

International Journal of Wireless Communications, Networking and Mobile Computing

2017; 4(2): 16-23

http://www.aascit.org/journal/wcnmc

ISSN: 2381-1137 (Print); ISSN: 2381-1145 (Online)

Keywords
Raspberry-Pi,

Wi-Fi,

Remote Frame Buffer,

Virtual Network Computing,

Web Socketing

Received: March 8, 2017

Accepted: May 3, 2017

Published: August 8, 2017

Wireless Data Transmission
Through VNC and RFB over Web
Socketing

Sachin Ruikar, Manoj R. Jagdamwar

Department of Electronics Engineering, Walchand College of Engineering, Sangli, Maharashtra,

India

Email address
ruikarsachin@gmail.com (S. Ruikar), mk5491@gmail.com (M. R. Jagdamwar)

Citation
Sachin Ruikar, Manoj R. Jagdamwar. Wireless Data Transmission Through VNC and RFB over

Web Socketing. International Journal of Wireless Communications, Networking and Mobile

Computing. Vol. 4, No. 2, 2017, pp. 16-23.

Abstract
This research paper consists of video data transfer in the using raspberry pi. The wireless

transmission module is used as a tool for communication media between the devices. It

use VNC and RFB protocols over web socket to transfer and access the PC desktop

remotely with the help of Raspberry- pi. Now days the popular way to access a specific

system is by using VNC (Virtual Network Computing). VNC offers user to share

desktops over available network. VNC basically allows user to view and control the

interface of another available computer remotely and can be thought of as the GUI

(graphical user interface) equivalent to Telnet. In this work VNC server is used for front

end system and for back end connection at server side TCP is used. There is need to

develop client side which is open in browser. This requirement of opening browser for

support web socketing.

1. Introduction

Wireless transmission refers communication system without any physical medium

unlike wired transmission system. In modern communication system, information

transfer via wireless medium is very crucial aspect. In wireless communication system,

data or information transfer is done with the help of electromagnetic waves. EM waves

include use of radio frequencies, infrared, satellite communication. This type of system

is set and air is the medium used for data transmission. The end of 19th century is the

dawn of wireless transmission system. The relevant technology has been developed over

next century. Today, wireless technology is present in every aspect of communication

systems ranging from Bluetooth devices to smart phones. Also, for data transfer in

laptops, computers, printers and numerous other electronic devices wireless

communication system is used. In today’s world, space and accuracy are important

aspect of data transfer. Hence, It is important achieve high data rate. Wireless devices

using technologies like ZigBee, Bluetooth, Wi-Fi works with different data rates. IN

smart phones, xender, shareit these types of applications are used for data transfer [1].

System consider an application in which multiple computer desktops are constructed

on a server and streamed to remote display devices over an IP network. Applications

executing on the server are interactive and, therefore, latency sensitive. Whereas the

server typically includes high-end general computing resources, specialized graphical

processing units (GPUs), and possibly specialized hardware for compression and

streaming, the remote display devices (clients) are typically limited in processing

capabilities. Our design objective is to deliver good video quality at low latency, while

17 Sachin Ruikar and Manoj R. Jagdamwar: Wireless Data Transmission Through VNC and RFB over Web Socketing

minimizing processing requirements on the client. The server

must be able to encode a large number of streams in real time.

If implemented in hardware, the encoder must be a compact

and scalable circuit. Software implementations must have

modest processing requirements and should be able to use

readily available hardware accelerators such as GPUs and

multicore CPUs. Along with the encoder, it design a

streaming protocol that is optimized for interactive desktop

applications. In contrast to traditional video streaming

protocols, the decoder cannot afford to have a large jitter

buffer. Still, streaming must be robust in the face of packet

losses and delays [2].

This paper is organized as follows. Section I describe

introduction to communication. Section II illustrates

proposed embedding system. Section III explain algorithm

for protocols. Thorough representations of experimental

results are presented in section V.

