

American Journal of Computer Science and Information Engineering

2016; 3(4): 23-28

http://www.aascit.org/journal/ajcsie

ISSN: 2381-1110 (Print); ISSN: 2381-1129 (Online)

Keywords
Microservices,

Microservice Architecture,

Distributed Software

Architecture

Received: August 20, 2016

Accepted: September 6, 2016

Published: September 13, 2016

Microservices: A Flexible
Architecture for the Digital Age
Version 1.1

Keshab Katuwal
1, 2

1Software Architecture and Development, Syntel Inc., Troy, Michigan, USA
2Computer Science (Alumni), Master of Science, Maharishi University of Management, Fairfield,

Iowa, USA

Email address
keshab_katuwal@syntelinc.com, keshab.katuwal@gmail.com

Citation
Keshab Katuwal. Microservices: A Flexible Architecture for the Digital Age Version 1.1.

American Journal of Computer Science and Information Engineering.

Vol. 3, No. 4, 2016, pp. 23-28.

Abstract
In today’s always-on world, it is no longer feasible to release software products on a

multi-month or multi-year development cycle. Traditional "monolithic" applications

have inherent risks and limitations that cannot always meet the demands of the Digital

Age. In this paper, we explore microservices, a new approach that may be better suited to

developing applications for today's fast-moving business climate.

1. Introduction

Software applications are now being developed such that each autonomous component

of the application (such as a web services component, messaging component, etc.) can be

deployed independently in different deployment systems. There has been a gradual

decrease in the size of monolithic applications by isolating these functional components

into different deployment machines and allowing them to communicate to the main

application and with each other using loose coupling interfaces — through either a

synchronous HTTP channel or an asynchronous messaging channel. This style of

software development is in itself a move towards microservice architecture.

While applying the Agile and Scrum software development processes, a software

application is decomposed into multiple incremental components which are designed and

developed, and then unit and functional testing are carried out before deployment. Later,

these components are integrated during the integration deployment and testing phases.

This approach to software development leads to the microservice architectural style of

development.

James Lewis and Martin Fowler describe the microservice architectural style as:

”An approach to developing a single application as a suite of small services, each

running in its own process and communicating with lightweight mechanisms, often an

HTTP resource API. These services are built around business capabilities and

independently deployable by fully automated deployment machinery. There is a bare

minimum of centralized management of these services, which may be written in different

programming languages and use different data storage technologies.” [1]

Microservice architecture breaks down a complex application into several autonomous

services which are small, independent processes that communicate with each other using

language-independent APIs. These services are highly decoupled and focus on doing a

small task, which enables a modular approach to system building. Services like this are

easily replaceable, designed to fulfill specific business needs, and can be implemented

24 Keshab Katuwal: Microservices: A Flexible Architecture for the Digital Age Version 1.1

using different technologies. In addition, because microservices are autonomous, they are independently built and deployed

using a continuous delivery software development methodology.

Figure 1. Architectural overview of monolith and microservices.

Microservices can manage their own database, and each

microservice can be scaled independently from both

application and database points, irrespective of other

microservices. This allows an enterprise to scale only those

specific domains of the enterprise application which are

resource consuming.

The functioning principles of microservices resemble the

UNIX philosophy of “Do one thing and do it well.”

Each microservice is small, fine-grained, and intended to

perform a single function. Microservices can call other

microservices. They are elastic, resilient, composable,

minimal and complete. Microservices can be exposed

through a simple URI interface. They receive a request and

produce a response in UNIX style [2].

Microservice architecture differs from a service-oriented

architecture (SOA) in that the primary aim of SOA is to

integrate various business applications, whereas each service

in a microservice architecture is a part of the whole, which

represents an application.

Microservice architecture, therefore, solves the problems

faced by a monolithic approach to software development.

2. Issues with Monolithic

Applications

A monolithic application is an enterprise application

consisting of a presentation layer, a data-access layer, and a

server-side layer. Due to this rigid, tightly-coupled

architecture, monoliths have a number of inherent risks and

limitations, which we will outline below.

2.1. Scaling

A monolith can scale with increasing transaction volumes

by running more copies of the same application. However,

this architecture can’t scale with increasing data volume.

Each copy of the application instance will access all of the

data, which makes caching less effective and increases

memory consumption and I/O traffic.

2.2. Resilient Challenges (React to Failure)

Because the monolithic design is tightly coupled, failure in

one part of the application brings the whole application

down. It is difficult to isolate and pin-point the domain or the

component of the application that caused the failure. It is,

therefore, almost impossible for the monolithic application to

self-recover from a failure. Because of this, a monolithic

design responds slowly and its failure recovery is also slow

in most cases. By the time the application restores to its

original working state, a significant amount of time is

invested.

