

International Journal of Electrical and Electronic Science

2015; 2(3): 95-101
Published online October 20, 2015 (http://www.aascit.org/journal/ijees)
ISSN: 2375-2998

Keywords
Web Based,

Advanced Intelligent Systems,

Application of Web Services for

Artificial Intelligence,

Application Programming

Interface

Received: August24, 2015

Revised: September29, 2015

Accepted: October1, 2015

Web Based Advanced Intelligent
Systems

Rustom Mamlook
*
, Omer Fraz Khan

Department of Electrical & Computer Engineering, College of Engineering, Dhofar University,

Salalah, Sultanate of Oman

Email address
rustom@du.edu.om (R. Mamlook)

Citation
Rustom Mamlook, Omer Fraz Khan. Web Based Advanced Intelligent Systems. International

Journal of Electrical and Electronic Science. Vol. 2, No. 3, 2015, pp. 95-101.

Abstract
Provision of data to intelligent systems, for decision making, by making use of World

Wide Web is one of the most promising areas of research in Artificial Intelligence. When a

task is given to an intelligent system, its solution is unknown. It is the job of Artificial

Intelligent (AI) systems to find the best solution based on the information available to it.

With development in web technology and advent of dynamic web services the data is

processed and distributed through web services. Such data is a valuable source of

information for the proposed AI system. Web services are dynamic as parameters are

passed on to its functions. Values returned from these web services (functions) can provide

input for Intelligent Systems to accomplish various tasks. Our focus is on existing web

services to be used as data source for the intelligent system. Web Services are considered

to be ability provider to the system. We need to categorize web services which enable a

particular ability for our intelligent prototype system. In our paper we have proposed a

method to sort and categorize various forms of Web services in to areas and levels of

expertise. We derived a technique for our Web Intelligent System to achieve tasks by

utilizing one or more areas of expertise obtained from World Wide Web. Our

AI-prototype’s initial interaction with the World Wide Web is Application Programming

Interface (API) directory through which it searches for an API related to the ability desired

by the prototype, programmatically handshaking for data exchange protocols and

initiating a flow of query and responses over transmission control protocol (tcp), user

datagram protocol (udp) and Hypertext transfer Protocol (http/https).

1. Introduction

The web services are arranged with their index in to matrices called ability matrices.

The approach we use is of organizing the input and output data returned from the web

service in the form of matrices identified as result matrices. This gives us ability to analyze

each web services data quality and make comparisons with data from other similar web

services and finally feed the derived information to intelligent systems in the form of

informative arrays.

Web Services are functions which follow the following basic principles:

1. Services are a set of functions which can be used by any client without requiring any

change to the code of the service.

2. Such functions are accessible anytime with redundancy and failover mechanisms

handled.

Before utilizing any of the web services for AI purpose we need to make sure that the

automation is achievable in the following four primary functions.

a. Dynamic Discovery of web service.[1]

96 Rustom Mamlook and Omer Fraz Khan: Web Based Advanced Intelligent Systems

b. Service Integration: Compatibility of Interfaces

(compatibility of exchanged parameters) from Web

Service to that of AI Systems

c. Process Integration

d. Process Control

Universal Description and Discovery Integration (UDDI)

directory helps in discovery of web service and Web Service

Definition Language (WSDL) [2] serve documents to

intelligent clients (algorithms) which use these documents to

access the metadata or service tag for the set of functions

provided by the web services. The extracted metadata and

service discovery address will be saved in a cache as a

repository for indexing purpose. Web services without

sufficient metadata on their ability information are to undergo

screening by intelligent algorithms which determine their

ability matrix for categorization.

In this research we show a web ability extractor algorithm

for a particular set of web services related to airline agent. We

discuss a way in which a web service ability matrix can be

composed by using service composition [3] and cached for

usage by AI systems through remote access. Already available

UDDI [4] discovery mechanisms were utilized for searching

through a set of web service’s WSDL documents and

determine the descriptive tags determining the type and

purpose of the data returned as Simple Object Access Protocol

(SOAP) [5].

2. History & the Algorithm

Dynamic discovery of web services includes searching

through the UDDI or API Directory. Once desired set of web

services are dynamically discovered, selection of the right

web service for the right task involves categorizing multiple

web services according to their job description.

Work on automatic-composition algorithms for the Web

Service Composition (WSC) [6] problem has been done in

past such as Glaphplan, SATPlan and Integer Linear

Programming (ILP).

