

International Journal of Electrical and Electronic Science

2015; 2(3): 64-73

Published online September 30, 2015 (http://www.aascit.org/journal/ijees)

ISSN: 2375-2998

Keywords
Arduino,

Trainer,

Wireless,

Sensor,

Networks,

Experiment

Received:August 29, 2015

Revised: September14, 2015

Accepted: September15, 2015

Development of an Arduino-Based
Trainer for Building a Wireless
Sensor Network in an
Undergraduate Teaching Laboratory

M. O. Onibonoje, U. N. Ume, L. O. Kehinde

Department of Electronic and Electrical Engineering, Obafemi Awolowo University, Ile – Ife,

Nigeria

Email address
femi_onibonoje@yahoo.com (M. O. Onibonoje)

Citation
M. O. Onibonoje, U. N. Ume, L. O. Kehinde. Development of an Arduino-Based Trainer for

Building a Wireless Sensor Network in an Undergraduate Teaching Laboratory. International

Journal of Electrical and Electronic Science. Vol. 2, No. 3, 2015, pp. 64-73.

Abstract
Wireless sensor network (WSN) is widely considered as one of the most important

technology for the twenty-first century. Wireless technologies have achieved dramatic

growth in recent years. They have received tremendous attention from both academia and

industry all over the world, capturing the interest of various sectors. The increasing

popularity of WSN has motivated universities to include the subject in their curricula.

Effective learning and teaching of WSN however, requires the students to gain hands-on

experience in developing WSN projects, which help the students to understand the

strength and limitations of this new technology. In this paper, WSN has been simplified

such that, students with little or no knowledge about microcontrollers could build one to

various applications. It aims at developing a step-by-step approach to building a WSN. It

first ensures that students have a friendly exposure to some components required for the

tasks. The students will perform four experiments in varying complexity; starting with

involving them in the use of the microcontroller, (Arduino board in this case), establishing

a chat between two XBee radio modules, and to an advanced project of building a wireless

sensor network.

1. Introduction

A wireless sensor network (WSN) is a network made up of a set of independent sensor

nodes deployed over a geographic area to collect environmental data and to transmit the

gathered data to a base station typically through wireless channels. The base station is

generally a computer connected to a gateway, which is a device that collects data from the

sensors. An application running on the base station analyzes the received data, performs

appropriate computation, and displays the information on the user screen. Wireless Sensor

Networks has in recent years been found to have vast application in various areas; from

health care to utilities and in remote monitoring.

The WSN elements are basically the sensor nodes and gateway or sink node as shown in

Fig 1.1.The composite units include: a number of sensors (such as temperature, moisture,

and vibration sensors), a power source, a radio transmitting/receiving unit (transceiver),

and an electric “brain” (processing unit, processor) (Huang et al., 2015). The gateway

node often consists of transceiver, microcontrollers and data collector, most times a

personal computer (PC).

According to Faludi (2007), building WSN requires essential guides for anyone

 International Journal of Electrical and Electronic Science 2015; 2(3): 64-73 65

interested in wireless communications for sensor networks,

device hacking or home networking. The processes require

correct selection, configuration and applications of

components. In this paper, WSN is demystified by first

ensuring that the students have a friendly exposure to the

components used in building the WSN. The students will

perform four experiments in varying complexity; starting with

the use of the microcontroller, Arduino board in this case,

establishing chat between two XBee radios and to a slightly

advanced project of building a simple WSN.

Fig. 1.1. Parts of a WSN.

As discussed by Hariprabha and Vasantharathna (2014),

wireless sensor network (WSN) is widely considered as one of

the most important technologies for the twenty-first century.

In the past decades,it has received tremendous attention from

both academia and industry all over the world. According to

Bokare and Ralegaonkar (2012) and Santoshkumar et al.

(2012), a WSN typically consists of a large number of

low-cost, low-power, and multi-functional wireless sensor

nodes, with sensing, wireless communications and

computation capabilities; and a base station responsible for

receiving and processing data collected by the nodes. These

sensor nodes communicate over short distance via a wireless

medium and collaborate to accomplish a common task, for

example, environment monitoring, military surveillance, and

industrial process control. Guo et al. (2014) and Kurose et al.,

(2003) explained the basic philosophy behind WSNs that

while the capability of each individual sensor node is limited,

the aggregate power of the entire network is sufficient for the

required mission. Advances in wireless sensor network (WSN)

technology has provided the availability of small and low-cost

sensor nodes with capability of sensing various types of

physical and environmental conditions, data processing, and

wireless communication (Younis and Akkaya, 2013; Hawbani

and Wang, 2013).

