

American Journal of Computer Science and Information Engineering

2017; 4(6): 58-63
http://www.aascit.org/journal/ajcsie
ISSN: 2381-1110 (Print); ISSN: 2381-1129 (Online)

Keywords
Association Rule Mining,

Minimum Utility Threshold,

High Utility Pattern Mining,

High Utility Pattern,

Up-to-Date High Utility Pattern,

Utility List,

Up-to-Date Utility List,

Frequent Item Set Mining

Received: September 6, 2017

Accepted: November 16, 2017

Published: December 7, 2017

Up-to-Date High Utility Pattern
Mining Algorithm Using Up-to-Date
Utility-List for High Quality Pattern

Shaikh Nikhat Fatma

Department of Computer Engineering, Pillai HOC of Engineering and Technology, Rasayani,

India

Email address

Citation
Shaikh Nikhat Fatma. Up-to-Date High Utility Pattern Mining Algorithm Using Up-to-Date

Utility-List for High Quality Pattern. American Journal of Computer Science and Information

Engineering. Vol. 4, No. 6, 2017, pp. 58-63.

Abstract
Knowledge discovery in databases (KDD) is to identify efficient and helpful information

from large databases and provide automated analysis and solutions. In particular, finding

association rules from transaction databases is most commonly seen in data mining.

There are several algorithms have been developed to solve the problem to analysis the

basket of the customer. These are mainly based on apriori. In fact mining pattern does

not meet all the requirement of the business. Utility Mining is one of the extensions of

Frequent Item set mining, which discovers item sets that occur frequently. In many real-

life applications where utility item sets provide useful information in different decision-

making domains such as business transactions, medical, security, fraudulent transactions,

retail communities. Many algorithms have been developed to find high-utility patterns

(HUPs) from databases without considering timestamp of patterns, especially in recent

intervals. A pattern may not be a HUP in an entire database but may be a HUP in recent

intervals. In this paper, an improved up-to-date high-utility pattern (UDHUP) is

designed. It considers not only utility measure but also timestamp factor to discover the

recent HUPs. In this paper the UDHUP- list algorithm is discussed. A new data structure,

called up-to-date utility-list (UDU-list), is used to efficiently speed up the performance

for mining UDHUPs.

1. Introduction

Large number of studies has been proposed for mining frequent item sets from the

databases and successfully adopted in various application domains like market basket

analysis, click stream analysis etc. In market basket analysis, mining frequent item sets

from a database (usually a transactional database) refers to the discovery of the item sets

which frequently appear in the transactions, but the unit profits and purchased quantities of

items are not considered in the framework of frequent item set mining. Hence, it cannot

satisfy the requirement of the user who is interested in discovering the item sets with high

sales profits. In view of this, utility mining emerges as an important topic in data mining

for discovering the item sets with high utility like profits. Mining high utility item sets from

the databases refers to finding the item sets with high utilities or high profits. The basic

meaning of utility is the interestedness /importance /profitability of items to the users. The

utility of items in a transaction database consists of several aspects like importance of

distinct items, which is called external utility, importance of the items in the transaction,

which is called internal utility. An item set is called a high utility item set if its utility is no

less than a user specified threshold; otherwise, the item set is called a low utility item set.

 American Journal of Computer Science and Information Engineering 2017; 4(6): 58-63 59

Mining high utility item sets from databases is an important

task which is essential to a wide range of applications such as

website click streaming analysis, cross-marketing in retail

stores, business promotion in chain hypermarkets and even

biomedical applications. In recent years, mining high utility

item sets over data streams has emerged as an interesting topic

because many users want to obtain valuable information from

stream data, which are continually generated at rapid rates.

However, in these environments, most of the previous high

utility item set mining methods cannot efficiently work in

terms of both runtime and memory usage. In addition, since

they conduct their mining processes without any consideration

of transactions' arrival-time, it is hard for these methods to

sufficiently fulfill the needs of users when they want to obtain

only up to date, relevant information over data streams.