We have also seen an approach of searching through web

pages using matrices by Google's Page Rank algorithm by

finding an eigenvector for an enormous sparse matrix [7].

Algorithm for development of an ability matrix relies on

successful discovery and composition of web services. In our

paper we discuss at least one method of:

a. ability matrix composition

b. ability matrix selection

c. results matrix derivation

d. application of result matrix to get the required output

3. Methodology

First step in our approach is to access the web service. It is

done by authentication of the client (i.e. Our AI System) by a

server hosting the web service. Handling the authentication

procedure for Web Service using OpenID will allow web

service crawler [8] to let the web services, present provisions

for entering the key-value pair.

The Web Service publishes the expected parameters to be in

the Response Message of OpenID. It also keeps a list of

allowed OpenID Providers in service's WSDL.

� Simulator will programmatically provide the ID and the

password (or a password callback handler) at the

policy.xml (file type with data sorted in hierarchy).

� Discovery process of OpenID is done inside Apache

Rampart [9] supplied by the simulator which then checks

the discovered provider to be in a list of the published and

trusted OpenID Providers, to allow the simulator to have

privileges to use the web service.

� Only if the OpenID provider is a trusted Provider for

handling the login procedure for the Web Service

Provider, the Apache Rampart issues an Authentication

Request Message along with the Parameters mentioned

in the Web Service's WSDL and passes it to OpenID

provider using "Direct Communication" along with the

password of the simulator’s registered ID, for

authentication at the OpenID Provider

� After authentication is passed, OpenID provider responds

to Apache Rampart with the Authentication Message.

� Apache Rampart wraps the Authentication Response

Message to the OpenID Token and add it to the header of

the Web Service Request SOAP Message

� Web Service Provider retrieves and verifies the Response

Message.

� If the Verification is successful the Web Service is

granted to the requester with returned results in JSON

(JavaScript Object Notation) or XML (Extensible

Markup Language, language designed to store transport

data)format.

� JSON or XML parser splits results returned in to

meaningful format readable by intelligent system.

Based upon the entry of input data to the Web Service’s

available functions from its API, a set of output data is

received by the client. This set of data received comprises of

key-value pairs that are saved in an output parameters matrix

in a sequential manner. The parameters received are processed

where data type and metadata is assigned to them

An ad hoc ability matrix is developed which consists of

flags for execution. Each matrix sets or resets the flags

generating a sequence in which the order of execution of a

particular set of function in an API’s should take place.

A quality metric matrix is formed which has the individual

Boolean set for each API’s successful execution and response.

The quality of the result matrix depends upon the affirmation

of set flags generated after the successful results from multiple

API’s.

The results returned by API’s are stored in a result matrix.

Each element of result matrix is another matrix consisting of

the dimension of answers arranged as elements. Matrices are

addressable and results are stored in a particular arrangement

based on the ability matrix structure, predetermined by design.

During our pre-tests, algorithm was utilized with a soap

based user Interface (UI) [9] is constructed. It simulated web

 International Journal of Electrical and Electronic Science 2015; 2(3): 95-101 97

services for mission critical functions. Our algorithm used test

cases to check the integrity of web service. Utilization of one

web service also involved assertions and transfer of properties

to the next web service such as cascading information

retrieved from one web service calls to another.

Strength of the simulator depends mainly on its success in

performing mission critical tasks. Results obtained by

utilizing web services must be consistent with business logic,

data integrity, exception handling and security. Algorithm is

desired to be capable of

a. Comprehensively test a web service

b. Perform tests using realistic big data.

c. Determining the security level of the service.

d. Efficiently utilizing Intelligent Client and ability tester

algorithms.

e. Tacking the test results obtained.

f. Testing web service under the effect of predetermined

overload

g. Governing web service usage for various tasks.

Call-back approach is also used in testing web services

where a query is sent to multiple web service and response

returned is captured and saved. In Call-back approach

parameterized multiple queries are passed as arguments to

each function with in a web service. The results returned as a

result of successful queries are composed in a result matrix.

Functions which reject the query producing a failed response

do not participate in generating the ability matrix while the

ones which return the response are qualified candidates as

active web service functions participating in building a

particular ability which we require for our AI system’s matrix.

In this way we qualify some functions in a web service as

functions contributing in composing ability matrix. Using this

approach we utilize partial functionality of web service

instead of disqualifying the web service as a whole.

