

International Journal of Wireless Communications, Networking and Mobile Computing

2015; 2(4): 42-50
Published online January 4, 2016 (http://www.aascit.org/journal/wcnmc)
ISSN: 2381-1137 (Print); ISSN: 2381-1145 (Online)

keywords
Representational State Transfer,
Performance,
Protocol,
Sensor Web,
Wireless Sensor Networks,
Sensor Web Enablement,
SOS

Received: November 4, 2015
Revised: December 2, 2015
Accepted: December 4, 2015

Secured Restful Sensor Web
Enablement Services for Wireless
Sensor Networks

Riadh Bouhouchi, Saida Yengui, Tahar Ezzedine

University Tunis El Manar, National Engineering School of Tunis ENIT, Tunis, Tunisia

Email address
riadh.bouhouchi@yahoo.com (R. Bouhouchi), saida.yengui@gmail.com (S. Yengui),
taharezz@gmail.com (T. Ezzedine)

Citation
Riadh Bouhouchi, Saida Yengui, Tahar Ezzedine. Secured Restful Sensor Web Enablement
Services for Wireless Sensor Networks. International Journal of Wireless Communications,

Networking and Mobile Computing. Vol. 2, No. 4, 2015, pp. 42-50.

Abstract
The security and interoperability of an adopted and advanced architecture within
heterogeneous components, based on the Open Geospatial Consortium (OGC) Sensor
Web Enablement Architecture (SWE) and RESTful web service, requires integrity and
confidentiality in the different communication protocol. The work in this paper aims to
propose a security protocol of communication between the sensors based on SWE services
and the adopted RESTful interface. RESTful services are considered a versatile
lightweight solution relied upon by a number of advanced web services, at the same time,
RESTful services suffer from a lack of meta-data description concerning security
requirements. In this way, we introduce the REST security protocol to provide secure data
transfer service which will implement a secure lightweight sensor message, together with
its quality and its performance analysis when compared to equivalent WS-security
configuration. As a result of this study, a new approach has been presented to providing
security for an adopted RESTful architecture model with OGC’s SWE services. The
security approach presented demonstrated the efficiency of the secured JSON message in
terms of communication time and size reduction.

1. Introduction

There is important on-going progress in the field of sensor networks deployment,
especially with regards to controlling and monitoring the environment through the
measurement of environmental physical values. Pollution, climate, global warming and
natural disasters are of global significance, directly impacting human well-being. The
criticality of the consequences requires that the communication tools be secure, providing
strong confidence in the data transfer protocol.

REST is suitable lightweight for such application; thus securing these web services
whilst respecting the SWE standards is the proposal we present in this paper.

Confidentiality, availability and integrity are the security features that we will apply on
web services in order to secure. Finally, section 5 we present our conclusions and future
work.

The paper is organized as follows: Section 2 introduces the most important works that
deal with the REST security and SWE standards. In section 3, we start by introducing the
architecture system based on SWE standards and REST technology presenting our security
approach for an adopted SWE services to a REST architecture style. In section 4, we
analyze and evaluate the performance of the proposed security approach and position our
security orientation regarding WS security APIs via a benchmark.

 International Journal of Wireless Communications, Networking and Mobile Computing 2015; 2(4): 42-50 43

2. Related Work

Diverse research and studies related to RESTful security
has been conducted to provide security methods for data
exchange between sensors and applications.

The security solution of Amazon S3 [1] REST security
model supports authentication and the client encryption data
over HTTP requests. Requests are based on a token method to
protect the data from unauthorized access, deletion or
modification. Transmitting the proof of identity and ensuring
the request authenticity it is the role of the token, which brings
the signature value calculated in every request. The security of
the data transfer depends upon the integrity of the end-points.

Rouached [5] research showed that RESTful services are
much lighter than SOS services.

Our approach is to secure our sensors communication
channel using the lightweight RESTful interfaces based on
SWE services. We propose to apply a specific security policy
on the sensors data exchange using the lightweight JSON
format based on OGC standards

The same solution by SAP Labs France [2] but it brings
more flexibility and server benefits from a PKI environment in
order to serve its clients by rendering services without the
need to maintain and generate secret keys. Users can use the
REST security protocol with any service providers by simply
uploading of their public key.

