

International Journal of Wireless Communications, Networking and Mobile Computing

2016; 3(4): 36-42

http://www.aascit.org/journal/wcnmc

ISSN: 2381-1137 (Print); ISSN: 2381-1145 (Online)

Keywords
Mobility Manager,

WSN,

WMSN,

3D Visualization,

Castalia,

OMNET++ and Network

Simulator

Received: April 30, 2016

Accepted: May 9, 2016

Published: September 9, 2016

Enhancing Mobility Management
and Supporting 3d Visualization

Hanafy M. Ali

Computers and Systems Engineering Department, Faculty of Engineering, Minia University, El

Minia, Egypt

Email address
hmali@mu.edu.eg

Citation
Hanafy M. Ali. Enhancing Mobility Management and Supporting 3d Visualization. International

Journal of Wireless Communications, Networking and Mobile Computing.

Vol. 3, No. 4, 2016, pp. 36-42.

Abstract
In this paper, an enhanced mobility manager will be presented to overcome many

drawbacks of Castalia’s traditional mobility manager. The presented mobility manger

can deal with paths rather than lines. This will allow users to simulate nodes moving

with any possibilities within the simulation space. Additionally a 3D visualization engine

will be integrated so that users can visualize their simulated 3D spaces and node easily.

Our system will be built by using OMNET++ and Castalia’s traditional mobility

manager. The visualizations provide full navigation, incorporate real-time construction

schedule information.

1. Introduction

Lately, researchers began to explore the use of wireless sensor networks (WSNs) in

low-quality image-based applications like process control, industrial automation, quality

control using image processing, video surveillance, multimedia streaming, and medical

imaging. The success of such attempts have created a new challenging area of research,

Wireless multimedia sensor networks (WMSN).

WMSN are wirelessly connected nodes that are able to retrieve and transmit

multimedia content like video and audio streams. The basic concept is inherited from

WSN and by using a set of inexpensive sensor nodes equipped with low-cost cameras or

microphones in the targeted applications like cameras in city streets to monitor traffic

flows, or the number of cars in parking.

Nodes in WMSNs are usually characterized as nodes that need to do multimedia

(video/audio operations) in the most reliable and power-efficient manner. Again, the

emergence of low-cost technologies in image/video sensory (CMOS image sensors and

microphones), digital signal processing as well as wireless communication have the most

impact on enabling and the spread of WMSNs [1-3]. While WSNs operated on simple

scalar measurements, WMSNs deal with more complex vector-based data such as video

and audio [4] where hundreds or thousands of media sensing devices, communicating by

means of wireless transmission, form WMSNs that serve different applications.

With the fast progress in hardware evolution, a single WMSN node supports one or

more audio/video sensors. Along with the rapid development of fast processing units,

WMSN has the ability to retrieve multimedia data, store them, process them in real-time,

or fuse multimedia data from even heterogeneous sources.

A wide variety of applications of WMSNs in military and civil sectors include, and not

limited to, those relating to surveillance [5-8], traffic monitoring and control [9-10],

health care [11-12], environmental monitoring [13] and industrial process control[14].

WMSN has not only enhanced existing WSN applications such as tracking, home

37 Hanafy M. Ali: Enhancing Mobility Management and Supporting 3d Visualization

automation, and environmental monitoring, but they have

also enabled several new applications including [15-19].

Currently available WSN tools may be adapted for

WMSN. However, this requires more effort to configure and

tune such tools for the requirements of current WMSN. On

the other hand, many extensions to available WSN tools were

developed to extend their functionalities in order to support

WMSN. Although this seems to solve the problem, such

extensions are usually developed as layers or plugins over the

existing ones, which introduce many performance issues and

limit their scalability.

The identified drawbacks/shortages of available simulation

platforms are directed to a novel platform that is capable of

supporting WMSNs with general multimedia-centric

operation. The novel simulation framework is basically an

extension to one of the most powerful event-oriented

simulation environment, the OMNET++ framework.

Equipped with Castalia, an extension to enable WSN, the

OMNET/Castalia integration served as a solid simulation

ground for basic WSN operations. Our developed framework

extends OMNET/Castalia to further multimedia based

operations by adding the following enhancements:

1. Adding the support for generic vision sensors with

support to general physical attributes like angle-of-view

(AoV), depth-of-view (DoV), direction, etc.