In a test case scenario for utilizing multiple web services for

composing an ability matrix, we have chosen the following set

of web services [10]:

a. Weather Service

b. Currency Rates Service

c. Geo-IP Service

d. Time Service

e. Stock Price Ticker Service

f. Yearly Calendar Service

g. US Address Verification

h. Barcode Generator

i. North American Industry Classification System

j. United Nations Standard Products and Services Code

k. Medi Care Supplies

l. FedACH

m. FedWire

n. USA Weather Forecast

o. Mortgage Index

p. SunSetRiseService

q. Parcel Tracking Service

For-example, we propose a simulator which determines the

time and observes the weather. Simulator effectively knows

where it is at by using information returned from the weather

web services [11]. Simulator was not provided the information

by which it can search the required web service to achieve the

task. It has to find the correct web service or the function of

this web service, the correct number and data types of

parameters to pass as an argument and the selection of correct

vales from the returned dataset. In short, the simulator has to

find the web service and determine the function of the web

service.

Web services are segregated and arranged as two sets.

Web Services Indexes, Set 1: �� � �� � �� ℎ
 �
Web Services Indexes, Set 2: � � �� � �� � ��
Success of the model will rely upon the successful

derivation of ability matrix from web services and the quality

[12] of the respective results matrix.

The respective function set matrix is arranged as one

dimensional linear vector corresponding to each web service.

Each matrix consists of all set of functions provided by each

Web Service Index matrix element. Size of each function set

matrix depends upon the number of public functions

discovered through UDDI service for a particular web service

set.

a = [af1, af2, af3, af4, af5......]

b = [bf1, bf2, bf3, bf4, bf5....]

c = [cf1, cf2, cf3....]

d = [df1, df2, df3, df4, df5...]

e = [ef1, ef2, ef3, ef4....]

f = [ff1, ff2, ff3, ff4....]

g = [gf1, gf2, gf3, gf4....]

h = [hf1, hf2, hf3, hf4....]

i = [if1, if2, if3, if4....]

j = [jf1, jf2, jf3, jf4....]

k = [kf1, kf2, kf3, kf4....]

l = [lf1, lf2, lf3, lf4....]

m = [mf1, mf2, mf3, mf4....]

n = [nf1, nf2, nf3, nf4....]

o = [of1, of2, of3, of4....]

p = [pf1, pf2, pf3, pf4....]

q = [qf1, qf2, qf3, qf4....]

r = [rf1, rf2, rf3, rf4....]

Each function is defined in terms of input parameters and

output returned values. The Data Type and the input

parameters id are saved in input parameters matrices. Data

Types of keys are arranged in a matrix called xfnKeyDt. The

Key and Value pair is arranged in matrices xfnKi and xfnVi,

respectively. (Where x is a lower case alphabet denoting web

service index and n is an integer denoting the function’s

index).

af1KiDt = [int, int, int, int] (data type of each input key is

int)

af1Ki = [a, b, c, d] (key)

af1Vi = [?,?,?,?] (value)

“?” will be replaced by test values (w,x,y,z) from test

sequence matrix.

98 Rustom Mamlook and Omer Fraz Khan: Web Based Advanced Intelligent Systems

Each value passed in as argument to af1Val matrix has a

response from the function which is the returned key value

pair. We define the returned value in three matrices as follows.

af1KoDt = [int...] (Each function may return more than one

key, during our study we assume each function returns

(outputs) only one key and matrix af1KoDt hold the data types

of returned key)

af1Ko = [?. ...] (name of returned key as defined by

definition of the function ‘f1’ related to web service ‘a’)

af1Vr = [r(abcd), r(bacd), r(bcad)....] (The number of value

returned will be equal to the number of permutations of input

parameters)

We send the parameters to all the functions of the web

service, catch the exception using the underlining

catch-exception method of the web service providers. An

exception raised is considered as the inability of web service

function to meet one of the ability matrix minimum criteria by

either not returning the results or returning values which have

no value to the ability matrix.

Sending the parameters is done in a way as to exhaust all

possible sequences in which the parameters will be provided

to the input of the functions and the respective answers

(permutations) returned from each sequence will be saved in

corresponding result matrices. Each input matrix will have its

corresponding results matrix. Each element in the result

matrix (raf1) will be compared to its corresponding element in

the input matrix.

raf = [af1KoDt, af1Ko, af1Vr,

af2KoDt, af2Ko, af2Vr,

af3KoDt, af3Ko, af3Vr,

af4KoDt, af4Ko, af4Vr,

af5KoDt, af5Ko, af5Vr,

,,]

The above matrix is 3 times the size of function set matrix

as we saved the returned key’s data type, key’s identity and

key value.