The security solution of Nevada Solar
Energy-Water-Environment [3] explains the authentications
implied for RESTful web service such as: HTTP Digest
Authentication, HTTP Basic Auth, Access Token and OAuth,
and API Key. This security solution uses the data collected
from various sensors and stores it within the database.

All these previous studies and others articles present
valuable security models and approach for REST security and
its performance. Some of them provide excellent results with
regards to securing communication channels between sensors
and application servers, however they do not provide an
interoperable and secured solution which respects standards.

Sergio [4] research provided a variety of interfaces by
sustaining interoperability of SWE and proposed the use of
RESTful services based on SWE standards.

3. Rest security for SWE

In this section, we will demonstrate the principle concept of
secured data transfer based on REST security principle sand
SWE standards.

3.1. SWE Framework

The SWE Framework is an idea from the Open Geospatial
Consortium (OGC) for a protocol that describes Sensors and
Sensor Observations, designed to unify communications between
sensors using a particular set of tools or a suite of standards
encodings. Those standards define the appropriate data format for
sensor data and metadata, and web services interfaces.

The work in this level aims at developing the
interoperability and improving the security of data provided
by sensor networks based on SWE standards.

SWE offers a specific language and service interface in
order to guarantee a smooth and standardized transfer between
sensors and data storage. This ‘core’ is divided in two parts:

• The “Service Model”: This standard defines 4 interfaces
of sensor related web service types

• The “Information Model”: contains the data model
primarily for the encoding of the sensor observations and
metadata results.

Part One: Information Model
• Sensor Observations Service (SOS): The standard,

which defines a web services interface; providing not
only querying observations but also sensor metadata.
Furthermore, this norm allows other operations such as;
registering new sensors and remove existing ones, and
defines new methods to insert new sensor observations.

• Sensor Planning Service (SPS): The standard that
defines interfaces for queries which provide information
about the abilities of a sensor and how to task it.

This Standard is designed to support queries that have the
following purposes:

• To determine the viability of a sensor planning request
(SPR)

• To submit and commit a request
• To ask about the status of the demand
• To update or remove a request
• To request details and information about additional OGC

Web services to provide access to data collected by the
requested task

• Sensor Alert Service (SAS): To determinate how alert or
“alarm” conditions are defined and detected. The “SAS”
norm is used to focus on alerts from sensors and sensor
webs, so the SAS itself acts like a registry rather than an
event notification system.

• Web Notification Services (WNS): This standard defines
a set of specifications which show the web service
interactions with the notifications. A web service can
communicate and exchange information with other web
services without needing prior knowledge of these other
Web Services.

Part Two: Information Model
• Observations & Measurements (O&M): The standard

which specifies an XML implementation for encoding
observations from a sensor and for features and
behaviors involved in sampling whilst taking those
observations.

Figure 1. Sensor Alert Service.

44 Riadh Bouhouchi et al.: Secured Restful Sensor Web Enablement Services for Wireless Sensor Networks

• Sensor Model Language (SensorML): The standard
which not only provides an xml schema for defining the
geometric, dynamic and observational characteristics of
a sensor, but also describes sensors systems and the
processes associated with the sensors observations.

• Transducer Model Language (TransducerML or TML):
Refers to the conceptual model and XML Schema for
exchanging live streaming or archived data from any
sensor systems.

OGC standards facilitate the adaptation of external tools,
forms and model to Restful interface which has been well
introduced in previous research; however, how can we
guarantee the confidentiality, the integrity and the availability
of the sensor data transfer once this implementation?

3.2. Security Policy for an Adapted SWE

Framework to REST Architecture

Our approach here is to adopt an advanced security policy
within heterogeneous components: adopt the Sensor Web
Enablement services with secure RESTful web service as
shown in Figure 2. This architecture is already defined and
based on two characteristics regarding the development of
REST interfaces for each element of the service model (SOS,
SAS, SPS, and WNS): Each service can be applied as an
application server that encapsulates SWE service instances,
and each operates as a proxy for the service to offer RESTful
interface to the data.