2. Adding the support for audio sensors.

3. Adding the support for unconstrained 3D mobility for

sensor nodes and their visualization.

Figure 1. Logical Architecture of an OMNeT++ Simulation Program.

OMNeT++[20-23] is a C++ based discrete event simulator

for modeling communication networks, multiprocessors and

other distributed or parallel systems. OMNeT++ is public-

source, and can be used under the Academic Public License

that makes the software free for non-profit use. The

motivation of developing OMNeT++ was to produce a

powerful open-source discrete event simulation tool that can

be used by academic, educational and research-oriented

commercial institutions for the simulation of computer

networks and distributed or parallel systems. OMNeT++

attempts to fill the gap between open-source, research-

oriented simulation software such as NS-2 [24] and

expensive commercial alternatives like OPNET [25].

OMNeT++ simulation programs possess a modular structure.

The logical architecture is shown on Figure 1. The Model

Component Library consists of the code of compiled simple

and compound modules. Modules are instantiated and the

concrete simulation model is built by the simulation kernel

and class library (Sim) at the beginning of the simulation

execution.

2. The Enhanced Mobility Manager

In this section, the requirements for the enhanced mobility

manager is first presented and discussed. Comparisons are

made between the two concepts from the original mobility

manager and the enhanced mobility manager. Then, the

enhanced mobility manager is developed and implemented

within the simulation engine.

2.1. Defining Requirements

As stated, Castalia has only one mobility manager; the

Line Mobility Manager. It is able to simulate a node moving

from starting position to final destination position. Table 1

presents the parameters of the Castalia’s line mobility

manager. User specifies target coordinations and speed of

moving. Additionally, he has to specify a fixed update

interval. This temporal interval defines when the simulator

updates the position of the node.

Figure 2. Simplified 2D description for the operation of the line mobility

manager.

Table 1. Parameters of Castalia's line mobility manager.

Parameter Description

updateInterval
(time) When to inform the simulation about the new

position of the node.

xCoorDestination X coordination of the targeted position.

yCoorDestination Y coordination of the targeted position.

zCoorDestination Z coordination of the targeted position.

Speed
The speed the node has when moving from start

position to target position.

 International Journal of Wireless Communications, Networking and Mobile Computing 2016; 3(4): 36-42 38

Figure 2 presents a simplified view of the line mobility

manager. As simulation progress, the manager has to decide

when to update the node position. Based on the fixed update

interval, the manager calculates what will be the distance made

by the moving node. Then, at this scheduled update interval,

the manager notifies the simulation about the position of the

node. The main drawbacks of this technique are:

1. Only one path can be defined (From A to B).

2. Simulation speed can be degraded if small update

interval is specified by the user.

3. User can manually reflect the update interval to update

steps by his own calculations (using the speed and

distance from A to B).

This shortage in functionality and the possibility of

simulation performance drawbacks cannot be neglected within

a solid multimedia simulation framework. Therefore, different

requirements are defined to improve Castalia’s mobility

manager. The new mobility manager should be able to handle

a path not a line. Therefore, users can specify any movements

within the simulated space. Paths are originally a set of nodes

with lines between. The moving speed between each two

points in the line should not be fixed. This will allow for more

flexible simulation cases. Finally, mobility should not be

attached with a fixed time interval. It can be attached with a

fixed incremental step in the inner distances of the path. This

should be set by the user to allow him control the trade-off

between simulation speed and mobility accuracy. Figure 3

presents a description of such requirements.

Figure 3. Simplified 2D description for the operation of the presented

mobility manager.

User defines his own target points/positions (A1, A2... AN)

and the speeds the node should move between (Speed 1,

Speed 2... Speed N). Additionally, he specifies the update

distance step rather than an update interval. This means that

the simulation will be notified with a new position only when

the node moves a distance equal to the update distance step.

This helps the user to directly control a trade-off between

simulation speed and mobility accuracy.

The mobility manager should continuously update the

node position according to the specified node targets and

with the specified update distance step. Because speed is not

fixed between nodes, it should be noted that the resulting

update interval may not be equal from different line to

another. This is not a concern but the user need to be aware

of because fast speeds with long steps may exclude some

points from the result (i.e. the manager will not update them

and will go to next points). Therefore, the user needs to

balance between the provided speeds and update step.