The matrices that were returned as a result of permutations

of input parameters further created matrices that were equal to

the number of permutations of input parameters E.g. in case of

permutation (a,b,c,d), n number of results are returned.

raf1(permt(abcd)) = [af1KoDt, af1Ko, af1Vr1,

af1KoDt, af1Ko, af1Vr2,

 af1KoDt, af1Ko, af1Vr3,

 af1KoDt, af1Ko, af1Vr4,

 af1KoDt, af1Ko, af1Vr5,

,,

 af1KoDt, af1Ko, af1Vr n]

Results matrix is a parse matrix with ‘0’ as no value

returned while a value returned is valid only if the data type of

the desired result (afnVr n) matches with the data type

(afnKoDt) of returned value (afnVr n), where n = permutations

as an integer.

The knowledge about metadata on returned value is

extracted from the SOAP documents.

Results matrix, “R” has information about the query results

corresponding to the multiple ways in which the function was

challenged on providing the answer.

Derivation of result matrices Ra, Rb... and Rx gives us the

following:

Ra = [af1Vr1, af1Vr2, af1Vr3, af1Vr4, af1Vr5,

 af2Vr1, af2Vr2, af2Vr3, af2Vr4, af2Vr5,

,.,.,.,.,

 afnVr1, afnVr n, afnVrn, afnVrn, afnVrn]

Rb = [bf1Vr1, bf1Vr2, bf1Vr3, bf1Vr4, bf1Vr5,

 bf2Vr1, bf2Vr2, bf2Vr3, bf2Vr4, bf2Vr5,

,.,.,.,.,

bfnVrn, bfnVrn, bfnVrn, bfnVrn, bfnVrn]

R... = [...f1Vr1,. ..f1Vr2. ..f1Vr3,. ..f1Vr4,. ..f1Vr5,

 . ..f2Vr1,. ..f2Vr2,. ..f2Vr3,. ..f2Vr4,. ..f2Vr5,

,.,.,.,.,

 . ..fnVrn,. ..fnVrn,. ..fnVrn,. ..fnVrn,. ..fnVrn]

Rx = [xfnVr1, xfnVr2, xfnVr3, xfnVr4, xfnVr5,

 xfnVr1, xfnVr2, xfnVr3, xfnVr4, xfnVr5,

,.,.,.,.,

xfnVrn, xfnVr n, xfnVrn, xfnVrn, xfnVrn]

If result set is finite and denoted by R, we can write result

matrices separately for each function as follows:

R(f1) = [af1Vr1,af1Vr2,af1Vr3,...., af1Vr n]

R(f2) = [af2Vr1,af2Vr2,af2Vr3,.....,af2Vrn]

R(fn)=[afnVr(n), afnVr (n+1), afnVr(n+2),.,

afnVr(n+p)]

Where p is the maximum number of permutations of input

variables.

Informative matrix which is to be fed into the AI-System is

the final result Matrix (R) of the following form:

R = [R (f1) + R (f2) + R (f3) +. + R (fn)]

Similarly, we can derive the value’s Data-Type Matrix and

key’s Identity Matrix in a key value pair. This constitutes our

metadata corresponding to results, hence

RDt = [R (af1KoDt) + R (af2KoDt) +...+ R (afnKoDt)]

RKo = [R (af1Ko) + R (af2Ko) +. ... + R (afnKo)]

Next step is to design an algorithm which can find the

quality of R and is able to extract each elements identity and

data type from the matrices RKo and RDt respectively.

Quality of R is determined by the instances of required data

found in the result matrix. If the term is found in set of Keys

returned (Ko) and the Keys’ Data type matches with the data

needed to be consumed by AI, then we can further do an

algorithmic analysis of the consistency of data by matching it

with further results (R1,R2...Rn) obtained from additional

web services search.

Web Services can also be linearly arranged into an initial

index matrix as shown below:

Web Services- Initial Index Matrix

ws [ws1, ws2, ws3, ws4, ws5]

For each web service matrix, multiple ability matrices were

derived. Generation of each ability matrix involved the

selection of those methods (operation contracts) which are

related to the ability. The arrays below shows the subset

functional entities that is usually returned by the UDDI service

attached with the web service and found in proxy class derived

from the web service.