2. Proposed Embedding System

In this proposed system main focus is transmission of data

with high speed. For this many systems are present but they

won’t provide required speed and not efficient. In proposed

system it will transfer data between two platform (PC and

Raspberry-pi) through wireless and for so that it will

implement an algorithm. The proposed system will contain

following major components as shown in Figure 1

Figure 1. Block diagram of proposed embeding system.

2.1. Hardware

One single board computers (e.g. Raspberry Pi or any

other relevant board) and PC or Laptop, Wi-Fi Module,

Monitor, Power cable.

2.2. Software

System implement algorithm for high speed data transfer

for that it use web socketing which allows full- duplex

communication. System use VNC (Virtual Net- work

Computing). VNC lets user share desktops over any network.

It essentially allows user to view and control the interface of

another computer remotely and can be thought of as the GUI

(graphical user interface) equivalent to Telnet. It can also

think of VNC as a long, virtual cable that enable user to view

and control another desktop with its mouse, keyboard, and

video signals. It use VNC with the Remote Frame buffer

protocol, The Remote Frame buffer protocol (RFB) is an

informational specification from the IETF (RFC 6143). A

frame buffer is an array containing all of the pixel values

displayed by a graphical computer system, and is the lowest

common denominator model of a desktop computer. RFB is

therefore a way to remotely access a frame buffer. For any

system with a keyboard, mouse and screen, there is probably

a way to access it with RFB [3] [4].

3. Software Implementation

The system use VNC server and RBF client protocol over

the WebSocket for data streaming. WebSocket is an

application level function, which run on transport layer and

TCP is work as transport layer. It use TCP as a proxy server,

which placed between VNC server and RFB Client as shown

in Figure 2. TCP proxy server takes messages as WebSocket

messages from server and passes as TCP messages to the

Client.

 International Journal of Wireless Communications, Networking and Mobile Computing 2017; 4(2): 16-23 18

Figure 2. Connecting with RFB over WebSocket.

3.1. WebSocket Protocol

In the networking to communicate with server or client

there are many issues, to eliminate these issues HTML5

includes WebSocket. WebSocket contain bidirectional, full-

duplex, single-socket connection. After the WebSocket

connection is created the server can send messages as the

client available because of that the latency will reduces. After

establishing the connection server send first message to the

client, the server will not wait for the client request.

WebSocket provide the real-time communication much more

efficiently [5]. The WebSocket communication take place as

shown in the Figure 3. The WebSocket protocol is a network

protocol which define how server and clients communicate

over the Web network. With HTTP request every WebSocket

connection begins.

Figure 3. The way WebSocket Handshake and communication take place

between server and client.

Ones the connection open between server and client, either

server or client can send message to each other. The message

represent as a binary syntax over the network, it also called

as Frame. The Figure 4 show the structure of the WebSocket

frame.

Figure 4. WebSocket frame header.

WebSocket Framing code is responsible for Opcodes,

Length, Decoding Text, Masking, Multi-frame message

3.1.1. Opcodes

Each and every WebSocket message contain opcode which

specifying the type of the message payload. The last four bits

in the first byte of the frame consists opcode. Opcode contain

numerical value as shown in table 1, only five opcodes define

by the WebSocket Protocol.

Table 1. Ready state attribute, values and status description.

Attribute Constant Value Status

WebSocket.CONNECTION 0
The connection is in progress but

has not been established.

WebSocket.OPEN 1

The connection has been

established. Messages can flow

between the client and server.

WebSocket.CLOSING 2
The connection is going through

the closing handshake.

WebSocket.CLOSED 3
The connection has been closed

or could not be opened

3.1.2. Length

The WebSocket Protocol uses variable number of bits to

encodes frame length, which allows to use a compact

encoding while still allowing the protocol to carry medium-

sized and even very large message.