2. Methodology

In demonstrating the development of a training module for

the WSN, various experiments categorized into three sections

were conducted with the selected component units. The first

section involved working with the Arduino, while the second

section involved working with XBee modules. The third

section combines the features of the first and second sections

to build a WSN. The composite units of WSN include both

hardware and software required units. The experiments

described in this paper focused mainly on Windows operating

system (OS) on the PC. The experiments could also be

replicated for other OS like Linux and Macintosh by specific

modifications of the procedures.

2.1. Selecting Components

The basic block diagram for the proposed module is as

shown in Fig 2.1.

Fig. 2.1. Block Diagram of Proposed Module.

Sensing Unit: This unit consists of the sensing device of

interest. The sensors in this work were the Sensitive Voice

Sensor and the PIR Motion Sensor as shown in Fig 2.2

Fig. 2.2. (a) Voice Sensor (b) PIR Motion Sensor.

Microcontroller Unit: The basic function of the unit is to

66 M. O. Onibonoje et al.: Development of an Arduino-Based Trainer for Building a Wireless Sensor Network

in an Undergraduate Teaching Laboratory

process the data collected from the sensors for further

operations. The microcontroller unit in this trainer is the

Arduino board as shown in Figure 2.3. Arduino is an open

-source physical computing platform designed for electronics

experiments with more fun and intuitiveness. Arduino has its

own unique, simplified programming language, a vast support

network, and thousands of potential uses, making it the

preferred platform for a beginner.

Fig. 2.3. The Arduino Board (Processor).

Radio Module: The unit consists of a radio transceiver,

microprocessor, memory and antenna. XBee (S1) produced by

Digi International as shown in Fig2.4 was used in this work.

All XBees communicate over radio with each other in the

same way. However, they can use their local serial connection

in two very different ways: Application Programming

Interface (API) mode and Transparent ‘Attention’ (AT) mode.

Radios configured for API mode utilize a data-enveloping

format that is great for computers talking to each other but is

not easily human-readable. XBees that are configured to use

AT commands are designed for more direct human interaction.

AT-configured radios switch back and forth between two

modes:

Fig. 2.4. XBee S1 Module.

Power Supply: The power supply needed for the

experiments can be gotten from 9V AA batteries or from the

USB port of the computer.

Other Components:

a. The XBee UartsBee Adapter: This is as shown in Fig 2.5

(a). It was easy to plug the radio module directly into the

USB port of the personal computer (PC) using USB

cable.

b. XBee Explorer Regulated: This component as shown in

Fig 2.5 (b) takes care of the 3.3V regulation, signal

conditioning, and basic activity indicators (Power, RSSI

and DIN/DOUT activity LEDs). It translates 5V serial

signals to 3.3V so that it could be connected to any XBee

module with the 3.3V requirement.

Fig. 2.5. (a) XBee UartsBee (b) Explorer Regulated.

2.2. Working with the Arduino Board

Installation Requirements and Procedures:

STEP 1: Download Arduino Integrated Development

Environment (IDE) from www. Arduino.cc/en/Main/Software

for the appropriate computer operating system.

STEP 2: Connect the Arduino to the PC using USB cable

that sometimes come with the Arduino kit.

STEP 3: Install the driver for Windows operating system

based computer using http://Arduino.cc/en/Guide/Windows.

Driver installations for other operating systems could be made

using http://Arduino.cc/en/Guide /MacOSX for Macintosh OS

X and http:// www.Arduino.cc/playground /Learning/Linux for

Linux 32 / 64 bits.

STEP 4: Open the Arduino IDE software on the computer.

Poke around and get to know the interface and identify the

icons. This step is to set the IDE to identify the Arduino Uno

being used in this work. Take note of the four most important

commands; Open, Verify, Upload, Serial monitor.

STEP 5: Select the board following the trend: Tools >

Board>Arduino Uno.

STEP 6: Select the serial device using: Tools> Serial Port>

COM ‘port number’. With the Windows OS used in this work,

 International Journal of Electrical and Electronic Science 2015; 2(3): 64-73 67

select the COM number for the serial device of the Arduino

board from the Tools/Serial Port menu. This is likely to be

COM3 or higher because COM1 and COM2 are usually

reserved for hardware serial ports. To find out which port has

the Arduino device, disconnect the Arduino board and re-open

the menu. The Com port number that disappears should be that

of the Arduino board. Reconnect the board and select that

serial port. For other types of OS, this procedure is also easy to

follow and execute.