Ability Matrices- can be unbalanced because web services

were observed to have varying number of functions. In matrix

 International Journal of Electrical and Electronic Science 2015; 2(3): 95-101 99

below ws1 (web service # 1) is the identifier of web service

and its related functions are ws1f1 and ws1f2. In test case

scenario we assumed matrices to be balanced i.e. each matrix

is having two functions.

ws1 [ws1f1, ws1f2]

ws2 [ws2f1, ws2f2]

ws3 [ws3f1, ws3f2]

ws4 [ws4f1, ws4f2]

ws5 [ws5f1, ws5f2]

After investigating each function of a web service the

identity of input and output parameters and data-type matrices

are derived, e.g. the following function ws1f1 of web service

(ws) from set 1 (ws1) requires city, country and unit of

temperature in its own defined sequence, whereas function

ws2f1 of web service (ws) from set 2 (ws2) requires same set

of parameters but in a different sequence from ws1f1.

ws1

ws1f1 [string city, string country, string unit]

return temp;

ws1f2 [string city]

return code;

ws2

ws2f1 [string country, string city, string unit]

return temp;

ws2f2 [string city]

return code;

The aforementioned passing of parameters to get

information returned (output) from functions is handled by

sequence generator using permutations of input parameters.

Output (returned) parameter’s Data-Type Matrices are

generated when each function returns a value in response to

the passed parameters in a particular sequence. Ideally a

response matrix rws1should have only one non-null value as

response matching with only one sequence of input parameter

out of multiple sequences entered but there is a possibility that

many elements in each Data Type matrix may hold non null

values.

rws1 [rws1f1 rws1f2]

rws2 [rws2f1 rws2f2]

rws3 [rws3f1 rws3f2]

rws4 [rws4f1 rws4f2]

We used test input parameters Data-Type matrices-Data

type having mixed data types of input parameters to test for

their resulting output.

tf1 [string, int, long]

tf2 [string, string, string]

tf3 [long, long, char]

tf4 [char[], int[], string]

tf5 [*string, int, int]

tf6 [int, int, int]

tf7 [double, double, double]

Testing Parameters with all Sequences Matrices - fixed

based on parameters. The matrices will pass the actual values

to input parameters in varying sequences.

tf1 [salalah, C, Oman]

tf2 [Oman, C, salalah]

Test return matrices – Actual values returned as by the

function in response to the passed sequence of parameters.

tr [trf1,trf2,trf3,trf4,trf5,trf6,trf7]

By using this approach we obtained results from multiple

web services for one particular city in response to a query for

its weather. The response matrices also known as the result

matrix was derived. It was beneficial in keeping multiple

values from different sources of web services for allowing the

smart system to make its decision on the selection of quality

values.

4. Pseudo Code

a. Input query Parameters

b. Compose “WS” Matrix as a set of addresses of web

services “WSn” related to Input query.

c. Generate a “WSF” functions matrix with each element

pointing to other sub-Matrix “WSnF”.

d. Fill WSnF matrix with all possible public function’s

addresses “WSnFn” returned by running batch UDDI

discovery on WSn.

e. Collect the results received in the form of Key-Value pair

for result returned by “WSnFn” for each sequence of

input parameters (permutations).

f. Collect the Data-Type “RDt” of returned values and save

them in matrix “RDt”.

g. Compare values in results with values satisfying the

required results from initial query.

The Flowchart of our methodology is presented in Figure 1.

Figure 1. Flowchart of our methodology.

100 Rustom Mamlook and Omer Fraz Khan: Web Based Advanced Intelligent Systems

5. Case Study

An intelligent appliance control was developed at

Engineering Labs at Dhofar University using the method

described in our paper. Year round weather data was provided

by different web services out of which a few services provided

real time data corresponding to the actual on site

measurements. We were successful in differentiate between

the quality of data that was available to us and utilize it for

temperature calculations in one of the applications. During the

course of our case study we were able to explore ways in

which web services are located and indexed using UDDI

Discovery [13] mechanism into a Web Service composer. We

were able to implement a WSDL parser or a WSDL reader for

determining information about input and output parameters.

We used SOAP (JSON and XML) protocols and available

SOAP parsers to obtain metadata such as Data Type and Key,

Value Pairs in matrix form.