Temporal data mining [6, 7] is an attractive way to find

temporal patterns and regularities from temporal databases,

which can be used to reveal the ordered correlation of item

sets along with timestamp. For example, the sales of soft

drinks in summer and the sales of mittens in winter should be

higher than those in the other seasons. The seasonal or

periodic behaviours can only be discovered when the window

size is properly set. The fixed window size may, however,

hide the important information of the purchase item sets. To

solve the limitations of temporal data mining, Hong et al.

designed the up-to-date pattern mining to represent not only

the frequent item sets in the entire database but also the up-

to-date information from its past timestamp to the current one

[16]. Based on the up-to-date concept, an item set may not be

frequent (large) for an entire database but may be large up to

date information since the item set seldom occurs early and

may often occur lately. The up-to-date patterns include the

recent item sets, which are frequent for a flexible period of

time from the current time to its longest past. More useful

information of the current usage can thus be provided

compared to traditional association rules. For example, a new

iPhone may not be considered as a frequent item in the entire

database for retailers but may be concerned as a popular sold

item during the announcement month or season. Temporal

mining is a way to analyze ordered sequential databases with

a respect index. The sequential data can be text data, gene

sequences, purchased customers’ logs or stock data, among

others. Traditional way to mine a temporal database is to find

the correlations of itemsets along with a fixed window size.

Seasonal behaviors or some specific items can only be

revealed at the proper window size for the mining process.

An itemset may not be frequent over the entire database but

may be highly frequent in the recent intervals with temporal

factors, which can be seen in Figure 1.

Figure 1. Up-to –date pattern.

For Association rules, only the frequency of an item or

item set in a transaction is considered, which does not reflect

any other factors such as price, quantity or profit. The

meaning of ‘‘utility’’ can be defined as various factor based

on the users’ specification, such as profit, benefit, weight or

risk. The problem of high-utility item set mining is to find the

item sets (group of items) that generate a high profit in a

database, when they are sold together. The user has to

provide a value for a threshold called “minutil” (the

minimum utility threshold). A high-utility item set mining

algorithm outputs all the high-utility item sets, that is the

item sets that generates at least “minutil” profit. For example,

consider that “minutil” is set to 25 $ by the user.

Figure 2. Example of high utility items.

Utility of items in transaction database involves following

two aspects:

(1) The importance of distinct items, called external

utility(e), and

(2) The importance of items in transactions, called internal

utility (i).

Utility of Item set (U) = external utility (e) * internal

utility (i).

Figure 3. Internal and External Utility.

High-utility pattern mining (HUPM) was thus proposed to

concern both profits (external utility) and sold quantities

(internal utility) of the purchase patterns [5]. A pattern is

concerned as a high-utility pattern (HUP) if its utility is no

less than the pre-defined minimum utility threshold. High-

utility item set mining (HUIM) is a useful set of techniques

for discovering patterns in transaction databases, which

considers both quantity and profit of items. However, most

algorithms for mining high-utility item sets (HUIs) assume

that the information stored in databases is precise, i.e., that

there is no uncertainty. But in many real-life applications, an

item or item set is not only present or absent in transactions

60 Shaikh Nikhat Fatma: Up-to-Date High Utility Pattern Mining Algorithm Using Up-to-Date
Utility-List for High Quality Pattern

but is also associated with an existence probability. This is

especially the case for data collected experimentally or using

noisy sensors. In the past, many algorithms were respectively

proposed to effectively mine frequent item sets in uncertain

databases. As an example let us analyze sales in a large retail

store. We can find that item set {bread, milk} is frequent,

item set {caviar, champagne} is of high utility and item set

{beer} is utility frequent. A smart manager should pay

special attention to item set {beer} as it is frequent and of

high utility. On the other side, item set {bread, milk} is

frequent but not of high utility and item set {caviar,

champagne} gives high utility but is not frequent.

If the utility of an item set X is no less than a user

specified minimum utility threshold θ, we call the item set as

high utility item set

U(X)≥θ→X is high utility itemset

Figure 4. High Utility Item set.