3.1.3. Decoding Text

With UCS Transformation Format 8 bit it encoded the

Text WebSocket messages. For Unicode UTF-8 is a variable-

length encoding, that is also backward compatible with

seven-bit ASCII.

3.1.4. Masking

WebSocket frame are masked to unclear their contents

which sent upstream from browsers to server. The purpose of

masking is not to just prevent eavesdropping, but also to

intend for an unusual security resone and to improve

compatibility with existing HTTP proxies. To know whether

the frame is masked or not is define by first bit of the second

byte. The WebSocket Protocol requires that clients mask

every frame they send.

3.2. VNC Server (Virtual Network Computing)

VNC is a popular way to access a specific system. VNC

allow user to share desktop over any network. It specifically

allows user to view and control the interface of another pc

remotely equivalent to Telnet. VNC work as virtual cable

which enables users to view and control another PC with it

mouse, keyboard and video signals. There are several

protocols for remotely accessing desktop. It use X11 for

UNIX and Linux as a VNC Server [6] [7] [8] [9]. It is an

Open source technology that is based on the RFB protocol.

The Flow of the server is shown in following figure 5.

19 Sachin Ruikar and Manoj R. Jagdamwar: Wireless Data Transmission Through VNC and RFB over Web Socketing

Figure 5. Server side Flow chart.

Figure 6. Client side Flow chart.

First system start the VNC server i.e. x11 on server, the

server is Linux PC. System run WebSocket server program

on server side. The server create the WebSocket variable

with specific IP address and port address, the server listen the

connection on this port address. So server continuously listen

the client response until any client want to connect to server.

At back end the TCP server is on, the TCP server take

WebSocket Message and transfer as TCP message it work as

transport layer. Ones the connection initiate first hand shake

process will take place, in first phase they exchange the

protocol ones it’s happen it forward to authentication. The

VNC server send the array of bytes that indicate the types of

authentications it supports. After this server send a desktop

 International Journal of Wireless Communications, Networking and Mobile Computing 2017; 4(2): 16-23 20

message which contain that if the client will share and allow

other VNC viewer to connect to the same desktop, this

message is only 1 byte in length. By this message handshake

will complete, the server has to send first message to client

which is server in it message, which contain screen

dimension, bits per pixel, depth, big endian flag and true

color flags. Ones it send message it send frame buffer update

request, client send frame buffer when message event occur it

check the opcode if it is data it process further else it close

the web socket or error the message depending on the opcode.

If it’s a data it passes to process Buffer function, here it

check the fin bit for checking the last frame, it check the

frame length if it’s to large then it send error message and it

close the connection, it also separate the opcode and payload

and send it to handle frame function. handle Frame function

process the opcode and payload, opcode contain that the

message contain text or binary data or pig or pong or close

action if its close action then server close the WebSocket

connection by giving the resone.

3.3. RFB Client

System can remotely access the graphical user interface by

using RFB (Remote Frame Buffer), RFB works at

framebuffer level. Windowing system like x11, windows and

Macintosh use the same protocol. The protocol has good

ability to exchange and use information so that the protocol is

widely used. The RFB clients where the user sits typically

with display, keyboard and printer and the RFB server is

where changes to frame buffer originate. While designing the

RFB protocol there are very few requirements of clients so

clients can run on the widest range of hardware and

implementation of client is also very simple. The state of user

interface is resumed i.e. automatic reconnection is done to

the same server after disconnection from given server. Same

server can serve different client end points. User can see the

same graphical user interface at two different end points, so

the application becomes completely mobile. When user get

network connectivity he can access his own application

because of this, wherever user goes he finds familiar and

uniform view of computing infrastructure [10] [11] [12].