2.2. Developing the Path Mobility Manager

Based on the identified requirements in subsection 2.1, the

new mobility manager was developed as a dedicated module

within Castalia’s subsystem. As specified by Castalia

development manual [26], any new mobility subsystem

module should be described in a NED file and two source

code files: one for the object header and the other for the

object code. The three files are given in Appendices B-1, B-2

and B-3 respectively.

Table 2 shows the parameters of the new mobility

manager. They reflect the presented requirements to handle

path mobility rather than simple line mobility. Figure 4

shows the path mobility algorithm.

Table 2. Parameters of the novel path mobility manager.

Parameter Description

numPoints Number of points the path.

xPoints
X coordinates for each point in the path separated

with coma in a string.

yPoints
Y coordinates for each point in the path separated

with coma in a string.

zPoints
Z coordinates for each point in the path separated

with coma in a string.

Speeds
Moving speeds of the node for each point in the

path separated with coma in a string.

updateDistanceStep
Update distance at which the simulation is

notified with a change in the location.

Figure 4. Simplified algorithm of the path mobility management system.

39 Hanafy M. Ali: Enhancing Mobility Management and Supporting 3d Visualization

The algorithm is handled based on schedules specified by

the algorithm itself but managed with the OMNet++ event

management subsystem.

When it is called, the algorithm calculates the distance

from current location to the next point in the path. If the

specified update distance is less than what is remaining to

reach the target, the algorithm uses the update distance to

specify the next location in the path and calculates this from

an increment of the current location. Otherwise, the next

location is directly set to the next target, this target point is

considered done and the next point in the path becomes the

new target point.

Then, the algorithm checks whether we have landed on the

final point of the path or not. If not, it sets a new event so that

it will be called again to repeat the process.

2.3. Path Mobility Manager Test Case

A simple case study was applied to the path mobility

manager to test its functionality. A simulation of single

moving node without any functional application is defined. It

has no application so that we can concentrate on tracing the

mobility manager. A 3D path of two points is used as the case

study. Two different speeds are used to target each point in

the path. The following code listing the most important

parameters specified for the simulation. Also, Figure 5

depicts this case study.

SN.node[0].xCoor = 0

SN.node[0].yCoor = 0

SN.node[0].zCoor = 0

SN.node[0].MobilityManagerName = "PathMobilityManager"

SN.node[0].MobilityManager.numPoints = 2

SN.node[0].MobilityManager.xPoints = "10,50"

SN.node[0].MobilityManager.yPoints = "10,50"

SN.node[0].MobilityManager.zPoints = "10,10"

SN.node[0].MobilityManager.Speeds = "2,10"

SN.node[0].MobilityManager.updateDistanceStep = 5

SN.node[0].MobilityManager.collectTraceInfo = true

Figure 5. Simplified 2D description for the test case of the path mobility

manager.

The simulated node will start moving from initial point (0,

0, 0) to the first point in the path (10, 10, 10) with a speed of

(2 unit/sec). This yields a distance of (17.3 units) which will

be reached at time (8.66 sec). Next, the node moves to the

second target point (50, 50, 10) with a speed of (10 unit/sec).

This yields a distance of (56.5 units) and will be reached at

time (14.3).

The same results are obtained from the trace information

collected by the simulation engine, which proves the

correctness of the new mobility manager’s operation. The

following listing provides the information gathered during the

simulation of this simple case study. It is noticed that because

the update step is fixed, the time step changes between the two

lines in the path. The time step is (5/2 = 2.5 seconds) for the

first three time slices in the first line. It drops to be about (1.1

seconds) at the last time slice because the manager decided not

to consider the update distance provides as it will jump the

path beyond the target point. Similarly, the time step is (5/10 =

0.5 seconds) for all time slices of the second line except the

last time slice which is about (0.15 seconds) because the

manager decided not to consider the update distance provides

as it will jump the path beyond the target point.