The discovered information of HUPs can be generally used

in various applications, such as decision support systems [5],

as well as a framework of data mining based analysis [8], or

knowledge discovery of material science and engineering [9],

to aid mangers or retailers for making the efficient decisions

or profitable strategies [10]. A pattern is not a HUP in the

entire databases but is a HUP in the recent intervals by

considering timestamp factor. For example, the combination

of {jacket, stocking} may not be concerned as a HUP in an

entire database but only in winter season. It is thus important

to find the seasonal or periodic HUPs than the entire ones. In

the past, several studies have been addressed the problem of

temporal (or temporal maximal) HUPM in data stream [11].

Data mining techniques are used to derive useful and helpful

information to aid managers for making efficient decisions in

many domains, such as basket analysis, DNA sequence

analysis and Web-log analysis. The most common way to

discover knowledge focuses on FIM in a binary database,

which only reflects the frequency of the presence or absence of

an item in the database. In practice, the purchase products or

items may contain several quantities in the transactions. High-

utility pattern mining (HUPM) is thus an extension of the

frequent itemsets mining (FIM) by taking both quantities and

profits of items into consideration, thus revealing valuable

patterns than frequent ones. For example, the number of

purchase jewels or gourmet foods may be lower than the

number of beverages but can bring higher profits for retailers.

2. High Utility Pattern Mining

Let I = {i1, i2, …, im} be a finite set of items in database

D, with each item ij having corresponding profit p(ij). An

itemset X∈I with k distinct items has length k and is referred

to as a k-itemset. The transactional database is denoted as D

= {T1, T2, …, Tn}, where TqχD. A quantity q(ij, Tq) is the

sold quantity of item ij in transaction Tq. An example

database and its profit table are respectively shown in Table 1

and Table 2.

The utility of an item ij in Tq is defined as u(ij, Tq) = q(ij,

Tq) ×p(ij).

For example, the utility of item {b} in T1 is calculated as:

u(b, T1) = q(b, T1) × p(b) (= 1×2) (= 2).

The utility of X in Tq is denoted as u(X, Tq), which can be

defined as:

u�X, Tq� 	
 ���
 , ���
����˄�⊆��

For example, u(bc, T1) = u(b, T1) + u(c, T1) = q(b, T1) ×

p(b) + q(c, T1) × p(c) (= 1×2+1× 2) (= 4).

3. Up-to-Date High Utility Pattern

(UDHUP)

Many algorithms were proposed to mine HUPs and seldom

algorithms were designed to mine UDPs. Mining recent

HUPs from a log database by considering timestamps of the

itemsets has not been proposed yet. In this paper, a new

representation of up-to-date high-utility pattern (UDHUP) is

thus designed to reveal more recent knowledge in real-world

applications. The definitions of the UDHUP are the same as

the HUPM except each transaction is sequentially ordered.

The example used in this algorithm is shown in Table 2, and

the profit table was shown in Table 1

Table 1. Profit table for sample database.

Item a b c D E f g

Profit 1 2 1 5 4 3 1

Table 2. Log database with ordered transaction and quantity.

TID Transaction time Item Transaction utility (tu)

1 2017/4/21 10:00 b:1,c:2, d:1, g:1 10

2 2017/4/21 11:10 a:4,b:1,c:3,d:1,e:1 18

3 2017/4/22 08:00 a:4,c:2,d:1 11

4 2017/4/22 15:00 c:2, e:1, f:1 9

5 2017/4/28 08:30 a:5, b:2, d:1, e:2 22

6 2017/5/01 10:00 a:3,b:4,c:1,f:2 18

7 2017/5/02 13:00 d:1, g:5 10

A user-specified minimum up-to-date high-utility

threshold is defined as minUtil, which can be used to find

 American Journal of Computer Science and Information Engineering 2017; 4(6): 58-63 61

UDHUP.

The total utility of the database with its past lifetime to the

current one is to sum transaction utilities from b to n, which

is denoted as:

TU��,�� 	
tu	�Tq�
�

 !�

where 1≤β≤n, and n is the number of transactions in D.

