× 2�["�× −��×�
S = \]"�×"� 0"�×"� Ω"�×�0"�×"� 0"�×"� 0"�×�Ω�×"� 0�×"� Δ�×�

_ , Q = \9̀a_
where, [= (1,1, … ,1) and [= (1,0, … ,0).

Proof: The Lagrangian of the constrained optimization problem (5) becomes

b(%, (, 3, 4, 9, 8, a, a) = 12 ∥ % ∥/+ 021("
��/ 3�/ + 4�/)

+19� c%(&(�)(��) −1
N�
N�

(��)&(��N)(��)d"
��/ −
�(��)(− �(��) − � − 3�)

+18� c−%(&(�)(��) −1
N�
N�

(��)&(��N)(��)d"
��/ +
�(��)(+ �(��) − � − 4�)

−1a��
��/ �%. &(��)(�) − ��� − a(%. &(�) + (− �)

where 9�, 8� and a� for � = 2,3, … , P are Lagrange multipliers and 3� and 4� are slack variables. Then, optimality conditions

are as follows,

EbE% = 0 ⇒ % = 1("
��/ 8� − 9�)(&(�)(��) −1
N�

N� (��)&(��N)(��)) +1a��
�� &(��)(�)

EbE(= 0 ⇒ 1("
��/ 8� − 9�)
�(��) − a = 0

EbE3� = 0 ⇒ 3� = 9�0 , � = 2,… , P EbE4� = 0 ⇒ 4� = 8�0 , � = 2,… , P

We are imposing `� = 8� − 9� and then dual of (6) are as follows:

min	12 �1 	"
��/ 1	"

7�/ `� 7̀(�∇��=�(�� , �7) −1 	�
N�
N(��)�∇��N� =�(��, �7) −1 	�

N�
N(�7)�∇���N=�(��, �7) +1 	�
N� 1	�

N� �∇��N��N=�(�� , �7))

4 Mojtaba Baymani et al.: �-Least Square Support Vector Method for Solving Differential Equations

+1	�
�� 1	"

7�/ a� 7̀(�∇7�� =�(�, �7) −1 	�
N�
N(�7)�∇7���N=�(�, �7))

+1	"
��/ 1	�

7� `�a7(�∇�7�=�(�� , �) −1 	�
N�
N(��)�∇��N7� =�(�� , �))

+1	�
�� 1	�

7� a�a7�∇��7�=�(�, �)� +1	"
��/ `�(g[� − �(��)) +1 	"

��/ 2g9�
5. �. ∑ 	"��/ `�
�(��) − a = 0, (7)

`� + 9� ≥ 0, 9� ≥ 0, � = 2,… , P

If using the following matrix form for problem (7), we can give the Dual problem (6),

]�,7 = �B��=�:��, �7; −1
N�
N�

(��)�B��N� =�:��, �7; −1
N�
N� :�7;�B���N=�:��, �7;

+11
N�
N�

�
N�

(��)
N:�7;GB��N��N=H:��, �7;, �, h = 2,… , P

Ω,N = �BN�� =�:�, �7; −1
N�
N� :�7;GBN���N=H:�, �7;, h = 2,3, … , P

Δ�7 = �B��7�=�(�, �), �, h = 1,… ,�.

The obtained approximation solution is as follows,

�M(�) = 1`�"
��/ c�B��=�(�� , �) −1
N�

N� (��)�B��N� =�(�� , �) d+1a7�
7� �B7�� =�(�, �) + (

4. Numerical Results

In this section, we used the performance of the approach

methods on two problems, first order and second order IVP.

Therefore we solved two problems with �-LSSVM model and

then compared by SVM and LSSVM models [13] to shows

that which of them are better. For all the problems, the RBF

kernel is used (=(, �) = exp	(− (l�m)non)). Also, we use the

set of midpoints of training points (
(pqFpqrs)/ , � = 1,2, … , P − 1)

as test point and compute the mean squared error (MSE) for

the validation:

tuv(w�) = �(w�) − �M(w�)
MATLAB 2015a is used to implement the code and all

computational were carried out on a windows 8 system with

Intel Pentium- ULV, 1.8 GHz CPU and4.00 GB RAM.