Time Trace source Trace message

0 SN.node[0].MobilityManager initial location(x:y:z) is 0.00:0.00:0.00

2.5 SN.node[0].MobilityManager changed location(x:y:z) to 2.88:2.88:2.88

5 SN.node[0].MobilityManager changed location(x:y:z) to 5.77:5.77:5.77

7.5 SN.node[0].MobilityManager changed location(x:y:z) to 8.66:8.66:8.66

8.660254038 SN.node[0].MobilityManager changed location(x:y:z) to 10.0:10.0:10.0

9.160254038 SN.node[0].MobilityManager changed location(x:y:z) to 13.5:13.5:10.0

9.660254038 SN.node[0].MobilityManager changed location(x:y:z) to 17.1:17.1:10.0

10.16025404 SN.node[0].MobilityManager changed location(x:y:z) to 20.6:20.6:10.0

10.66025404 SN.node[0].MobilityManager changed location(x:y:z) to 24.1:24.1:10.0

11.16025404 SN.node[0].MobilityManager changed location(x:y:z) to 27.7:27.7:10.0

11.66025404 SN.node[0].MobilityManager changed location(x:y:z) to 31.2:31.2:10.0

12.16025404 SN.node[0].MobilityManager changed location(x:y:z) to 34.7:34.7:10.0

12.66025404 SN.node[0].MobilityManager changed location(x:y:z) to 38.3:38.3:10.0

13.16025404 SN.node[0].MobilityManager changed location(x:y:z) to 41.8:41.8:10.0

13.66025404 SN.node[0].MobilityManager changed location(x:y:z) to 45.4:45.4:10.0

14.16025404 SN.node[0].MobilityManager changed location(x:y:z) to 48.9:48.9:10.0

14.31710829 SN.node[0].MobilityManager changed location(x:y:z) to 50.0:50.0:10.0

 International Journal of Wireless Communications, Networking and Mobile Computing 2016; 3(4): 36-42 40

3. The Novel 3D Visulaization Tool

A 3D visualization tool is intended to visualize the

simulation of WMSNs where users can maintain a visual

contact with the movement of nodes and their actions during

the simulation. In this section, the requirements for a

visualization tool are first presented and discussed.

Additionally, reasons for developing a separate tool not an

integrated module are discussed. Finally, the required

visualization tool is designed, implemented and tested.

3.1. Defining Requirements

Historically, developers of WSN concentrated on lower

levels of their networks which include; nodal operation, inter

node communication routing, and environment interaction.

Therefore, simulation frameworks do not usually provide

visualization support as they are initially intended to provide

a correct simulation of the actions circulating with WSNs.

OMNet++ supports basic 2D visualization. It is quite

different than other simulators because it is a general event-

driven simulation framework that can simulate literally any

discrete-nature system. Therefore, the visualization engine

within OMNet++ is not sufficient for the requirements of

modern WMSNs. Castalia supports 3D field simulation

where user can define mobility in a 3D world. However, it

has not provided by any means of visualization for such

simulation abilities.

WMSN simulation user requires a 3D visualization of the

simulated nodes where he can identify the position of his

moving nodes (e.g. simulated robots), track cameras

perspectives and identify flaws in algorithms that affect

mobility.

3.2. Developing the Visualization Tool

A novel visualization tool was developed to handle user

requirements. It is a tool not a module within Castalia. This

means that it is not included within the simulation process.

However, it works based on the simulation results. The main

benefits of separating the visualization away from the

simulation are:

1. Simulation gets slower when combined with

visualization.

2. Real time visualization may not be possible for all

simulations which can be annoying and not user

friendly.

3. Separated visualization gives the user the freedom to

view the visualized simulation as many times as he wish

and analyze it.

Figure 6 presents the operation of the visualization

process. As usual, the user runs the simulation with his input

(.ini) configuration data describing his network, nodes and

applications. The enhanced OMNet++/Castalia with the

novel mobility manager will track changes of the simulated

nodes and report them to a visualization report file. To this

moment, the simulation phase is done and the regular results

are accessible to the user. However, additional visualization

report is available this time.

The actual visualization phase starts when the user uses the

developed visualization tool to visualize his simulation. He

provides the visualization tool with the visualization report.

The visualization engine (the core of the visualization tool)

analyses the report and provides the user with a 3D real-time

visualization.

The user can easily automate the process. He can simply

write a single-line command to cascade both operations so

that when the simulation phase ends, the visualization phase

starts immediately. Such design gives freedom to user and

frees the simulation proess from heavy 3D visualization

operations that can slow the simulation process.

Figure 6. Description of the operations within the visualization process.

Figure 7. Algorithm of the 3D visualization engine.

Figure 7 presents the algorithm of the visualization engine

(the core of the visualization tool). The visualization engine

41 Hanafy M. Ali: Enhancing Mobility Management and Supporting 3d Visualization

is responsible for eading the visualization report and insuring

it is visualized correctly and in real-time.