RFB protocol can be based either on bytes stream transport

or on message based transport. Protocol uses TCP/IP

connection for its operation. In handshaking phase protocol

version and the type of security are decided. In second phase

i.e. initialisation phase clientInit and serverInit messages are

exchanged by client and server. In the final stage of normal

protocol interaction client can communicate with server

through message and can receive reply message from the

server. All these messages start with message type byte

followed by intended data. Protocol messages use the basic

types U8, U16, U32, S8, S16, and S32. Here U stands for

unsigned integer and S stands for signed integers. Message

format can also be having padding bits or bytes. For effective

communication messages should be generated with padding

value equals to zero and at the same time message recipient

should not consider padding as any particular value. Figure 6

shows the flow of RFB client [13] [14] [15].

When system run the RFB Client on client side first it will

connect to the given URL. Server listen the connection on this

URL. Ones server know that client present then it initiate the

connection by sending messages. Before Sending frames hand-

shake will happen between server and client. Server send the

protocol version message which contain small stream of byte.

Client response for version will send to server. After Version

exchange the readHandler control goes from VersionHandler

to NumSecurityHandler. The NumSecurityHandler define

number of security, from this type of security it has to choose

one security type. For this the readHandler passes the control

to securityTypesHandler. Here it select the particular type of

security which it want in the communication throughout the

connection. It can send back ’1’ to select non security. After

selecting Security the readHandler passes to

authSuccessHandler. Which allow the desktop sharing to

server for this it send back ’1’ to server. By this the Handshake

will complete and it listen the events, Ones the message event

happen the read handler passes to DefaultHandler.

DefaultHandler passes the control to RectangleHandler

rectangle has a count of rectangles which send by server. The

RectangleHandler separate the opcode and payload from

message depending upon the opcode the action on payload

happen. If opcode contain binary data depending upon the

encoding type RectangleHandler passes the control to one of

the encoding type handler i.e. RawHandler or

CopyRecHandler. Both of this handler paint the binary data

on the screen using vnc.ss which allow the 2d painting on the

screen. After executing the encoding handler the readHandler

control passes to default handler. It also send the frame

buffer to server in the response of framebuffer update request,

with this frameBuffer client send framebuffer update to

server. If the opcode contain close action then client close the

connection with resone. Resone is for in which condition the

connection will close.

4. Hardware Implementation

For hardware implementation system required one Laptop

with Linux operating System installed and have Wi-Fi

connectivity, also with good processor. It also required one

Raspberry- pi with Raspbean operating system installed and

with up-graded version of browser. For wireless

communication system use LeoSys Wi-Fi dongle for

Raspberry-pi side. User has to start laptop and Raspberry-pi

with monitor attach to the Raspberry-pi through HDMI cable,

it also have to connect keyboard and mouse to raspberry-pi

through USB cable. First system have to run x11vnc server on

laptop after this it just run shell script file which also initiate

the TCP server. In client side put all files in one folder and run

the html file. User get the Server GUI on the client browser

user can access whole server desktop from client browser.

5. Experiment and Result

In this experiment system use PC and Raspberry pi as a

two platform. At PC it create Access Point or Hotspot and R-

21 Sachin Ruikar and Manoj R. Jagdamwar: Wireless Data Transmission Through VNC and RFB over Web Socketing

pi is station point as shown in figure 7. First it connect station

point to access point so that it get the ip address, put that ip

address in the URL so that it can connect to web socket

server. Run the VNC server as shown in figure 8 followed by

executing TCP proxy server as shown in figure 9. Opening

and closing of TCP proxy connection shown in figure 10.

Run client side web page user get the desktop control on the

web page of server as shown in figure 11. Each event will

transfer to the server i.e. keyboard and mouse and it get the

update of event happen on the server.

(a) (b)

Figure 7. (a) & (b) Execution of Wi-fi connection

(a) (b)

Figure 8. (a) & (b) Execution of the VNC server.

Figure 9. Execution of WebSocket server.

 International Journal of Wireless Communications, Networking and Mobile Computing 2017; 4(2): 16-23 22

(a) (b)

Figure 10. (a) & (b) Execution of TCP connection.

Figure 11. Client side Screen.