2.3. Technology and Vendor Lock

Monolithic architecture binds you to stick to the

technology stack and in some cases, to a particular version of

the technology chosen at the start of development. For

example, components written in non-JVM languages do not

have a place in the monolithic application. If there is a need

to migrate an application from an obsolete technology to a

newer version or a better technology, the entire application

must be rewritten, which is risky and time consuming.

2.4. Issues Implementing Agile Methodology

Because the Agile software development process requires

frequent integration of software components, each time a

new component or a new change is integrated to the

application, the entire application will have to be redeployed.

 American Journal of Computer Science and Information Engineering 2016; 3(4): 23-28 25

This will interrupt background tasks (e.g. background jobs)

and some components may not initialize or update, which

causes a failure during the application startup process.

Therefore, the cost of frequent redeployment of the

production system is very high.

2.5. Change Management or Business Agility

Change cycles are tied together, so changes made to a

small part of the application require the entire monolith to be

rebuilt and deployed. Over time, it's often hard to maintain a

good modular structure, making it harder to restrict changes

to affect only one module.

Monolithic software development requires all the

components of the application to be integrated in order to

carry out development, testing, staging, and production

deployment. After production deployment, a considerable

amount of maintenance will be required, which translates to

frequent redeployment of the entire application. This style of

software development causes poor business agility.

3. Features and Benefits of the

Microservice Architecture

3.1. Functional Decomposition via Service

Microservice architecture decomposes software into a set

of functions, each of which carries a specific business

capability. Each of these functions represents a service and is

designed and built as a component that is independently

deployable.

A monolithic application encapsulates a component in the

form of a library that is linked into a program and called

using in-memory function calls, while microservice

architecture represents a component-as-a-service. As such,

these services are out-of-process components which

communicate via mechanisms like web service requests or

remote procedure calls.

These services take a broad-stack implementation of

software for that business area, including user-interface,

persistent storage, and external collaboration. Consequently,

development teams must be cross-functional, including the

full range of skills required: user-experience, database and

project management.

3.2. Design for Failure

Microservices are elastic, resilient, and responsive —

designed to react to failure quickly. A consequence of using

services as components is that applications must be built so

that they can tolerate the failure of one or more services. Any

service call could fail due to unavailability of the supplier, so

clients must respond as gracefully as possible. This is a

disadvantage compared to a monolithic design, as it

introduces additional complexity to handle failures.

3.3. Evolutionary

In today’s “always on” digital world, it is no longer

feasible to release products on a multi-month or multi-year

development cycle. One key benefit of microservice

architecture is that you can evolve towards this approach one

service at a time — by identifying a business capability,

implementing it as a microservice, and integrating using a

loose coupling pattern, with the existing monolith acting as a

bridge to the new architecture.

Over time, as more and more business capabilities are

migrated, the scope of the monolith will shrink, until it has

been completely migrated to the new application and the old

application is no longer needed.

3.4. Compatibility with Agile Methodology

A microservice architecture approach requires organizing

cross-functional teams for the purpose of owning the

microservices product lifecycle from design through

deployment. It is therefore, better suited for adopting Agile

principles and the Scrum process. Microservices are built and

deployed independently during each step of software

development, an approach that favors frequent deployment,

integration and software delivery.

3.5. Service Versioning

Since there is complete control over the deployment for

microservices, it becomes possible to have multiple versions

of services running side by side, providing backward

compatibility and easy integration. Moreover, a new version

of the microservices API can be released without impacting

clients that are using previous versions. It is also possible to

provide ongoing updates and enhancements to existing

services while in production.

Using this approach, services can be fully replaced while

maintaining the current API, or new implementations can be

released under a new version.

3.6. Service Monitoring

Microservice architecture emphasizes choreography and

event collaboration. This, in turn, leads to emergent behavior

which enables quick detection of bad behavior. Since

services can fail at any time, it's important to be able to detect

failures quickly and, if possible, automatically restore

service.

Microservice applications emphasize real-time application

monitoring, checking both architectural elements (database

requests per second, etc.) and business metrics (orders per

minute, etc.). Semantic monitoring can provide an early

warning system that triggers alerts to prompt development

teams to follow up and investigate.