Experiments 2.2.1 and 2.2.2 are instructive to demonstrate

the working of Arduino Uno board in building a wireless

sensor network.

Experiment 2.2.1: Blinking a Light Emitting Diode (LED)

Objective: Starting off by blinking an LED is as simple as

turning a light ON and OFF, and changing the rate at which the

light blinks.

The components needed for this experiment include

Arduino Uno, one LED, 330 Ohms resistor and Jumper wire.

Procedure: Repeat STEP (4 – 6) of the installation

procedures. Connect the circuit following the schematic in Fig

2.6.

Fig. 2.6. Connections for blinking an LED.

Connect the Arduino to the computer using the USB cable.

Launch the Arduino IDE. Select File > Examples > Basics >

Blink. A new code window pops up as shown in Fig 2.7

Compile the code by clicking the Verify button. Doing so

highlights any errors and turns them red when they are

discovered. If the code compiles correctly, click upload to

send the sketch (code) to the Arduino board. The LED should

start blinking. Multiple LEDs can also be blinked sequentially

using this same experimental procedure, and by modification

of the circuits and codes.

Fig. 2.7. Arduino IDE with Codes.

Experiment 2.2.2: Detecting Movement

Objective: To learn how to use the SE-10 PIR sensor to detect

movement with the Arduino.

The components needed include Arduino Uno, a bread

board, an SE-10 PIR motion sensor and jumper wires

Procedure: This particular PIR sensor has three wires: RED:

is the power source and should be connected to 5V. BLACK:

is the signal wire and not ground. BROWN: is wired to ground

as shown in Fig 2.8.

Fig. 2.8. Connection of PIR Sensor to Arduino.

Repeat the procedure in experiment 2.2.1, but with the

codes shown in Fig 2.9. Open the serial monitor of the

Arduino IDE to view the stream of the result.

68 M. O. Onibonoje et al.: Development of an Arduino-Based Trainer for Building a Wireless Sensor Network

in an Undergraduate Teaching Laboratory

Fig. 2.9. Codes for Detecting Movement.

Opening the serial monitor resets the sketch and the sensor

calibrates itself in the first 1 to 2 seconds. When movement is

detected, the output pin state values change from high (no

movement) to low (movement).

2.3. Working with XBees

Installation and Configuration:

X-CTU is the officially produced program by Digi

International for configuration of XBEE radios. The

installation instructions are also available at www.digi.com.

X-CTU can be used to configure radios’ settings. Once the

firmware is loaded, a different serial terminal program like

Coolterm, HyperTerminal, Tera Term, ZTerm, etc could be

used to communicate with the XBee in AT command mode. It

is very helpful to have familiarity with one or more serial

terminal as access to the X-TCU may not be absolute always.

In this paper, we would make use of the terminal on the

X-CTU. In addition to the X-CTU, appropriate hardware

device drivers are needed to be installed for the XBee adapter

board.

Procedures:

Plug one of the XBee radios into the XBee UartsBee

adapter and connect the adapter to one of the computer’s USB

ports. Launch the X-CTU application. Click to discover the

radio module attached to the computer. Select the COM port

and check the port parameters settings with default (Baud:

9600, Data: 8 bit, Parity: None, Stop bits: 1, Flow control:

None); and click ‘Finish’. If the connected module is detected,

it lists the module(s). Clicking the listed module populate the

features embedded in the module(s). These features include

but not limited to 64-bit serial number address as printed on

the back of each module indicating both the high and the low

parts. These procedures are illustrated in Fig (2.10 – 2.12).

Fig. 2.10. Port Detection and Parameters Setting in X-CTU.

 International Journal of Electrical and Electronic Science 2015; 2(3): 64-73 69

Fig. 2.11. Discovering Radio Module byX-CTU.

Fig. 2.12. Radio Module Configuration with X-CTU.

70 M. O. Onibonoje et al.: Development of an Arduino-Based Trainer for Building a Wireless Sensor Network

in an Undergraduate Teaching Laboratory

Experiment 2.3: Two Way Chat between XBees Series 1

Objective: To perform a basic Zigbee chat

The components needed include: Two XBee Series 1 radio

modules to be configured for communication in AT command

mode, two XBee USB adapter boards, and one computer

running two different serial terminal programs or two

computers, each running a serial terminal program (used in

this paper). The set-up is as shown in Fig 2.13.