For example, TU [1, 7] in Table 2 is to sum all transaction

utilities from transaction 1 to 7, which is calculated as (10 +

18 + 11 + 9 + 22 + 18 + 10) (=98). TU [6, 7] in Table 2 is to

sum all transaction utilities from transaction 6 to 7, which is

calculated as (18 + 10) (=28).

A pattern X is called an up-to-date high-utility pattern

(UDHUP) if u(X)[β,n] ≥ minUtil *TU [β,n] with its lifetime

from β to n, which can be thus represented as {X: u(X), [β,

n]}.

4. UDHUP-List Algorithm

In this paper, a new data structure, called up-to-date utility-

list (UDU-list), is used to efficiently speed up the

performance for mining UDHUPs. The search space of the

UDHUP-list algorithm can be represented by an enumeration

tree. The presented UDU-list structure and the search space

of UDHUP-list are described below.

UDU-list structure

The up-to-date utility-list (UDU-list) structure which

consider timestamp factor is similar to the utility-list

structure. An UDU-list of an item set X in a database D

keeps a set of entries in which each entry includes the TID

number of X, the utility of X in Tq, and the remaining utility

of X in Tq. Notice that if an item/item set X after another

item/item set Y in a transaction is denoted as Y ≺ X.

An entry of X consists of three elements, including

(1) the TID for X in Tq (X⊆ Tq) denoted as tid,

(2) the set of utility for X in Tq (denoted as X.iu)

(3) the set of remaining utility for X in Tq (denoted as

X.ru), in which X.ru is defined as:

X. ru	 	 	
 u�i, Tq�
&⊆' (&∉' (�≺&

Assume that the processing order of patterns in the

UDHUP-list algorithm is sorted as the UDTWU-ascending

order. For the example in Table 2, the initial UDTWU values

of each 1- patterns are calculated as shown in Table 3.

Table 3. UDTWU of each 1-item.

Item UDTWU[1,7]

a 69

b 68

c 66

d 71

e 49

f 27

g 10

The processing order of patterns is thus {g ≺ f ≺ e ≺c≺b

≺a ≺ d}. The constructed UDU-list structures of 1-patterns

are shown in Figure 5.

Figure 5. Constructed UDU – list of 1- patterns.

The construction procedure of the UDU-list is recursively

processed for k-item sets if it is necessary to determine the

patterns in the search space. The construction algorithm is

shown in UDU- list construction Algorithm below.

INPUT: P: a pattern;

Px: the extension of P with an item x;

Py: the extension of P with an item y;

OUTPUT: Pxy.UDUL: the UDU-list of Pxy = Px ⋃ Py, x

is before y.

1: Pxy.UDUL← Ø. // the UDU-list of Pxy

2: for each entry Ex ∊ Px do

3: if ∃Ey ∊Py.UDUL and Ex.tid = Ey.tid then

4: if P.UDUL ≠ Ø then

5: Search entry E ∊ P.UDUL that E.tid = Ex.tid;

6: Exy ← < Ex.tid, Ey.iu + Ey.iu-E.iu, Ey.ru>.

7: else

8: Exy← < Ex.tid, Ex.iu + Ey.iu, Ey.ru>.

9: Pxy.UDUL ←Pxy.UDUL ⋃{Exy}.

10: return Pxy.UDUL.

Based on the built UDU-list structure, the necessary

information can be obtained by the following two operation

as follows.