We were able to implement a C# algorithm of a Web

Services batch caller in which we can engage multiple web

service providers to provide us with WSDL documents on

each service. We managed to make a consumer of web service

in the form of a simulator with ability to take user query input

and display the number of results obtained matching the query.

Our main focus was to create ability matrix generator and

indexer which not only downloads answers to queries in the

form of matrices but also has the ability to form a matrix cache

of results along with the data Type and naming scheme used

by the web service functions to define the answers.

6. Results

A permutation engine was designed to generate sequence of

inputs from user entered queries and feed them as test input

parameters to each function of web services.

Results Matrix Generator from results obtained from

permutation engine’s output and Cache them in addressable

memory along with ability to locate each result’s metadata

from a metadata matrix generator.

Informative Array formed of Results + metadata are fed

into the simulator and displayed to the user through GUI.

7. Conclusion

Each matrix has the ability to expand and contract (learn

and relearn) based on the availability of results returned by

web service and its functional ecosystem. The probability of

correct results is better with the expansion of the number and

quality of web services. The association of function’s input

and output parameters into an ability matrix holds a striking

analogy to the faculties of a human Brain. For example

hypothalamus performs some functions of human activities

and similarly one ability matrix will be able to perform

particular functions until we develop another ability matrix to

perform other function. Web provide the necessary inputs to

the ability matrix similar to the vision, sound, sense of touch

provides the ability to the human brain.

We have seen our approach to work on known web services

in which parameters input and returned parameters are expected

to be of simple known types. Semantic Web [14, 15] is an area

which needs further exploration and integration while working

in realms where little or no information is available about vast

amount of data available over World Wide Web.

Acknowledgment

The research council (TRC) is the premier technical body in

Oman. As its representatives are in the campus of Dhofar

University in Oman, it is the best suitable organization for

faculties like us. Furthermore the peoples in the TRC are

helpful and innovation friendly.

Internet Service Provider, Oman telecommunication

authority (Omantel) has a vast infrastructure of fiber optic wired

network as well as wireless data connectivity. It is due to their

outstanding provision of 24/7 data connectivity that has made

our system successful with uninterrupted communication

channel available at our disposal round the clock.

We are grateful for the research labs and resources provided

by the Dhofar University Salalah, Oman.

References

[1] D. Richards, M. Sabou, S. van Splunter, F.M.T. Brazier.
Artificial Intelligence: a Promised Land for Web Services,
retrieved from http://comp.mq.edu.au/~richards/, last updated
on July, 2015.

[2] AmnaEleyan, Liping Zhao, Extending WSDL and UDDI with
Quality Service Selection Criteria, 2010.

[3] Seog-Chan Oh, Dongwon Lee, and Soundar R.T. Kumara, A
Comparative Illustration of AI Planning-based Web Services
Composition, 2005.

[4] UDDI discovery mechanisms retrieved from
http://uddi.xml.org last updated on September 2015.

[5] Brian Suda, SOAP Web Services: Publications at University of
Edinburgh 2003.

[6] OWS 2 Common Architecture: WSDL SOAP UDDI, Open
Geospatial Consortium Inc, 2004.

[7] A project for answering queries to the typed input questions
available at http://webknox.com last update in Sept, 2015.

[8] Kurt Bryan and Tanya Leise, The $25,000,000,000*
Eigenvector the Linear Algebra Behind Google, 2006.

[9] An Open Source web crawler project available at
http://nutch.apache.org/, last updated in 2014.

[10] Web Services available at the following:
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&
WSID=56, last updated in 2015.

[11] Weather providing Web Service retrieved from
http://wsf.cdyne.com/WeatherWS/Weather.asmx in Aug, 2015.

[12] Web Service Search Project retrieved from
http://db.cs.washington.edu/webService/woogle_vldb.pdf, last
retrieved in 2014.

 International Journal of Electrical and Electronic Science 2015; 2(3): 95-101 101

[13] SOAP UI Web Service functional Tests at
http://www.soapui.org/Getting-Started/web-service-sample-pr
oject/All-Pages.html, last updated in 2015.

[14] Katia Sycara, Dynamic Discovery, Invocation and
Composition of Semantic Web Services, 2004.

[15] Page 8. Autonomous Semantic Web Service Discovery,
Methods and Applications of Artificial Intelligence: Book on
Third Helenic Conference on AI, SETN 2004, Samos, Greece,
May 5-8, 2004, Proceedings. Volume 3, Springer. George A.
Vouros, ThemistoklisPanayiotopoulo, Pages: 546.