Each deployed sensor node can join the network by its
unique ID in order to provide, send and receive data using the
different Service Model Standards components (SOS, SAS,
SPS, and WNS) and the different operations of REST (POST,
GET, Delete, Put, etc).

In our case, the most important level is the SOS service and
the RESTful interface (RESTful SOS) which guarantees

interoperability and acts as a proxy to the existing SOS.
This proxy =also transforms encoded observations in the
Observations and Measurements format to lightweight JSON
format, which is considered as an independent platform for a
data exchange and requires lower overhead and less secured
resources compared to the XML format shown in figure 3.

Figure 2. Secure REST architectural style for SWE.

Proposing secure communication by respecting the
philosophy of RESTful services and taking full advantage of
the reusing the

HTTP protocol with the minimum overhead:
REST is ideally suited to exposing data over such networks

and has low bandwidth.

This advantage will be more efficient when we guarantee a
secured communication between the sensors based on SWE
services and those on the adopted RESTful interface.

Figure 3. Secure RESTful SOS.

In our case, reuse HTTP protocol to its full advantage will
be the pillar of our RESTful security principal protocol, which
will be very aligned to the WS-security standard
(confidentiality, Authenticity, and non-repudiation)

In this session, we show the steps to attach signature
information to a sensor message, the encryption of a REST
message and the basic authentication methods for REST.

3.2.1. Message Signature

The use of digital signatures for transmitting sensors data
through non-secure channels can be very valuable in
combating forgery and preventing the misrepresentation of
digital information.

In our case, a digital signature is a form of electronic
signature, which assures that receiving server that the sensor
message is the same message as intended by the sensor source.

In this case, a digital signature authenticates sensor
messages and guarantees the correct transmission of
electronic data.

The advantages of a digital signature process are better
overall performance of authentication, integrity, and
non-repudiation.

The principal of our implementation is to ensure secure
communication at the message level. The execution of the
secured signature REST program needs some requirements:
Msg is a message, sig is a signature algorithm name, dig is a
digest algorithm, cid is a Certificate Id, pk is the sender private
key, urlpath the requested path and hds are headers element to
protect. So, we started to declare variables that we will use in
our implementation.

/***** Variables declaration********/
 staticbooleanv;
 static String theURL ;
 staticMessageSignaturerequest;
staticbyte[] dv;
staticbyte[] valeursSignature;
 static String message ;
 static Cipher cipher;
In our program, we allow client to decide which algorithm

to use.
• MD5 (Message Digest 5) is a cryptographic hash

function that computes, from a given message it hash.

 International Journal of Wireless Communications, Networking and Mobile Computing 2015; 2(4): 42-50 45

• SHA1 with DSA creates and verifies the digital signature
of a message.

Figure 4. Hash algorithm and signature.

The java code presents steps to attach signature information
to the message after “digest then encrypt” processing.

Hash and Sign technical: Message => Hash =>Sign =>
Verification

SignatureAlgorithm = (Hash Function ID, Cipher ID)

Java code 1: Signature of Rest messages

dv =calculerValeurDeHachage(getMessage(),dig);
url=’’;
if(getMessage().equals(request))
{
 theURL= url.getPath();
 }
Byte[] bytes = concat(dv,url,sig,dig,cid,hds);
digValue = calculerValeurDeHachage(bytes,dig);
sigValue = encrypt(digValue,sig,pk);
We should start by generating method for public and private

keys: Generate keys from a security of parameter produces a
pair (private key :pk, public key: ppk).

Java function: Generate private and public keys

KeyPairkeyPair = generateKeyPair(key);
PrivateKeypk = keyPair.getPrivate();
PublicKeyppk =keyPair.getPublic();
publicstaticKeyPairgenerateKeyPair(longl) throws

Exception {
KeyPairGeneratorkeyGenerator =

KeyPairGenerator.getInstance("DSA");
SecureRandomrng =

SecureRandom.getInstance("SHA1PRNG", "SUN");
rng.setSeed(l);

keyGenerator.initialize(1024, rng);
return (keyGenerator.generateKeyPair());
 }

Public key was used to encrypt the message. The private

key is held by the receiver only, which is used to decrypt the
message encrypted with the public key.