Give an item set X, the sum of its utilities within its

lifetime [β, n] is denoted as X.IU[b,n], which is calculated as:

X. IU��,�� 	
X. iu�&�,
�

&!�
β	ϵ	Timelist	�X�	and	β	 7 	n

Give an itemset X, the sum of the remaining utilities

except X within its lifetime [β, n] is denoted as X.RU[b,n],

which is calculated as:

X. RU��,�� 	
X. ru�&�,
�

&!�
	β	ϵ	Timelist	�X�	and	β	 7 	n

The search space of the proposed UDHUP-list algorithm

can be represented as the enumeration tree in UDTWU-

ascending order of the discovered UDHTWUPs. Each node

N is then determined by the summation of the iu and ru as

the upper bound or Timelist (N) to decide whether the

subsets of the processed node is required to be determined or

not. If the summation of the iu and ru of the current

processed node is larger than or equal to the minimum utility

count within its lifetime, the subsets of the processed node

will be generated and determined. The utility of N can be

62 Shaikh Nikhat Fatma: Up-to-Date High Utility Pattern Mining Algorithm Using Up-to-Date
Utility-List for High Quality Pattern

determined by its iu to find whether it is an UDHUP within

its lifetime. The illustrated enumeration tree is shown in

Figure 6.

Figure 6. An enumerated tree.

The UDHUP-list pruning strategy

Based on the above definitions and the designed UDU-list

structure, an efficient pruning strategy is presented to prune

the search space, and thus greatly increase the efficiency of

the UDHUP-list algorithm.

Property: Given the UDU-list of an item set X with its

lifetime in the search space of UDHUP-list w.r.t. an

enumeration tree, the sum of all the iu and ru in the UDU-list

with its lifetime is always larger than or equal to the up-to-

date utility of any one of its children.

According to this Property, a pruning strategy in the

enumeration tree can be used to reduce the search space of

UDHUPs by exploiting the iu, ru and Timelist of an item set.

The sum of all the iu and ru in its lifetime from Timelist can

be used to determine whether the item set can be pre-pruned.

Pruning strategy. Let X be an itemset (node) encountered

during the depth-first search of the enumeration tree. With

any lifetime [β, n], if the sum of X.IU[β,n] and X.RU[β,n] of the

item set /node X according its constructed UDU-list structure

is less than the minimum utility count (minUtil X TU[β,n]),

none of the child node X is an UDHUP in lifetime [β’,n]

(β≤β’), and this part of the search space can be pruned.

Rationale. This pruning condition directly follows from the

above Property. According to Property, if the sum of X.IU[β,n]

and X.RU[β,n] is less than the minimum utility count (minUtil

X TU[β,n]) for a given item set (node) X, then any of its child

node (supersets) is not a UDHUP in the recent lifetime [β’,n]

(β≤β’), then can be ignored directly.

According to the above Property, the correctness and

completeness of the proposed UDHUP-list algorithm are

obtained. This can ensure that the proposed algorithm can

extract the correctly UDHUPs based on the sum of all utility

values. Moreover, the complete set of UDHUPs can

guarantee there are no missing UDHUPs based on the

proposed algorithm. The pseudo code of the proposed

UDHUP-list algorithm is described below.

INPUT: D (n = |D|), a transactional database;

ptable, a pre-defined profit table;

minUtil, the minimum up-to-date utility threshold;

minLen, the pre-defined minimum satisfied length.

OUTPUT: The set of UDHUPs.

1: Timelist ← Ø, acmtu-list ← Ø, and UDULs ← Ø;

2: scan D to calculate the Timelist and acmtu-list;

3: scan D to find UDHTWUP1 ←{UDTWU(ij)[β,n] ≥

(TU[1,n] –acmtu (Tβ))× minUtil, β ∊ Timelist (ij)};

4: sort 1-items I* ∊ UDHTWUP1 in ascending order of

their UDTWU;

5: scan D to construct UDULs for each I* in UDHTWUP1;

6: call UDHUP-Mine (Ø, I*, minUtil, minLen);

7: return UDHUPs

The UDHUP-list algorithm shown above takes the inputs

as:

(1) a transactional database D,

(2) a pre-defined profit table ptable,

(3) the minimum up-to-date utility threshold minUtil, and

(4) the pre-defined minimum satisfied length minLen.