Fig. 2.13. Set-up for Two-way Chat of XBees.

Procedure:

Step 1: Configure Radios

Insert the XBees into the XBee adapter boards and connect

each to a USB port of a computer. Repeat the procedures in

section 2.3 for each of the modules. Select a Personal Area

Network Identification (PAN ID) number between 0 and FFFF

in hexadecimal. The value will be the same for both modules.

Ensure that Destination Address High (DH) and Destination

Address Low (DL) are the same for the two radios. Leave the

API Enable at API disabled [0] (default). Write the changes in

the radio settings by clicking the write button. By this

configuration, the first XBee to be powered-up acts as the

coordinator and sets up the mini network. The other XBee

joins the network when it is powered-up and acts as the router

or end device to communicate with the coordinator.

Step 2: Chat between the modules

Switch to the console working mode on each of the X-CTU

application pages and open the serial connection with the

radio modules. If everything is set up properly, any text that is

typed in the console log on the first computer will be relayed

to the second computer and appears on its console log screen

as well.

2.4. Building Wireless Sensor Network

Wireless networks are all about wireless connections. So,

configuring a single radio or connecting LED or a sensor

directly to an Arduino does not qualify as a wireless sensor

network. In achieving this section, this paper combines the

ideas in sections 2.2 and 2.3.

Experiment 2.4: Wireless Sensor Network

Objectives: To build a wireless network of sensors with the

sensors data visualized on the screen.

The components needed include: two bread boards, three

XBee Series 1 modules, three explorer regulated boards, two

9V batteries, Two 7805 voltage regulators, one Arduino Uno,

PIR sensor, Voice sensor, and Jumper wires. The block diagram

of our wireless sensor network is as shown in Fig 2.1.

Procedure:

Connect each of the XBee modules to a USB port of the

computer for configuration: one as the ‘Coordinator’, and the

remaining two as ‘Router’. Launch the X-CTU and modify

the settings. For the coordinator, set the CE Coordinator

Enable to Coordinator [1] and API Enable to API enabled [1].

For the other two modules, leave CE Coordinator Enable at

End Device [0] and API Enable at API disabled [0] (default).

Ensure pin D4 is set to ‘3’ Digital Input’ (We chose that

because it is a digital I/O pin). Set the sampling rate to ‘3e8’

(1000 Seconds delay). Ensure the device type identifier under

‘Diagnostics’ is set to ‘10000’. and write to the radios.

Mount the XBee radios on the regulated explorer board as

shown in Fig 2.14. Be sure to connect pin 1 and pin 20 of the

radio to pin 1 and pin 20 of the regulated board respectively as

labelled on them.

Fig. 2.14. XBee on a Regulated Board.

Make connections for the two sensor nodes as shown in Fig

2.15. Take note of voltage input, signal output and ground

terminal of the different sensors. The modules configured as

the routers are to be connected in the sensor nodes; with PIR

motion sensor connected in one sensor node and Voice sensor

connected in the other sensor node.

Connect the base station as shown in Fig 2.16. The module

configured as the coordinator will be connected in the base

station.

 International Journal of Electrical and Electronic Science 2015; 2(3): 64-73 71

Fig. 2.15. Schematic for Sensor Nodes.

Fig. 2.16. Schematic of the Coordinating Unit.

Connect the Arduino Uno to the computer using the USB

cable. Launch the Arduino IDE and type the code in Fig 2.17

into the window.

Fig. 2.17. Code for Wireless Sensor Network.

Disconnect the XBee pins connected to the TX and RX of

the Arduino; compile the code and upload the code to the

Arduino board. Reconnect the XBee to the Arduino and open

the serial monitor of the Arduino IDE to see the

communication. The serial monitor shows the data received

from the sensor nodes. Each sensor node communicates its

data directly to the base station in a star topology mode.

3. Results and Discussion

The result of blinking of LED in Experiment 2.2.1 is as

shown in Fig 3.1. The voltage level on the output pin of the

Arduino Uno goes high and the LED turns on. After a 1

second delay, the voltage level on the pin goes low and the

LED goes off. The process repeats over and over.

The result of two-way chat of radio modules in Experiment

2.3 is as shown in Fig 3.2. The text ‘‘Heello friend, are you in

my network?’’ that was typed in the first radio’s console

appeared in the second module’s console. Also, the response

‘‘Yes, I am with you’’ typed in the second console appeared in

the first console.