Example 1. Consider the following first order IVP [5]:

�x(�) + 2�(�) = sin	(�), �(0) = 1, � ∈ �0,10�
Exact solution of this example is

�(�) = 65 exp	(− 2�) + 25 sin	(�) − 15 cos	(�)

The approximate solution by the proposed � -LSSVM

method are compared with the analytic solution; also we are

compared numerical results of �-LSSVM, SVM and LSSVM

methods with together where are shown in Table 1. In this

example, we suppose ~ = 5 , 0 = 10� and � = 10�� for

different amounts P. The results of this example shows that �-LSSVM method for any P is the best method to relieve

high accuracy and SVM model is not good; because, for P > 25 give to us the high error amounts and is not suitable.

Also in Fig. 1 the error function �(�) − �M(�) for P = 	50

and 100 is depicted which shows the solution is very accurate

Table 1. The comparison of our proposed method with SVM and LSSVM

methods for example 1.

N Error SVM LSSVM �- LSSVM

25
MSE(Training) 1.18 × 10�� 8.64 × 10�� 7.81 × 10��

MSE(Test) 1.57 × 10�� 1.24 × 10�� 1.36 × 10��

50
MSE(Training) - 1.22 × 10�� 4.60 × 10��

MSE(Test) - 1.33 × 10�� 5.81 × 10��

75
MSE(Training) - 5.08 × 10�� 1.90 × 10�

MSE(Test) - 5.21 × 10�� 2.14 × 10�

100
MSE(Training) - 3.09 × 10�� 4.30 × 10�/

MSE(Test) - 3.12 × 10�� 4.52 × 10�/

 American Journal of Computer Science and Information Engineering 2016; 3(1): 1-6 5

Example 2. Consider the following second order IVP [3]:

�xx(�) + 15 �x(�) + �(�) = −15 exp	(− �5) cos	(�), �(0) = 0, �x(0) = 1, � ∈ �0,5�
The exact solution of this example is

�(�) = exp	(− �5) sin	(�)
Table 2. The comparison of our proposed method with SVM and LSSVM

methods for example2.

N Error SVM LSSVM �- LSSVM

20 MSE(Training) 9.86 × 10�� 9.85 × 10�� 9.82 × 10��

MSE(Test) 1.01 × 10�� 1.01 × 10�� 1.00 × 10��

25 MSE(Training) 9.17× 10�� 1.03 × 10�� 9.57 × 10��

MSE(Test) 9.35× 10�� 1.05 × 10�� 9.77 × 10��

50 MSE(Training) - 1.16 × 10�� 6.61 × 10��

MSE(Test) - 1.17 × 10�� 6.68 × 10��

75 MSE(Training) - 6.74 × 10�� 1.37 × 10��

MSE(Test) - 6.78 × 10�� 1.66 × 10��

The approximate solution by the proposed � -LSSVM

method are compared with the analytic solution; also we are

compared numerical results of �-LSSVM, SVM and LSSVM

methods with together where are shown in Table 2. In this

example, we suppose ~ = 0.5, 0 = 10� and � = 10�� for

different amounts P . This Table shows that � -LSSVM

method for any P is the best method to relieve high accuracy

and SVM model is not good; beacuse, for P > 25 give to us

the high error amounts and is not suitable. Also, error amounts

for any P in LSSVM is losser �-LSSVM. But, for P = 20

results not continues an antiseptic process. In Figures 2 the

error function �(�) − �M(�) is depicted which shows the

approximate solution convergence to exact solution. Also, In

Figures 3 the error function �′(�) − �′� (�) is depicted which

shows the approximate solution is differentiable.

5. Conclusion

In this paper a new method based on �-LSSVM has been

applied to find solutions for m-th order differential equations

with initial conditions. The solution via �-LSSVM method is

a differentiable, closed analytic form easily used in any

subsequent calculation. The neural network here allows us to

obtain the solution of differential equations starting from

training data sets and refined it without wasting memory space

and therefore reducing the complexity of the problem. If we

compare the results of the numerical methods with our

methods, we see that our method has some small error. Other

advantage of this method, the solution of differential equation

is available for each arbitrary point in training interval (even

between training points).