Figure 5. Public and private method for keys generator.

We retrieve digValue from a function, which return bytes
from a message send via sensor and a message digest.

Java function: Calculate hash values

publicstaticbyte[]

calculerValeurDeHachage(MessageDigestdig,Stringmsg) {
dig.update(msg.getBytes());
 returndig.digest();
 }

Figure 6. Hash values.

Then we calculate the values of the signature using the
adequate method

Calculate the values of signing

publicstaticbyte[] signValue(Signature sig, byte[] data,

PrivateKeyclé,Stringmsg) throws Exception {
 sig.initSign(clé);
 sig.update(data);
return (sig.sign());
 }

Figure 7. Define the hash and signature values.

The second java code presents the signature verification
function. To verify if the signature is valid, we reverse
executed the previous digest and encrypted code.

We calculated digest values then we retrieved the digest

46 Riadh Bouhouchi et al.: Secured Restful Sensor Web Enablement Services for Wireless Sensor Networks

values calculated by the sender of a mobile message.

Java code 2: Verification of REST signature

publicstaticbooleanverifySig(byte[] data, PublicKeykey,

byte[] sig) throws Exception {
 if (data.equals(sig)== true) {
 returntrue ;
 }
 returnfalse;
}

3.2.2. Encryption

A goal is to protect data within messages sent from sensors
via RESTful web services to a data storage, based on the WSE
standards.

Encryption is used to protect sensitive data within the
sensor message. An algorithm and a cryptographic key are
used to encrypted data, whilst later the ciphertext is converted
back to the original plaintext.

Sensor as the originator of a message and the application
server that receives the message from the sensor.

The process of data confidentiality can be applied in two
steps:

• Encrypting the data. In this step, the sender (sensor)
converts plaintext to ciphertext.

• Decrypting the data. In this step, cipher text rendered
intelligible to the intended recipient (application server)
by converting it back to plaintext.

To provide data confidentiality, asymmetric algorithm is
preferable, it imposes heaviness but on large quantities of data,
it guarantees encryption performance. In addition, we
generate a symmetric small key, easy for encryption and will
be sent with the sensor message to the receiver.

This message contains the encrypted payload and the key
details regarding the encryption algorithm.

This code processes the payload of a message. To share
information between public and private keys, the message
contains an encrypted symmetric key.

Encryption of a REST message

Public static byte[] encrypt(byte[] m, PrivateKeyk){
 try
 {
 KeyGeneratorkeyGenerator =

KeyGenerator.getInstance("Blowfish");
 keyGenerator.init(n);
 SecretKeyblowfishKey = keyGenerator.generateKey();
 Cipher cipher;
 cipher =

Cipher.getInstance("RSA/ECB/PKCS1Padding");
 byte[] plainData = m;
 // symetric encryption of data and signature
cipher = Cipher.getInstance("Blowfish");
cipher.init(Cipher.ENCRYPT_MODE, blowfishKey);
cipher.doFinal(plainData);

return (cipher.doFinal(plainData));
 }
 catch (Exception e)
 {
 return null;

}

 }

This code presents the reverse operation with respect to the
above code. The message contains information about
encrypted parts and codes used for key encryption and date
encryption.

To decrypt the data, the receiver of a message retrieves the
symmetric key.

Figure 8. Encrypted payload during a request.

Decryption of a REST message

publicstaticbyte[] decrypt(byte[] data,
PrivateKeymyPrivateKey) {

 try {
 Cipher cipher;

 // decryptsecretKey with my private key
 cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
 cipher.init(Cipher.DECRYPT_MODE, myPrivateKey);
 byte[] plainData = cipher.doFinal(data);
 return (cipher.doFinal(plainData));
 }
 catch (Exception e)
 {
returnnull;
 }

3.2.3. Signature and Encryption

To enhance security, applying both a digital signature and
encryption will be an important feature. Creating a signature
allows for authentication, avoids repudiation. A signature
alone cannot stop attackers from accessing the content of the
message. Encryption alone is considered as an effective way
of protecting confidential data but do not preclude against data
manipulation and then data can be changed.