6. Conclusion

In this paper RFB (RemoteFrameBuffer) protocol with

VNC (virtual network communication) server over the web

socket. For implementation of this protocol JavaScript

language is used. This protocol is tested for wire and wireless

communication. Live desktop streaming is tested between

two computers and between computer and R-pi. This

protocol is tested specifically on Linux operating system.

References

[1] B. Eom, C. Lee, H. Lee and W. Ryu, An adaptive remote
display scheme to deliver mobile cloud services, in IEEE
Transactions on Consumer Electronics, vol. 60, no. 3, pp. 540-
547, Aug. 2014.

[2] Jiewei Wu, Jiajun Wang, Zhengwei Qi and Haibing Guan,
SRIDesk: A Streaming based Remote Interactivity
architecture for desktop virtualization system, 2013 IEEE
Symposium on Computers and Communications (ISCC), Split,
2013, pp. 000281- 000286.

[3] I. Hadic, H. C. Woithe and M. D. Carroll, A Simple Desktop
Com- pression and Streaming System, Multimedia (ISM),
2013 IEEE International Symposium on, Anaheim, CA, 2013,
pp. 339-346.

[4] Kyoung-ill Kim and Kyu-chul Lee, Game service platform
based on the real-time streaming, Computing and
Convergence Technology (ICCCT), 2012 7th International
Conference on, Seoul, 2012.

[5] T. D. Nguyen, S. Choe and E. N. Huh, An efficient mobile
thin client technology supporting multi-sessions remote
control over VNC, Computer Science and Automation
Engineering (CSAE), 2012 IEEE International Conference on,
Zhangjiajie, 2012, pp. 155-159.

[6] D. Zinca, Design of a modified RFB protocol and its
implementation in an ultra-thin client, Electronics and
Telecommunications (ISETC), 2010 9th International
Symposium on, Timisoara, 2010, pp. 157-160.

[7] K. J. Tan et al., A remote thin client system for real time
multimedia streaming over VNC, Multimedia and Expo
(ICME), 2010 IEEE International Conference on, Suntec City,
2010, pp. 992-997.

[8] G. Lai, H. Song and X. Lin, A Service Based Lightweight
Desktop Virtualization System, 2010 International Conference
on Service Sciences, Hangzhou, 2010, pp. 277-282.

[9] C. Taylor and J. Pasquale, Improving video performance in
VNC under high latency conditions, Collaborative
Technologies and Systems (CTS), 2010 International
Symposium on, Chicago, IL, 2010, pp. 26-35.

23 Sachin Ruikar and Manoj R. Jagdamwar: Wireless Data Transmission Through VNC and RFB over Web Socketing

[10] A. Skurski and B. Swiercz, VNC-based remote control for
Symbian OS smartphones, Mixed Design of Integrated
Circuits Systems, 2009. MIXDES 09. MIXDES- 16th
International Conference, Lodz, 2009, pp. 171-174.

[11] Xiaolin Lu, WSFRB protocol and virtual program computing,
Computer Supported Cooperative Work in Design, 2004.
Proceedings. The 8th International Conference on, 2004, pp.
475-480 Vol. 1.

[12] H. Koriyama, K. Shimizu, T. Kawano, T. Ogura and M.
Maruyama, Real-time processing method for an ultra-high-
speed streaming server running PC Linux, Advanced

Information Networking and Applications, 2004. AINA 2004.
18th International Conference on, 2004, pp. 441-446 Vol. 2.

[13] T. Richardson, the RFB Protocol, Version 3.8, August 2008,
http://www.realvnc.com/docs/rfbproto.pdf.

[14] G. Lai, H. Song, and X. Lin, “A service based lightweight
desktop virtualization system,” in Service Sciences (ICSS).
2010 International Conference on. IEEE, 2010, pp. 277-282.

[15] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the linux virtual machine monitor,” in Proceedings of
the Linux Symposium, vol. 1, 2007, pp. 225-230.