3.7. Automation Using Continuous Delivery

Software is developed in a high-velocity, iterative

approach and is deployable throughout its lifecycle. Because

each service carries defined business capabilities that

represent a part of the product and are independently

deployable, multiple-stage automation tests can be run

around each service during development. These include unit

26 Keshab Katuwal: Microservices: A Flexible Architecture for the Digital Age Version 1.1

and functional testing, acceptance testing, integration testing,

UAT, performance testing, and deploy to production.

4. Microservices and SOA

Service Oriented Architecture (SOA) is a software

architectural pattern that solves intra- and inter-

organizational communication among their system

applications through a standard protocol (e.g., SOAP). SOA

allows enterprise to design services that will be a part of their

monolithic business applications, which facilitate

communication with each other. SOA therefore builds

highway which connects organizational business

applications. One of the major benefits of SOA is to allow

the enterprise to explicitly expose some of features out of the

business application to external world which avoids needs of

the entire application to be installed for its clients. SOA

therefore aims to fulfill diversified needs of today’s

enterprise.

Figure 2. Architectural overview of SOA Model.

 American Journal of Computer Science and Information Engineering 2016; 3(4): 23-28 27

Figure 2 above shows a typical SOA model where the

primary organization “Org. 1” communicates through

Enterprise Service Bus (ESB) with other organizations to

fulfill end-users request. Similarly, Organization “Org. 2”

may communicate with other organizations in order to

prepare response with respect to request from “Org. 1” and

same applies for other organizations too. An Enterprise

Service Bus (ESB) is a software architecture model used for

designing and implementing message oriented middleware

(independently deployable service) that provides

standardized communication services for the business

applications to communicate with each other in Service

Oriented Architecture (SOA). ESB is responsible for

monitoring and controlling routing of message exchange

between services, resolve contention between communicating

service components, control deployment and versioning of

services; and provide security of messages transfer, data

transformation and mapping, and message and event queuing

and sequencing, exception handling, etc..

Thus, SOA is a way of integrating various business

applications in enterprise software industry.

Microservice architecture on the other hand, is a way of

structuring an enterprise business application in the form of

multiple small services which carry specific business

functionalities and maintain their own database. Such

services in microservice architecture collaborate with each

other to fulfil the incoming client request to the application,

whereas each service in SOA, which is a part of the monolith

deployment, serves as an endpoint to the external

applications to facilitate communication with the underlying

application.

5. Microservices Trends

After the evolution of World Wide Web (WWW), the

dynamic web applications were built in two-tier architecture

in the beginning. The two-tier architecture comes under the

client-server architecture. The two tier architecture

comprised of the client tier (client application) and database

placing in the separate systems. The presentation logic, the

business logic, and the database access logic were put

together to build the client application, which was deployed

in a separate server system. In term of desktop application,

this client application was installed at the end users systems.

Such client application was also known as the thick client.

This client application directly communicated to the database

server in order to fulfill the end users request. In the two-tier

architecture, the client application, because of its tight

coupling nature, could not be scaled to the extent in order to

overcome the performance bottleneck caused by increasing

user requests.

The three-tier architecture was later evolved which

overcame most of drawbacks introduced by the two-tier

architecture. The three-tier architecture also falls under

client-server software architecture pattern. The three logical

layers which were mixed together and tightly coupled in the

client application of the two-tier architecture are separated

into the three independent layers encapsulated by the

granular interfaces and could be deployed into the three

separate systems. The three-tier architecture therefore

consists of presentation tier, application tier (business logic,

logic tier, or middle tier) and data tier. The application tier

also serves as the application controller. The term tier refers

to the physical separation of components into different

deployment systems whereas layer refers to both logical and

physical separation of components. In logical layering,

components are separated by granular interfaces and

deployed in same deployment system. Each tier of the three-

tier architecture could be deployed into separate systems and

scaled independently to overcome the performance

bottleneck caused by increasing user requests. Nowadays

most of the dynamic web applications are built using the

three-tier architecture.

N-tier architecture is the three-tier architecture with multi-

tier middle tier. In order to meet todays diversified business

needs, enterprise application may need to communicate with

external applications to fulfill the client request. These

external systems could be the Web Service provider, the

Messaging service provider, and any other information

systems. In such case, the middle tier is partitioned into

multiple tiers and each of such tiers is encapsulated with fine-

grained interface. Nowadays, enterprise software applications

(monolithic applications) are built using n-tier architecture.

But development of enterprise software application could

take significant efforts, time, and resources.

The evolution of microservice architecture is expected to

overcome problems arise during the development of

enterprise software application.

Microservice architecture is now the approach of choice for

the design and development of highly scalable, highly

available software applications. While designing and

developing software applications, some application domains

may get higher transaction load, while others get lesser.