Due to the importance the integrity and security of data, a
combination of encryption and signature at the message level
is applied to ensure confidentiality of data and prevent
intruders from any modification.

 International Journal of Wireless Communications, Networking and Mobile Computing 2015; 2(4): 42-50 47

Figure 9. Signature & Encryption process.

3.2.4. Basic Authentication Methods for REST

Much research has been conducted about the use of HTTP
to resolve the authentication problem by developing solutions
and parameterizing servers in order to authenticate the client
in every request, using HTTP basic Authentication, digest
Authentication, Access Token, API Key and OAuth.

All these previous methods are used for web services
authentication, however HTTP basic Authentication and
HTTP digest Authentication are not statelessness due the lack
of session that keep the session. For this reason, the OAuth
method is considered as the best method as we use a Token
instead of ID and Password.

The client starts by requesting a service; the service server
(SS) redirects the clients to a specific browser. OAuth process
is working as following:

1. Client request service to SS
2. The SS redirect the client’s browser to the AS
3. The client login to the AS to get his Token
4. The SS get the Token from the AS
5. Client can access to the SS with the Token

Figure 10. OAuth authentication.

We have to note that this protocol allows a flexible way for
client to authenticate. Many approaches include Client’s id
and password as POST parameters by the use of
Authentication Http Header. It must pass a grant type (“client
credentials”) if they are correct, the AS return a JSON Object
that contain the access Token and it Type and optionally other
values needed. OAuth prefers the Authorization HTTP Header
as a mechanism to request an access Token.

4. Experimental Results and

Evaluation

The implementation of java codes for all these security
scenarios requires a specific configuration and also a
middleware system for preparing Sensor Web Infrastructures
(SWI) based on Sensor Web Enablement (SWE). We have
used a recognized free software: 52° North Sensor Web
framework, which provides implementations for all SWE
services through the OX-Framework (OGC framework).

The aim of OX-Framework is to offer a flexible
architecture, which provides easy access to all types of OGC
Web Services tools to visualize the required data. Thin SOS
Client application, Web Map Server application, and uDig
Plugin application are built in the OX-Framework in order to
provide access to the different sensor data, through a web
graphic user interface. In our case we have chosen the Thin
SOS Client to interface with SOS service. To implement this
demonstration we have used a several important public web
applications as the RESTful SOS deployed at URL1 of the
Institute for Geo-informatics of the University of Muenster
and the application of the JSON exchange format presented in
URL2.

The graphic interface provides easy accessibility to any
kind of SOS and the response to the O&M request will be
converted into a secured JSON format.

After configuring the different security scenarios and
preparing the full test environment, we conduct performance
tests in order to analyze the performance of our Restful service
security scenario with other security scenarios as WS-security,
measuring average response time (milliseconds), throughput
(transaction/seconds), and response size (KB).

48 Riadh Bouhouchi et al.: Secured Restful Sensor Web Enablement Services for Wireless Sensor Networks

This benchmarking test scenario also requires a system for
measuring and analyzing performance of the security solution
that we have used; Apache JMeter is the software used in this
operation.

In the following tables and figures, we present the
processing of the data buffer size in terms of transmission
time, using the different security mechanisms for REST and
SOAP services.

Table 1. SOAP XML $ REST JSON-XML without securiTY.

SOAPXML$RESTJSON-XMLwithoutsecurity

Responsetimeinmilliseconds
SOAP-XML 18,6 24 29,5 35 39 45 66 203 305
REST-XML 8,6 12,4 13,8 21,3 22,1 23,9 34 128 254,7
REST-JSON 4,5 9,8 8,9 10,6 11,5 14,5 19 103 205,5

Numberofservicerequests

1 2 3 4 5 6 7 8 9

The next figure shows the results of SOAP and REST without security

Figure 11. Statics results of SOAP XML $ REST JSON-XML without security.

