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Abstract 
The ability to write code accurately and fluently is a core competency for every 

engineering student. Introductory programming is an essential part of the curriculum in 

any engineering discipline in universities. However, for many beginning students, it is 

very difficult to learn. In particular, these students often get stuck and frustrated when 

attempting to solve programming exercises. One way to assist beginning programmers to 

overcome difficulties in learning to program is to use intelligent tutoring systems (ITSs) 

for programming, which can provide students with personalized hints of students’ 

solving process in programming exercises. Our goal in this paper is to review and 

classify analysis techniques that are requested to generate data-driven hints in ITSs for 

programming. The classification of Data-Driven Hint Generation is the main 

contribution of this paper. The paper also proposes several future research directions. 

1. Introduction 

Programming skills are becoming a core competency for almost every profession and 

thus, computer science education is being integrated in the curriculum for almost every 

study subject [1]. However, many students find great difficulty with the learning of 

programming and it becomes a barrier to their further studies of computer science and 

other disciplines. This difficulty is in large part due to students’ inabilities to solve their 

programming exercises, and this may discourage them to progress further when help can 

be obtained immediately. In order to address this problem, various approaches have been 

proposed to help students learn solving programming exercises. Traditionally, face-to-

face and one-to-one human tutoring had been the best option for tutor. However, human 

tutors are not always available and that’s why computer based tutoring is developed to 

provide as an alternative support. Intelligent Tutoring System (ITS) is an example of 

computer-based tutoring which is developed emulating the human tutor [2]. According to 

VanLehn [3], an Intelligent Tutoring System that is designed with the ability to 

understand the coding to a low level of granularity in its advice can be just as effective as 

human tutor. ITSs for programming are useful particularly for first year computer 

science students and non-major students [4]. 

A current trend in the ITSs for programming world is to use data-driven techniques to 

give hints to users of ITSs for programming [5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14]. 

Instead of taking much time for modeling domain knowledge, the data-driven  
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approach uses a mass of correct student programs. The data-

driven approach uses correct student solutions in order to 

construct a solution space that contains all solution states 

students have created in the past (e.g., in the former 

semesters of a programming course). The solution states 

build many possible paths to correct solutions [1]. 

2. Background 

A. Intelligent Tutoring Systems 

As we stated above, face-to-face and one-to-one human 

tutoring is the best tutoring field. However, it is extremely 

expensive in terms of both physical and human resources. 

ITSs are a natural solution that can be used to address this 

problem, as they are developed to give personalized feedback 

and help to students who are working on problems. 

The fact the ITSs are formed by three fields: Computer 

Science, Psychology, and Education, as illustrated in Figure 

1, in which, (i) Artificial Intelligence (AI) addresses how to 

reason about intelligence and thus learning, (ii) Psychology 

(Cognitive Science) addresses how people think and learn, 

and (iii) Education focuses on how to best support 

teaching/learning [15]. 

 

Figure 1. The development of an Intelligent Tutoring System using methods and instruments from three different domains. 

According to Lee & Chen [16], an Intelligent Tutoring 

System (ITS) is a computer system that provides immediate 

and customized instruction or feedback to learners. The 

classical architecture of an Intelligent Tutoring System 

includes the following four components (Figure 2) [17, 18, 

19, 20]. 

a) A knowledge domain model that stores the learning 

content that is taught to students. 

b) A student model that stores information about the 

student’s knowledge level, abilities, preferences and 

needs. 

c) A tutoring (pedagogical) model, which makes student 

diagnosis and controls the tutoring process and make 

appropriate instructional decisions based on the 

information provided by the other components of the 

ITS. 

d) A User Interface that allows the system to interact with 

the user-learner. 