The wireless sensor network built in Experiment 2.4 is as

shown in Fig 3.3 and the result of data collected is as shown in

Fig 3.4. The PIR sensor waits 1-2 seconds after power-up for

the sensor to get a snapshot of the still room with digital output

of ‘1’ (high voltage level). When movement was detected, the

output value changed from 1(no movement) to 0(movement).

The voice sensor provided analog representations of the

72 M. O. Onibonoje et al.: Development of an Arduino-Based Trainer for Building a Wireless Sensor Network

in an Undergraduate Teaching Laboratory

amplitude of sound from clapping of hands.

Fig. 3.1. Blinking an LED.

Fig. 3.2. Display Screen of Two-Way Chat between Radio Modules.

Fig. 3.3. WSN of Three Nodes.

 International Journal of Electrical and Electronic Science 2015; 2(3): 64-73 73

Fig. 3.4. Data Collected with Arduino IDE.

4. Conclusion

It can be concluded that the step-by-step wireless sensor

network (WSN) building approaches highlighted in this study

are instructive and serve as a veritable trainer platform for

students desirous of WSN projects. It should be noted that the

running of Experiment 3.4 consumes a lot of energy and

would require constant replacement of the 9V battery. It is

advisable to disconnect the battery when not in use. When the

battery is low, communication is likely to be affected. With the

understanding of these basics, further study can be carried out

to learn power management tricks.

References

[1] Bokare, M. and Ralegaonkar, A. (2012). Wireless Sensor
Network: A Promising Approach for Distributed Sensing Tasks,
Excel Journal of Engineering Technology and Management
Science, Vol 1 No 1.

[2] Faludi, R. (2011). Building Wireless Sensors Networks. ISBN
978-0-596-80773-3.USA.

[3] Guo, J.; Orlik, P.; Zhang, J.; Ishibashi, K. (2014). Reliable
Routing in Large Scale Wireless Sensor Networks. Journals of
Ubiquitous and Future Networks (ICUFN).

[4] Hariprabha , V. and Vasantharathna, S. (2014), Monitoring and
control of food storage depots using wireless sensor networks,
International Journal of Industrial Electronics and Electrical
Engineering, Volume-2, Issue-6

[5] Hawbani, A. and Wang, X. (2013). Zigzag Coverage Scheme
Algorithm and Analysis for Wireless Sensor Networks,
Network Protocols and Algorithms, Vol. 5, No. 4, ISSN
1943-3581

[6] Huang,Y., Zheng, J., Xiao, Y and Peng, M. (2015). Robust
Localization Algorithm Based on the RSSI Ranging Scope,
International Journal of Distributed Sensor NetworksVolume
2015, Article ID 587318, 8 pages

[7] Kurose, J., Lesser, V., Silva, E., Jayasumana, A. and Liu, B.
(2003). Sensor Networks Seminar, CMPSCI 791L, University
of Massachusetts, Amherst, MA, Fall.

[8] Onibonoje, M. O, Jubril, A. M., Owolarafe, O. K. (2012).
Determination of Bulk Grains Moisture Content in a Silo Using
Distributed System of Sensor Network. Ife Journal of
Technology. 21(2), 55-59.

[9] Smith, A.G. (2011). Introduction to Arduino.
www.introtoArduino.com (2nd August, 2015). ISBN-13:
978-1463698348

[10] Santoshkumar, Hiremath, V, and Rakhee, K.(2012). Smart
Sensor Network System based on ZigBee Technology to
Monitor Grain Depot. International Journal of Computer
Applications (0975 – 8887) Volume 50– No.21

[11] Yang, T. A., Jain, D., Sun, B. (2008). Development of
Emulation-Based Projects for Teaching Wireless Sensor
Networks.Journal of Computing Sciences in Colleges.24, 2,
64-71. ACM Press, New York, NY, USA.

[12] Younis, M. and Akkaya, K. (2013). Strategies and Techniques
for Node Placement in Wireless Sensor Networks: A Survey,
Dept. of Computer Sc. & Elec. Eng. Univ. of Maryland
Baltimore County, Baltimore

[13] www.digi.com, Accessed 10th May, 2015

[14] www.seeedstudio.com, Accessed 12th May, 2015

[15] www.sparkfun.com, Accessed 10th May, 2015