Table 2. SOAP XML $ REST JSON-XML with sign security.

SOAP XML $ REST JSON-XML with sign security

Response time in milliseconds
SOAP-XML sign security 24,18 31,2 38 46 51 59 85 264 396,5
REST-XML sign security 11,1 16,1 18 28 29 31 44 170 330
REST-JSON sign security 5,8 12,7 12 14 15 17 25 133 270

Number of service requests

1 2 3 4 5 6 7 8 9

The following figure shows the results of SOAP and REST with signature security

Figure 12. Statics results of SOAP and REST with sign security.

Table 3. SOAP XML $ REST JSON-XML with encryption.

SOAP XML $ REST JSON-XML with encryption

Response time in milliseconds
SOAP-XML Enc 35,3 45,6 56 66,5 74,1 85,5 124 385,7 579,5
REST-XML Enc 16,3 23,5 26,2 40,4 42 54 65 242 483
REST-JSON Enc 8,5 18,4 17 20 22 28 36 195 390

Number of service requests

1 2 3 4 5 6 7 8 9

 International Journal of Wireless Communications, Networking and Mobile Computing 2015; 2(4): 42-50 49

The following figure shows the results of SOAP and REST with encryption

Figure 13. Statics results of SOAP XML $ REST JSON-XML with encryption.

Table 4. SOAP XML $ REST JSON-XML Encryption $ sign security.

SOAP XML $ REST JSON-XML Encryption $ Sign Security

esponse time in milliseconds
SOAP-XML Encryption $ sign 59,4 76,8 94,3 112 124,8 144 209 649,6 976
REST-XML Encryption $ sign 27,4 39,6 44,2 68,1 70,8 76 109 412 813
REST-JSON Encryption $ sign 14,3 31,1 29 34 37 45 61 328 660

Number of service requests

1 2 3 4 5 6 7 8 9

The following figure shows the average statistics results of SOAP and REST with encryption and signature

Figure 14. Statics results SOAP XML $ REST JSON-XML Encryption $ sign security.

The difference between SOAP and REST and also the
difference between REST-JSON and REST-XML in terms of
average processing time is mentioned in the all figures,
therefore we can conclude differences in performances
regarding signature and encryption, depending on the
processing data size.

REST-JSON security shows always better performances
than REST-XML and SOAP.

URL1:
https://svn.52north.org/svn/swe/incubation/OXRestWS/trunk
/OX-RestWS/

URL2:
http://swe.unimuenster.de:8080/52nRESTfulSOS/RESTful

/sos/AirBaseSOS/

5. Conclusion and Future Work

In this research, we have presented a new approach to
providing security for an adopted RESTful architecture model
with OGC’s SWE services. Secured exchanging of data

respecting the REST philosophy and SWE standards is
considered as an important extension to the SWE services.

We also examined the performance evaluation results and
analyzed the impact of the secured messages on the
performance of REST web services. The security approach
presented demonstrated the efficiency of the secured JSON
message in terms of communication time and size reduction.

As future works, enhancing the encryption based on
authentication tokens will be our priority.

References

[1] Sergio Trilles, Óscar Belmonte, Laura Díaz, and Joaquín
Huerta: Mobile Access to Sensor Networks by Using GIS
Standards and RESTful Services, IEEE SENSORS
JOURNAL, VOL. 14, NO. 12, DECEMBER 2014.

[2] Web Services Security: SOAP Message Security 1.0
(WS-Security 2004) OASIS Standard 200401, March 2004.

[3] D. Crockford, The application/json Media Type for JavaScript
Object Notation (JSON), 2006.

50 Riadh Bouhouchi et al.: Secured Restful Sensor Web Enablement Services for Wireless Sensor Networks

[4] T. Choi and M. G. Gouda, (2011) “HTTPI: An HTTP with
Integrity”, Department of Computer Science, the University of
Texas at Austin, IEEE.