 

Figure 2. The typical architecture of an ITS. 
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This traditional view of ITSs is still very accepted by the 

ITS community. However, recent studies stress functionality 

over structure [21, 22, 17, 7, 23], describing ITSs as having 

two main loops [21]: 1) the inner loop and 2) the outer loop 

(Figure 3) [17]. The inner loop is responsible for providing 

personalized feedback, hints, and direct problem solving 

assistance to students. The inner loop also assesses students’ 

competence and registers it on the student model. Using the 

information that is obtained about the student, the outer loop 

performs task selection. 

This work is inspired from VanLehn’s two loop 

characterization of tutoring systems. The main task of the 

outer loop is to select an appropriate programming exercise 

for the student. The inner loop is responsible for giving hints 

on student steps. 

 

Figure 3. ITS Loops. 

Here, we focus on the inner loop. We do not support an 

outer loop which can create an overall student model and 

intelligently choose which programming exercises to show to 

the student. 

Nesbit et al. [24], in their paper, “Work in Progress: 

Intelligent Tutoring Systems in Computer Science and 

Software Engineering Education”, research on ITSs has 

accelerated over the last decade, and scholarly interest in 

such systems has never been greater. ITS have been 

developed for a wide range of subject domains (e.g., 

mathematics, physics, biology, medicine, reading, languages, 

philosophy, information technology and computer science) 

and for students in primary, secondary and postsecondary 

levels of education. 

Founded on several decades of research on human 

cognition and intelligence, Intelligent Tutoring System is 

now a fast growing area in academia and industry. We now 

turn our attention to some cutting-edge research on 

Intelligent Tutoring System in a specific learning domain: 

programming [25]. 

B. Intelligent Tutoring Systems in the programming 

domain 

In the past four decades, a variety of ITSs for 

programming have been built to provide tutoring services for 

programming problems. When it comes to functionalities, in 

general, ITSs for programming can be classified into five 

types: 1) curriculum sequencing, which constructs for each 

student an individual learning path, including individual 

selection of topics to learn, examples, and exercises; 2) 

intelligent analysis of student’s solutions, which focuses 

more on debugging and error diagnosis for complete 

student’s program; 3) program debugging support, which 

helps students learn to analyze programs; 4) interactive code-

writing problem solving support, which provides students 

with personalized assistance in each code-writing problem 

solving step and 5) example based code-writing problem 

solving support which suggests the most relevant cases or 

examples to students. 

In the context of ITSs for programming, for brevity, we 

will use the term “ITSs for code-writing” to describe to the 

ITSs for programming for interactive code-writing problem 

solving support. 

C. Automatic Hint Generation in Code-Writing ITSs 

Several recent studies deal with the problem of helping 

students to learn programming, in particular by giving them 

useful hints in real time while they are coding. According to 

Keuning et al. [26], ITSs for code-writing that focus on the 

process of solving an exercise are still rare or have 

limitations: some targeted for declarative programming [27, 

6], which is less flexible because they do not support 

exercises that can be solved by multiple algorithms [28, 29], 

or only support a static, pre-defined process [30]. 

Furthermore, it often requires substantial work to add new 

exercises [31] and tutors can be difficult to adapt by a 

teacher. ASK-ELLE [11] is an Intelligent Tutoring System 

for code-writing for learning the higher-order, strongly-typed 

functional programming language Haskell. They model 

alternative solution strategies in the system ASK-ELLE 

through several model programs (e.g. model solutions). This 

system supports the stepwise development of Haskell 

programs by verifying the correctness of incomplete 

programs, and by providing hints. Programming exercises are 

added to ASK-ELLE by providing a task description for the 

exercise, one or more model solutions, and properties that a 

solution should satisfy. The properties and model solutions 

can be annotated with feedback messages, and the amount of 

flexibility that is allowed in student solutions can be adjusted. 

The disadvantage of this strategy-based approach is that their 

tutor based on model solutions provided by 

instructors/teachers, because they are experts in their field 

and their solutions serve as examples for students. However, 

variations to these model solutions are boundless. 