It first scans the database to find the Timelist of each item

and the accumulated utility list (acmtu-list) as the necessary

information for the later mining process (lines 1–2). The

database is thus scanned again to discover the set of

UDHTWUP1 (lines 3), and the set of the UDHTWUP1 is

sorted in ascending order of their UDTWU (lines 4). The

UDHUP-list algorithm scans the database to construct

UDULs for each I* in UDHTWUP1 (lines 5). After that, the

set of all the 1-extensions of item set I* in UDHTWUP1 is

recursively processed using a UDHUP-Mine procedure (line

6). The depth-first UDHUP-Mine procedure is described

below.

 American Journal of Computer Science and Information Engineering 2017; 4(6): 58-63 63

The UDHUP-Mine procedure discovers the designed

UDHUPs by continuously shrinking the lifetime of each

pattern Px. Each pattern Px is determined to check whether

the early termination is satisfied (lines 2–3). The pattern Px is

recursively processed until the condition of UDHUP is

achieved (lines 8–22). The depth search (lines 16–22) is

performed if the summation of iu and ru for Px in the lifetime

from β to n (Px.IU[β,n] + Px.RU[β,n] is no less than minimum

utility count (lines 8–9). The UDU-list construction

procedure is also called to construct extensions of the UDU-

list extensions for a pattern Px (lines 18–21). After that, the

UDHUPs can be directly discovered (line 22).

5. Conclusion

In this paper, a new knowledge representation called up-to-

date high-utility pattern (UDHUP) is shown to solve the

limitations of traditional HUPM for revealing more

meaningful and useful HUPs of recent trends. Based on the

designed UDHUP, more recent up-to-date information of

HUPs can thus be discovered within its effective lifetime.

Utility-lists provide not only utility information about item

sets but also important pruning information for HUI-Miner. It

can mine high utility item sets without candidate generation,

which avoids the costly generation and utility computation of

candidates.

References

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association
rules in large databases, in: International conference on Very
Large Data Bases, 1994, pp. 487-499.

[2] R. Agrawal, R. Srikant, Mining sequential patterns, in:
International Conference on Data Engineering, 1995, pp. 3-14.

[3] S. B. Kotsiantis, Supervised machine learning: a review of
classification techniques, in: The Conference on Emerging
Artificial Intelligence Applications in Computer Engineering:
Real Word AI Systems with Applications in eHealth, HCI,
Information Retrieval and Pervasive Technologies, 2007, pp.
3-24.

[4] P. Berkhin, A survey of clustering data mining techniques,
Group. Multidimens. Data (2006) 25-71.

[5] R. Chan, Q. Yang, Y. D. Shen, Mining high utility itemsets, in:
IEEE International Conference on Data Mining, 2003, pp. 19-
26.

[6] J. M. Ale, G. H. Rossi, An approach to discovering temporal
association rules, in: ACM symposium on Applied computing,
vol. 1, 2000, pp. 294-300.

[7] C. Y. Chang, M. S. Chen, C. H. Lee, Mining general temporal
association rules for items with different exhibition periods,
in: IEEE International Conference on Data Mining, 2002, pp.
59-66.

[8] S. Chi, S. J. Suk, Y. Kang, S. P. Mulva, Development of a data
mining-based analysis framework for multi-attribute
construction project information, Adv. Eng. Inform. 26 (3)
(2012) 574-581.

[9] O. AbuOmar, S. Nouranian, R. King, J. L. Bouvard, H.
Toghiani, T. E. Lacy, et al., Data mining and knowledge
discovery in materials science and engineering: a polymer
nanocomposites case study, Adv. Eng. Inform. 27 (4) (2013)
615-624.

[10] C. W. Lin, T. P. Hong, G. C. Lan, J. W. Wong, W. Y. Lin,
Efficient updating of discovered high-utility itemsets for
transaction deletion in dynamic databases, Adv. Eng. Inform.
29 (1) (2015) 16-27.

[11] H. F. Li, H. Y. Huang, Y. C. Chen, Y. J. Liu, S. Y. Lee, Fast
and memory efficient mining of high utility itemsets in data
streams, in: IEEE International Conference on Data Mining,
2008, pp. 881-886.