[5] Leonard Richardson, Sam Ruby, RESTful Web Services, 2007.

[6] Pierre Gambarotto, Technologies pour Web Services faciles :
REST, JSON.

[7] Pavan Kumar Potti, Comparing Performance of Web Service
Interaction Styles: SOAP vs. REST.

[8] T. Choi and M. G. Gouda, (2009) “HTTP Integrity: A Lite and
Secure Web against World Wide Woes”, Department of
Computer Science, the University of Texas at Austin,
Tech.Rep.TR09-41.

[9] World Wide Web consortium (W3C), (2003) “Simple Object
Access Protocol (SOAP)”, [Online] Available:
http://www.w3.org/TR/SOAP

[10] Pankaj Choudhary Rajendra Aaseri Nirmal Roberts, HTTPI
BASED WEB SERVICE SECURITY OVER SOAP Dogan
Yazar, Demo Abstract: Augmenting Reality with IP-based
Sensor Networks.

[11] Mohsen Rouached,RESTful SensorWeb Enablement Services
forWireless Sensor Networks, IEEE 2012.

[12] Sanja Bogdanovic-Dinic Natasa Veljkovic and Leonid
Stoimenov. Ginissense - applying ogc sensor web
enablement.Earth Science, 2010.

[13] Dan Forsberg, RESTful Security: Nokia Research Center
Helsinki, Finland 4 Sungchul Lee, Ju-Yeon Jo, Yoohwan Kim:
ENVIRONMENTAL SENSOR MONITORING WITH
SECURE RESTFUL WEB SERVICE IJSC 2014.

[14] Jeffrey Shneidman, Peter Pietzuch, Jonathan Ledlie, Mema
Roussopoulos, Margo Seltzer, and Matt Welsh. Hourglass: An
infrastructure for connecting sensor networks and applications.
In Harvard Technical Report TR-21-04, 2004.

[15] Dogan Yazar and Adam Dunkels. Efficient application
integration in ip-based sensor networks. In Proceedings of the
First ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings, BuildSys ’09, pages 43–48,
New York, NY, USA, 2009. ACM.

[16] Gabriel Serme_, Anderson Santana de Oliveira_, Julien
Massiera_, and Yves Roudiery: Enabling Message Security for
RESTful Services_SAP Labs France, France.

[17] Amazon, “Amazon Simple Storage Service REST Security
Model,” http://docs.amazonwebservices.com/AmazonS3/
latest/dev/RESTAPI.html, 2006.

[18] “Method for secure RESTful web service” Sungchul Lee;
Ju-Yeon Jo; Yoohwan Kim Computer and Information Science
(ICIS), 2015 IEEE/ACIS 14th International.

[19] “Web service based Grid workflow application in quantitative
remote sensing retrieval” Longli Liu; Yong Xue; Jingzun
Zhang; Jia Liu; Qicheng Yu; Chi Li. Geoscience and Remote
Sensing Symposium (IGARSS), 2014 IEEE International.

Biography

Riadh Bouhouchi received the Master
degrees in communication systems from
ENIT, the MBA degree s from Mediterranean
School of Business, T.E graduated in 2000
from ESPTT, and hold an engineering degree
in computer sciences since 2006, as I hold
more than 8 international certificates in
advanced programming and management as

ITIL (Information Technologies Infrastructure Library).
riadh.bouhouchi@yahoo.com

Saida Yengui received the Master degrees
in Telecommunication and networks
systems from UVT, and hold an engineering
degree in computer sciences since 2006
from ENSI.
saida.yengui@gmail.com

Tahar Ezzedine received the M.S degree,
the Ph.D degree and the HDR degree
(Habilitation à diriger des recherches,
"accreditation to supervise research degree)
in Telecommunications, all from the
National school of engineers of Tunis
(ENIT), Tunisia. He is currently with
Syscom Research Lab leading an R&D
group for research and development of

wireless sensors network in different fields (environments,
agriculture, drought, structure health, …) enclosing GIS systems for
data display his interests also include smart objects and IOT.
taharezz@gmail.com