Programming exercises are characterized by huge and 

expanding solution spaces, which cannot be covered by 

manually designed hints. According to Irfan and Gudivada 

[25], this is a vastly challenging problem, mainly because 

even for very simple programming tasks there are a multitude 

of different solution approaches, both syntactically and 

semantically. Even if we restrict the semantic aspect (i.e., the 

underlying algorithm) to a single one, the syntactic variations 
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of implementing the algorithm present a daunting task for 

hint generation. 

For such exercises, ITSs for code-writing are still possible 

to collect implicit data in terms of solutions given by students 

or teachers/experts. The data-driven approach is particularly 

useful when it is hard to come up with a more or less 

complete set of model solutions. According to Rivers and 

Koedinger [7], data-driven Intelligent Tutoring System is a 

subfield of ITS where decision-making is based on the 

previous student’s work instead of a knowledge base built by 

experts or an author-mapped graph of all possible paths. 

3. Classify of Data-Driven Hint 

Generation Techniques for  

Code-Writing ITSs 

New research efforts to tackle broader programming 

exercises are at a nascent stage and use previous students’ 

solutions to a programming exercise to generate hints for a 

new student who is working on the same exercise. Recently, 

there are two types of data-driven hint generation in ITSs for 

code-writing: hint generation has focused on code 

correctness and hint generation for code style. In this 

research work, we focus on the hint generation for code 

correctness. 

A. Program Synthesis Techniques 

In his doctoral dissertation, Singh [31], used error models 

and program sketches to find a mapping from student current 

programs to a model solution. Rather than relying on a 

predefined set of solutions, he used program synthesis to 

generate a new solution from the student’s current program. 

However, according to Terman [32], this system requires 

experts/teachers to define an error model specific to each 

programming exercise, and only supports a subset of Python. 

Lazar and Bratko [6] has relied on analyzing the single-

line edits made by students between submissions, and then 

using those edits to attempt to find a correct solution for the 

Prolog program. Those edits could then be used as a source 

for hints to be supplied to the new student. However, their 

technique requires a set of test cases to evaluate generated 

programs [12]. 

Perelman et al. [33] published their study to use all 

common expressions that occurred in students’ code to create 

a database of source code that was then used for hint 

generation. 

According to Rivers and Koedinger [7], these techniques 

have great potential for supporting new and obscure 

solutions, but also have the drawback of only working on 

solutions which are already close to correct; they all tend to 

fail when the code has many different errors. 

B. Cluster Based Techniques 

Gross and colleagues [34] used clustering to infer clusters 

of computer programs and select the most similar sample 

solution for hint generation. When the student requires a hint 

on how to change her/his code to get closer to a correct 

solution, it can be compared to a similar example from the 

cluster, and the dissimilarities between her/his code and the 

example code can be contrasted or highlighted in order to 

help the student to improve her/his own solution. As noted by 

the authors, the challenge with this approach is the derivation 

of solution steps from sample complete solutions in order to 

reduce the effort for modeling examples. 

Paaßen et al. [13] introduced an alternative representation 

of computer programs for classification and error detection in 

ITSs, namely execution traces. The trace representation can 

be applied to identify erroneous programs, enabling an 

Intelligent Tutoring System to detect whether a student has 

finished a task or still needs to continue. However, they 

concluded that a syntactic representation is necessary when a 

program does not yet compile or crashes and wherever the 

high level of abstraction applied by a program trace is not 

helpful (e.g. when teaching certain syntactic constructs). 

C. Recommendation Approach 

Zimmerman and Rupakheti [35] represent a framework 

that can help students in their coding process by 

recommending specific code edits relevant to their codes. 

They use a pq-Gram tree edit distance algorithm to match a 

student’s program to its closest counterpart in a database of 

correct solutions, as well as to identify the set of insertions, 

deletions and relabeling that will directly transform the 

student’s AST into this solution. According to the authors, 

the disadvantages of this method involve the following three 

aspects: AST based program analysis, semantic similarity of 

programs and usability testing. 