Fig. 1. The error function �(�) − �M(�) for example1 when [0; 10] is discretized into 50 and 100 equal parts.

Fig. 2. The error function �(�) − �M(�) for example 2 when [0; 5] is discretized into 25, 50 and 75 equal parts.

0 1 2 3 4 5 6 7 8 9 10
-12

-10

-8

-6

-4

-2

0

2
x 10

-3

N=50

N=100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

N=25

N=50

N=75

6 Mojtaba Baymani et al.: �-Least Square Support Vector Method for Solving Differential Equations

Fig. 3. The error function �′(�) − �′�(�) for example2 when [0; 5] is discretized into 25, 50 and 75 equal parts.

Acknowledgements

This work was supported by Quchan University of

Advanced Technology under grant number 1024.

References

[1] S. D. Conte, C. de Boor, "Elementary numerical analysis, an
algorithmic approach”, Third Edition, 1980.

[2] D. R. Kincaid, E. W. Cheney, "Numerical analysis mathematics
of scientific computing",third ed., Brooks/Cole, Pasific Grove
CA, 2002.

[3] I. L. Lagaris, A. Likas, D. I. Fotiadis, "Artificial neural
networks for solving ordinary and partial differential
equations",IEEE Transactions on Neural Networks, 9(5),
987-1000(1998).

[4] A. Malek, R. Shekari Beidokhti, Numerical solution for high
order differential equations using a hybrid neural network
optimization method, Applied Mathematics and Computation
183, 260-271(2006).

[5] H. S. Yazdi, M. Pakdaman, H. Modaghegh, Unsupervised
kernel least square algorithm for solving Ordinary Differential
Equations, Neurocomputing 74, 2062-2071, (2011).

[6] G. E. Fasshauer, Solving Differential Equations with Radial
Basis Functions: Multilevel Methods and Smoothing,
Advances in Computational Mathematics, 11(2),
139-159(1999).

[7] G. Burgess, Finding Approximate Analytic Solutions to
Differential Equations Using Genetic Programming,
Surveillance Systems Division, Electronics and Surveillance
Research Laboratory, Department of Defense, Australia, 1999.

[8] I. G. Tsulos, I. E. Lagaris, Solving differential equations with
genetic programming”, Genetic Programming Evolable
Machines, 7, 33-54(2006).

[9] J. R. Koza, Genetic Programming: On the programming of
Computer by Means of Natural Selection. MIT Press:
Cambridge, MA, 1992.

[10] V. Vapnik, "Statistical learning theory", New York: Wiley
(1998).

[11] V. Vapnik, "The natural of statistical learning theory", Springer
New York (1995).

[12] Y. Xu, X. Pan, Structural least square twin support vector
machine for classification, Springer Science and Business
Media New York, 42, 527-536(2015).

[13] S. Mehrkanoon, T. Flack and J. A. K. Suykens, Approximate
solutions to ordinary differential equations using least squares
support vector machines, IEEE Transactions on Neural
Networks and Learning Systems 23, 1356-1367(2012).

[14] S. Mehrkanoon, J. A. K. Suykens, LS-SVM approximate
solution to linear time varying descriptor systems”, Automatica,
48, 2502-2511(2012).

[15] Y. J. Tian, X. C. Ju, Z. Qi and Y. Shi, Efficient sparse least
squares support vector machines for pattern classification,
Computers and Mathematics with Applications 28(6), (2013).

[16] J. A. K. Suykens and J. Vandewalle, Least squares support
vector machine classifier, Neural Processing Letters 9(3),
293-300(1999).

[17] D. Tax and R. Duin, Support vector domain description, Pattern
Recognition Letter 20, 1191-1199(1999).

[18] D. Tax and R. Duin, Support vector data description", Machine
Learning 54, 45-66 (2004).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

N=25

N=50

N=75