The engine starts by initiating a 3D world with cartisian

coordinates with the help of OpenCV’s [27-28] 3D engine.

Then, it reads the visualization report. The initial data

provided in the report is the characteristics of the simulated

network field (length, width, and height of the simulated

world in Castalia). Then, it mirror to the visualized 3D world.

The main challenge in the visualization engine is to handle

multiple moving nodes. Visualization reports contain

mobility path details for different nodes moving in different

paths within different times. The engine should maintain a

smooth timing sequence and mirrors events ordered by time

not by the paths take by the nodes.

Figure 8. Screenshot of a frame within the visualization result.

Figure 8 presents a screenshot of the developed

visualization tool during the visualization of a simulated

two-node network. The network field is visualized as a

plane if it is 2D and as a framed-box if it is 3D. Nodes are

visualized with red cubes with their names stick on the top.

User can freely change the camera perspective using the

mouse.

4. Conclusion

The Mobility Manager class in Castalia defines a base for

any mobility manager module and provides several functions

to help with the operations of the module. All mobility

manager modules must be derived from this base class. In

this work, we discussed the need for a simulation

environment for realistic Wireless Multimedia Sensor

Networks and presented WMSN, a Wireless Simulation

Environment for Multimedia Networks. After considering the

state of the art of network simulators, we focused on the

Castalia/Omnet++ framework and extended its basic

functionalities to operate with networks of multimedia

sensors.

Also, an enhanced mobility management manager was

provided for Castalia. The user requirements for a generic

Path mobility management was defined and stated. Then, the

proposed mobility manager was presented. A test case was

presented and discussed for the path mobility manager which

proved its functionality. The presented mobility manger is

efficient, easy to use, fast and time saver.

Visualization using is low-cost, open-access software

platforms that can overcome many of these barriers. The

visualizations provide full navigation, incorporate real-time

construction schedule information. They are easily used by

individuals with only basic computer skills. The visualization

tool was developed to enable users to have a visual feedback

of their simulation processes. The requirements were stated

and discussed and the tool is presented and developed.

Currently, with the help of this tool and the mobility manger,

the user can easily visualize his work and identify difficulties

within his wireless multimedia sensor network designs.

References

[1] B. Harjito and S. Han, "Wireless Multimedia Sensor Networks
Applications and Security Challenges," in 2010 International
Conference on Broadband, Wireless Computing,
Communication and Applications, 2010.

[2] E. Gurses and O. Akan, "Multimedia communication in
wireless sensor networks," Ann. Telecommun., vol. 60, no. 7,
p. 799–827, 2005.

[3] S. Misra, M. Reisslein and G. Xue, "A survey of multimedia
streaming in wireless sensor networks," IEEE
Communications Surveys & Tutorials, vol. 10, no. 8, pp. 18-
39, 2008.

[4] C. Nastasi and A. Cavallaro, "WiSE-MNet: an experimental
environement for wireless multimedia sensor networks".

[5] X. Wang, S. Wang and D. Bi, "Distributed visual-target-
surveillance system in wireless sensor networks," IEEE Trans.
Syst., Man, Cybern. B, vol. 39, no. 5, p. 1134–1146, Oct.
2009.

[6] W.-T. Chen, P.-Y. Chen, W.-S. Lee and C.-F. Huang, "Design
and implementation of a real time video surveillance system
with wireless sensor networks," in IEEE 67th Veh. Technol.
Conf.: VTC2008 Spring, Marina Bay, Singapore, May 2008.

[7] S. Sert, A. Yazici and A. Cosar, "Data fusion and processing in
Wireless Multimedia Sensor Networks: An analysis for
surveillance applications," in 2014 22nd Signal Processing
and Communications Applications Conference (SIU), 2014.

[8] M. Alaei and J. M. Barcelo-Ordinas, "A hybrid cooperative
design for energy-efficient surveillance in Wireless
Multimedia Sensor Networks," in European Wireless, 2012.
EW. 18th European Wireless Conference, 2012.

[9] S. Bouaziz, M. Fan, A. Lambert, T. Maurin and R. Reynaud,
"PICAR: experimental platform for road tracking
applications," in IEEE Intelligent Vehicles Symposium, June
2003.