D. Case Based Reasoning Approach 

In the newest paper by Freeman et al. [36], they use a case-

based reasoning (CBR) approach, which they call Abstract 

Syntax Tree Retrieval (ASTR) to data mine prior solutions 

contained in a large dataset. This system requires no prior 

knowledge of the problem being solved. It uses CBR and the 

grammar of the programming language to retrieve a prior 

solution with high similarity to a struggling student’s failing 

submission. The results achieved by their system are 

encouraging. However, as noted by the authors, the system 

contains no information about the programming problem 

prior to observing successful submissions. Additionally, their 

system has no understanding of Python syntax. 

E. Hint Factory Based Approaches 

In general, the basic technique in this new line of work is 

to first represent the previous student–tutor interactions in the 

form of a graph. When a new student asks for a hint, that 

student’s interaction pattern is matched with some part of the 

graph and the student is directed to an appropriate next step 

that ultimately leads to a solution. It is not hard to imagine 

the potential impact of such work on any Intelligent Tutoring 

System that teaches programming [25]. 

Barnes and Stamper [37] designed the Hint Factory to use 

student problem-solving data for automatic hint generation in 

a propositional logic tutor. This approach uses student data to 

build a Markov decision process of student problem-solving 

strategies to serve as a domain model to automatic hint 

generation. The Hint Factory operates on a representation of 

a problem called a directed graph where each node represents 
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a student’s state at some point in the problem solving 

process, and each edge represents a student’s action that 

alters that state. A solution is represented as a path from the 

initial state to a goal state. A student requesting a hint is 

matched to a previously observed state and directed on a path 

to a goal state. The Hint Factory approach has been extended 

to work in other domains more closely related to 

programming. 

Fossati et al. [38, 39] implemented Hint Factory in the 

iList tutor that helps students learn linked list, a demanding 

topic in information technology and computer science 

education. Fossati et al. [39] also concluded that their tutor 

produced equivalent learning gains to a human tutor. 

Using the Hint Factory approach, Jin et al. [5] use linkage 

graphs to represent program states. A linkage graph is an 

acyclic graph consisting of nodes representing code 

statements and directed edges representing the order of the 

statements determined by which variables are read and 

assigned to in each statement. However, Keuning [40] points 

out that multiple existing student solutions should be 

available with the risk that a specific alternative to solve the 

exercise might not be recognized. On the other hand, as noted 

by the authors, the challenge with this method is the 

determination of strategies for hint presentation. 

Rivers and Koedinger [41, 42, 7] propose a data-driven 

approach to create a solution space consisting of all possible 

paths from the problem statement to a correct solution. This 

approach borrows heavily from the Hint Factory, but also 

extends it by enhancing the solution space, creating new 

edges for states that are disconnected instead of relying on 

student-generated paths. ITAP (Intelligent Teaching Assistant 

for Programming) [7] makes it possible to generate hints for 

never-seen-before states, which the original Hint Factory 

could not do. ITAP combines algorithms for state abstraction 

(the process of reducing syntactic variability in code states), 

path construction (determining which steps a student should 

take to improve their solution), and state reification (re-

individualizing the resulting edits into personalized hint 

messages) to fully automate the process of hint generation. 

However, the disadvantages of the state abstraction are that it 

is difficult to see if it is expandable for larger programs [18], 

it is limited by the fact that a set of semantic-preserving AST 

(Abstract Syntax Tree) transformations, the task of designing 

transformation rules is highly nontrivial, however, and differs 

for each programming language [43], the resulting state 

space is much more sparse and resistant to canonicalization 

[9]. On the other hand, as noted by the authors, the path 

construction algorithm could be modified to further improve 

the performance. Furthermore, a recent comparative analysis 

by Piech et al. [10], tested multiple solution space generation 

algorithms (including Rivers’ and Koedinger’s path 

construction algorithm and nine other algorithms) to 

determine how often the selected next states matched the 

next states chosen by experts/teachers. All of the ten 

algorithms that were running and generating next states were 

tested against the gold standard data they had collected. They 

found that several of the algorithms had a high match rate 

(above 95% for problem PA and above 83% for problem PB), 

the Rivers’ and Koedinger’s path construction algorithm had 

a lower match rate (72.9% for PA and 78.2% for PB). Price 

and Barnes [8] improve this approach by proposing a novel 

subtree-based state matching technique that will find partially 

overlapping solutions to generate feedback across diverse 

student programs. Rather than finding an entire state which 

matches the student, they look for any states with a matching 

subtree and find advice that applies within that subtree. 