Domain modules with high transaction volumes and their own

database management systems are designed, developed, and

deployed independently, while also scaling from both

application and database points. Each of the application’s

domain modules is built to be highly scalable and highly

available, which makes the entire application highly available.

As of today, many companies have already been utilizing

microservice architecture for building software applications,

including Amazon, Netflix, Uber, Comcast Cable, eBay,

Karma and Capital One. [3]

6. Conclusion

Microservice architecture is a highly scalable, resilient

approach to developing software products that is well suited

to today’s digital world. Microservices are ideally suited for

Agile development, and their inherent independence,

scalability and replaceability make microservices an ideal

choice for building highly-available, highly-scalable software

28 Keshab Katuwal: Microservices: A Flexible Architecture for the Digital Age Version 1.1

applications.

As long as development teams are assembled with the

right mix of skills and proper attention is paid to designing

for service failure, microservice architecture can help

enterprises develop the scalability, velocity and flexibility

required to compete in the Digital Age.

References

[1] Martin Fowler. (2014). Microservices Resource Guide
[Online]. Available: http://martinfowler.com/microservices/

[2] Wikipedia, the free encyclopedia. Microservices [Online].
Available: https://en.wikipedia.org/wiki/Microservices

[3] Chris Richardson. (2014). Microservice architecture patterns
and best practices, Microservices.io (Online). Available:
http://microservices.io/

[4] James Lewis and Martin Fowler. (2014, March 25).
Microservices (Online). Available:
http://martinfowler.com/articles/microservices.html

[5] Bob Familiar, Microservices, IoT and Azure: Leveraging
DevOps and Microservice Architecture to deliver SaaS
Solutions, 1st ed. New York: Apress, 2015.

[6] Eric Knorr. (2015, Jan 5). Why 2015 will be the year of
microservices (Online). Available:
http://www.javaworld.com/article/2863409/soa/why-2015-
will-be-the-year-of-microservices.html/

[7] Chris Richardson. (2014, May 25). Microservices:
Decomposing Applications for Deployability and Scalability
(Online). Available:
http://www.infoq.com/articles/microservices-intro

[8] Tori Wieldt. (2015, December 9). Bert Ertman on the
Microservices Mindset (Online). Available:
https://blog.newrelic.com/2015/12/09/microservices-bert-
ertman-java-one/

[9] Vinh D. Le et al., "Microservice-based Architecture for the
NRDC," in Industrial Informatics (INDIN), 2015 IEEE 13th
International Conference on, 2015©IEEE. doi:
10.1109/INDIN.2015.7281983

[10] Wikipedia, the free encyclopedia. Multitier architecture
[Online]. Available:
https://en.wikipedia.org/wiki/Multitier_architecture

[11] Dong Guo et al., "Microservices Architecture Based
Cloudware Deployment Platform for Service Computing,"
in Service-Oriented System Engineering (SOSE), 2016
IEEE Symposium on, 2016©IEEE. doi:
10.1109/SOSE.2016.22

[12] Armin Balalaie et al., "Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture," IEEE
Xpl., vol. 33, no. 3, pp. 42-52, May-Jun., 2016

[13] Martin Fowler, Patterns of Enterprise Application
Architecture, 1st ed.: Addison-Wesley, 2002.

[14] Keshab Katuwal. (2016, September 2). Microservices: A
Flexible Architecture for the Digital Age Version 1.0 (Online).
Available:
http://www.openscienceonline.com/journal/archive2?journalId
=742&paperId=3546

[15] W3C. (2007, April 27). SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition), W3C Recommendation 27
April 2007 (Online). Available:
https://www.w3.org/TR/soap12-part1/

[16] Heather Kreger et al. (2012, January 17). The IBM advantage
for SOA reference architecture standards (Online). Available:
http://www.ibm.com/developerworks/webservices/library/ws-
soa-ref-arch/

[17] W3C. (2004, February 11). Web Services Architecture, W3C
Working Group Note 11 February 2004 (Online). Available:
https://www.w3.org/TR/ws-arch/

[18] The Open Group. (2011, November). The SOA Source Book
(Online). Available: http://www.opengroup.org/soa/source-
book/soa_refarch/

Biography

Keshab Katuwal is a Project Lead with
Syntel Inc. He has extensive experience in
architecture, design, and development of
enterprise software applications. He
graduated in Master of Science in Computer
Science from Maharishi University of
Management, Fairfield, IA, USA. He has a
strong interest in the field of distributed

software architecture.