[10] J. Campbell, P. Gibbons, S. Nath, P. Pillai, S. Seshan and R.
Sukthankar, "IrisNet: an Internet-scale architecture for
multimedia sensors," in ACM Multimedia Conference, 2005,
2005.

[11] F. Hu and S. Kumar, "Multimedia query with QoS
considerations for wireless sensor networks in telemedicine,"
in Intl. Conf. on Internet Multimedia Management Systems,
Orlando, FL, 2003.

 International Journal of Wireless Communications, Networking and Mobile Computing 2016; 3(4): 36-42 42

[12] A. Reeves, "Remote Monitoring of patients suffering from
early symptoms of Dementia," in Intl. Workshop on Wearable
and Implantable Body Sensor Networks, London, UK, 2005.

[13] R. Holman, J. Stanley and T. Ozkan-Haller, "Applying video
sensor networks to nearshore environment monitoring," IEEE
Perv. Comput., vol. 2, no. 4, p. 14–21, 2003.

[14] A. A. K. S., K. Øvsthus and L. M. Kristensen, "An Industrial
Perspective on Wireless Sensor Networks — A Survey of
Requirements, Protocols, and Challenges," IEEE
COMMUNICATIONS SURVEYS & TUTORIALS, vol. 16,
no. 3, pp. 1391-1412, 2014.

[15] I. Akyildiz, T. Melodia and K. Chowdhury, "A survey on
wireless multimedia sensor networks," Computer Networks,
vol. 51, no. 4, pp. 921-960, 2007.

[16] H. Sundani, H. Li, V. K. Devabhaktuni, M. Alam, and P.
Bhattacharya, “Wireless Sensor Network Simulators A Survey
and Comparisons,” International Journal of Computer
Networks, vol. 2, pp. 249–256, February 2011.

[17] F. G. Marmol and G. M. Perez, “TRMSim-WSN, Trust and
Reputation Models Simulator for Wireless Sensor Networks,”
in Proceedings of IEEE ICC 2009, IEEE International
Conference on Communications, (Dresden, Germany), 14–18
June 2009.

[18] M. Imran, A. M. Said, and H. Hasbullah, “A Survey of
Simulators, Emulators and Testbeds for Wireless Sensor
Networks,” in Proceedings of ITSim 2010, 4th International
Symposium on Information Technology, vol. 2, (Kuala
Lumpur, Malaysia), pp. 897–902, 15–17 June 2010.

[19] H. Sundani, H. Li, V. K. Devabhaktuni, M. Alam, and P.
Bhattacharya, “Wireless Sensor Network Simulators A Survey
and Comparisons,” International Journal of Computer
Networks, vol. 2, pp. 249–256, February 2011.

[20] OMNeT++ Home Page. http://www.omnetpp.org [accessed on
September, 2007]

[21] Varga, A. 2001. The OMNeT++ Discrete Event Simulation
System. In the Proceedings of the European Simulation
Multiconference (ESM2001. June 6-9, 2001. Prague, Czech
Republic).

[22] Kaage, U., V. Kahmann, F. Jondral. 2001. An OMNeT++ TCP
Model. To appear in Proceedings of the European Simulation
Multiconference (ESM 2001), June 7-9, Prague.

[23] Wehrle, K, J. Reber, V. Kahmann. 2001. “A Simulation Suite
for Internet Nodes with the Ability to Integrate Arbitrary
Quality of Service Behavior”. In Proceedings of the
Communication Networks and Distributed Systems Modeling
and Simulation Conference 2001, Phoenix (AZ), USA,
January 7-11.

[24] Bajaj, S., L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M.
Handley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S.
McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H. Yu
and D. Zappala. 2000. Improving simulation for network
research. IEEE Computer. (to appear, a preliminary draft is
currently available as USC technical report 99-702)

[25] OPNET Technologies, Inc. OPNET Modeler.
http://www.opnet.com [accessed on September, 2007]

[26] A. Boulis, "Castalia - A simulator for Wireless Sensor
Networks and Body Area Networks User’s Manual Version
3.2," NICTA, March 2011.

[27] OpenCV, "OpenCV Organization Homepage," 2015. [Online].
Available: opencv.org. [Accessed 2015].

[28] Nvidia, "Nvidia CUDA Zone - OpenCV," Nvidia, 2014.
[Online]. Available: https://developer.nvidia.com/opencv.
[Accessed 2015].