Literature has not indicated that this algorithm has been 

implemented and tested. 

Piech et al. [10] use path construction to interpolate 

between two consecutive states on a solution path which 

differ by more than one edit. This is useful to smooth data 

when student code is recorded in snapshots that are too far 

apart. In the other hand, they tested multiple solution space 

generation algorithms to determine how often the selected 

next states matched the next states chosen by 

experts/teachers. 

Price and Barnes [9] present a novel method for addressing 

the data sparsity problem by focusing on minimal-distance 

changes between students. However, according to Price et al. 

[12], data-driven hints have not been evaluated on broader 

programming exercises in novice programming 

environments, and may not be well equipped to handle them. 

Price et al. [12] present a new data-driven algorithm, based 

on the Hint Factory, to generate hints for these broader 

programming exercises. As noted by the authors, a major 

limitation of this work is the reliance on a single 

programming exercise for evaluation. 

4. Discussion 

The main objective of the data-driven approaches is to 

minimize time and expert knowledge to create ITSs for code-

writing. In addition to the model solutions, the program 

synthesis approaches also require experts/teachers provide 

error models consisting of common mistakes that students are 

making on a given programming exercise (e.g. the approach 

of Singh [31]) and a set of test cases to evaluate generated 

programs (e.g. Lazar and Bratko [6]). This manual effort of 

creating error models and a set of test cases is time-

consuming and tedious for instructors. On the other hand, it 

sometimes even prohibitively expensive to find correction 

rules for mistakes that occur infrequently in practice. One 

major drawback of the cluster based approaches is that it uses 

datasets of solutions that need to be modeled solution steps 

manually by experts/teachers. The process is time consuming 

and tedious (e.g. the approach of Gross et al, [34]). The 

recommendation approach of Zimmerman and Rupakheti 

[35] also requires experts/teachers create/find different model 

solutions of the programming exercises. 

In terms of expert knowledge, the Hint Factory based 

approaches are suitable for generating hints in ITSs for code-

writing. These approaches only require a two pieces of expert 

knowledge to run independently, though this knowledge is 

kept to a minimum. The needed data is: (1) at least one 
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reference solution to the problem (e.g. a model solution) and 

(2) a test method that can automatically score code (e.g. pairs 

of expected input and output). Both model solutions and test 

methods are already commonly created by experts/teachers in 

the process of preparing programming exercises, so the 

burden of knowledge generation is not too large. 

This study surveys the existing ITSs for code-writing that 

are solely based on data-driven hint generation to conclude 

that they differ from each other in at least the following 

ways: 

1. Representation of student’s current code 

2. Immediate representation of computer programs 

3. Extracting distinct solutions of a programming exercise 

(Preprocessing) 

4. Granularity of the code state used. Granularity refers to 

the smallest level of detail that a program (source code) 

is divided into 

5. Automatically modeling solution steps 

6. Programming language 

In the context of data-driven ITSs for code-writing, despite 

the research efforts in recent years, however, generating data-

driven hints is still having some problems. 

1) Semantic similarity. At the heart of data-driven ITSs 

for code-writing is the notion of program similarity. 

Measuring the similarities and dissimilarities between 

programs plays a crucial role in data-driven ITSs. Edit 

distances have been used as a measurement for the 

similarity of programs. Most existing systems represent 

programs as abstract syntax trees (ASTs), however, it is 

known that the tree edit distance problem is NP-hard 

[44]. Furthermore, according to Zimmerman and 

Rupakheti [35], one major pitfall of AST 

representations of source code is the loss of behavioral 

information. Because syntactically different programs 

can behave equivalently, the AST-based approach 

toward finding differences will incorrectly classify 

many pieces of source code as different even though 

they accomplish the same task. As shown in the paper 

by Piech et al. [10], the edit distance metric between 

such trees are not discriminative enough to be used to 

share feedback accurately since programs with similar 

ASTs can behave quite differently. How to extract 

distinct solutions from a large dataset consisting of 

learners’ solution attempts and a sample solution 

created by teachers/experts efficiently and precisely is 

an unresolved problem [45]. 

2) Representation of immediate programming steps. 

Hosseini et al. [46] showed that (1) most of the 

students tend to incrementally build the program and 

improve its correctness; (2) intermediate programming 

steps are important, and need to be taken into account 

for providing better feedback to students. As discussed 

in detail in [3], an Intelligent Tutoring System designed 

with adequate level of granularity in providing advice 

can be just as effective as support provided by human 

tutor. The common approach in data-driven ITSs for 

code-writing is to take periodic snapshots of a student’s 

code and treat these as states, connecting consecutive 

snapshots in the graph [8, 12, 41, 42, 7, 5, 30, 38, 39]. 

They captured snapshots every time students compiled 

or saved their code, but this is not an accurate 

representation of a unit of work. Different students 

might exhibit different types of behaviors regarding 

how often they save or compile their programs [47]. In 

any case, the chosen granularity plays a large role in 

the quantity of explorable states [48, 49]. Hovemeyer 

et al. [50] also concluded that use of fine-grained edit 

information can be help to overcome the issue of 

infrequent student submissions. So it is a challenge for 

future work to study other representations. 

3) Deriving automatically solution steps from complete 

sample solutions. According to [51], when students are 

learning to program, it is important that the process of 

creating a program is shown step by step. From the 

experiment, Gross and colleagues [34] showed that 

solutions modeling steps of problem solving are more 

appropriate for beginners than complete sample 

solutions. 

5. Conclusion 

In this paper, we have identified major approaches to 

generate data-driven hints for ITSs for code-writing. They 

are: (1) program synthesis, (2) cluster based, (3) 

recommendation, (4) case based reasoning and (5) hint 

factory based. 

In summary, in this work, the gaps we identified that provide 

the motivation for future researches are listed below. 

1) Representation of the student’s current code 

In the context of Hint Factory based approaches to 

generate data-driven hint for ITSs for code-writing, a 

student’s state corresponds to a snapshot of the student’s 

current code. However, as we noted above, the snapshots are 

captured every time students compiled or saved their code, 

but this is not an accurate representation of a unit of work. 

2) Immediate representation of computer programs 

In the most of recent studies, existing data-driven ITSs for 

code-writing represent program code with ASTs. In the 

literature, none of the studies present the research on a 

representation of source code that focuses on graphs, and 

apply it in the context of generating data-driven hints for 

ITSs for code-writing. 

3) Extracting distinct solutions from the dataset of 

solutions of a programming exercise 

In the context of data-driven ITSs for code-writing in 

progress, with regard to the Hint Factory based approach, 

none of the ITSs that extract distinct solutions from the 

dataset of solutions of a programming exercise. It is big 

challenge to extract distinct solutions from a large number of 

correct solutions efficiently and precisely. 

4) Modeling automatically solution steps from correct 

solutions 

Clearly, in this literature review, none of the works model 

automatically solution steps from correct solutions of a 
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programming exercise. How to model automatically solution 

steps from a large number of correct solutions of a 

programming exercise is an unresolved problem. 

5) Programming language 

As we discussed above, in the context of data-driven ITSs 

for code-writing, it can be seen that although ITSs covering 

many domains have been developed previously, none of them 

teach C/C++/Prolog programming. 
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