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Abstract 
The significance of this paper is to find the optimal control through studying the 

relationship between numbers of feedback controllers and the speed of convergent (time 

control and synchronization) in control and synchronization, where most of the previous 

works achieved control and synchronization without taking into consideration with time 

cofactor. In this paper we achieve control and synchronization of a dynamical system via 

nonlinear control by designing more than one novel suitable feedback controllers with 

consider time control and time synchronization. The proposed methods have certain 

significance for increasing the speed of convergent for controller implementation. Finally, 

numerical simulations are given to illustrate and verify the results. 

1. Introduction 

In the last two decades extensive studies have been done on the properties of nonlinear 

dynamical system. One of the most important properties of nonlinear dynamical systems 

is that of chaos [13]. Chaos phenomenon was firstly observed by Lorenz in 1963[2, 3, 9, 

10], chaos control is one of the chaos phenomena, which contains two aspects, namely, 

chaos control and chaos synchronization [5]. Chaos control and chaos synchronization 

were once believed to be impossible until the 1990s when Ott et al. developed the OGY 

method to suppress chaos, Pecora and Carroll introduced a method to synchronize two 

identical chaotic systems with different initial conditions [1, 3, 4, 5, 6, 7, 14].  

Many different techniques for chaos control and synchronization have been developed, 

such as linear feedback method, active control approach, adaptive technique, time delay 

feedback approach, and backsteeping method and so on. Among them, nonlinear control 

is an effective method to control chaos [1, 3, 4, 7, 8, 9, 10, 11, 12]. 

In some systems, the time cofactor is very important than and effective on system's 

activity and it makes the performance of this system poorer and poorer or any delay or 

late may cause a fault ( as example a late command to stop a train may cause a collision ). 

However, most of the previous works achieved control and synchronization by using  the 

techniques mentioned above, via choice only one suitable feedback controllers without 

interest with time cofactor . In this paper we achieve control and synchronization of a 

modified hpyerchaotic pan system via nonlinear control by designing more than one  
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suitable feedback controllers with considering  time control 

and time synchronization and each control contains different 

numbers of feedback controllers. we found the effective of 

this different feedback controller numbers on speed 

convergent. Consequently, in order to obtain fast 

convergence speed, we will reduce the numbers of feedback 

controllers. The proposed methods have certain significance 

for increasing the speed of convergent for controller 

implementation.  

The rest of this paper is organized as follow. Section 2 

presents the system descriptions and Section 3 introduces 

controlling system (1) via three a novel nonlinear control. 

In section 4, we propose two nonlinear control to 

synchroniz between two identical hyperchaotic systems 

with unknown parameters, which is followed by the 

conclusion in section 5. 

2. System Descriptions 

The hyperchaotic system [3] is described by the four-

dimensional dynamics: 

( )x a y x

y cx xz w

z xy bz

w dy

 = −

 = − +

 = −

 = −

ɺ

ɺ

ɺ

ɺ

                      (1) 

here 4( , , , )x y z u R∈ , and , , ,a b c d R∈  are constant 

parameters, When parameters 10a = , 8 3b =  28c =  and 

10d = , system (1) is hyperchaotic and has two Lyapunov 

exponents, i.e. 
1 2
0.38352, 0.12714LE LE= = , and  

hyperchaotic attractors are shown in Fig. 1. The system (1) 

has only one equilibrium (0, 0, 0, 0)O , and the equilibrium is 

an unstable under these parameters. 

 

Fig. 1. The attractor of system (1) in  x-y-z space. 

 

3. Chaos Control  

The main focus of this section is to investigate the 

controlling problem of system (1), by designing three 

suitable feedback controllers, and studying the relationship 

between these three controllers with speed, to achieve the 

control for each design. also we found those results 

analytically based on the Lyapunov stability theory as well as 

graphically by using MATLAB. 

In order to control the modified hyperchaotic pan system 

to zero, the feedback controllers of
1 2 3
, ,u u u and 

4
u are 

added to the hyperchaotic system (1). Then the controlled 

hyperchaotic system is given by: 

1

2

3

4

( )x a y x u

y cx xz w u

z xy bz u

w dy u

 = − +

 = − + +

 = − +

 = − +

ɺ

ɺ

ɺ

ɺ

               (2) 

in which , ,a b c and d  are unknown parameters, and 

1 2 3 4
, , ,u u u u are feedback controllers to be designed. 

3.1. Controlling Hyperchaotic System (2) 

with Four Feedback Controllers 

In the following theorem, we design nonlinear control with 

four feedback controllers to control system (2) 

Theorem 1. If the nonlinear controllers are proposed as: 

1

2

3

4

( 1)

( )

( 1)

( 1)

u a x

u a c x y

u b z

u d y w

 = −

 = − + −

 = −

 = − −

            (3) 

Then the zero solution of the controlled hyperchaotic 

system (2) is globally asymptotically stable. 

Proof. According to the Lyapunov stability theory, we 

construct the following Lyapunov candidate function 

2 2 2 21 2( )V x y z w= + + +  

and the time derivation of the Lyapunov candidate function is:  

1 2

3 4

2 2

( )

( ) (1 )

V xx yy zz ww

x a y x u y cx xz w u

z xy bz u w dy u

ax bz a c xy d yw

= + + +

  = − + + − + +      
   + − + + − +      

= − − + + + −

ɺ ɺɺ ɺ ɺ

  (4) 

Substituting the Controller (3) into (4), yields:  
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2 2 2 2 0V x y z w= − − − − <ɺ  

It is clear that V  is positive definite and Vɺ  is a negative 

definite. Therefore, based on the Lyapunov stability theory, 

the controlled system (2) can asymptotically converge to the 

unstable equilibrium with the controllers (3). Consequently, 

the controlling of system (2) is achieved via nonlinear 

control , This completes the proof. 

3.2. Controlling Hyperchaotic System (2) 

with Three Feedback Controllers 

In this theorem we propose nonlinear control which contains 

number of feedback controllers less than in theorem 1.  

Theorem 2. If the nonlinear controllers are proposed as: 

1

2

3

4

( 1)

0

u a x cy

u ax y dw

u

u y w

 = − −

 = − − +

 =

 = − −

                 (5) 

Then the zero solution of the controlled hyperchaotic 

system (2) is globally asymptotically stable. 

Proof. Construct a Lyapunov function: 

2 2 2 21 2( )V x y z w= + + +  

and the time derivation of the Lyapunov function is  

1 2

3 4

( )

V xx yy zz ww

x a y x u y cx xz w u

z xy bz u w dy u

= + + +

  = − + + − + +      
   + − + + − +      

ɺ ɺɺ ɺ ɺ

   (6) 

Substituting the Controller (5) into (6) gives that: 

2 2 2 2 0V x y bz w= − − − − <ɺ  

which gives asymptotic stability of the system (2) by 

Lyapunov stability theory. This means that the controller 

propose is achieved the suppressed of system (2).This 

completes our proof.  

3.3. Controlling Hyperchaotic System (2) 

with Two Feedback Controllers 

The following theorem, we design nonlinear control with 

two feedback controllers for controlling system(2) 

Theorem 3. If the nonlinear controllers are proposed as: 

1

2

3

4

0

( )

0

( 1)

u

u a c x y

u

u d y w

 =

 = − + −

 =

 = − −

               (7) 

Then the zero solution of the controlled hyperchaotic 

system (2) is globally asymptotically stable. 

Proof. Let us consider the Lyapunov function as follows: 

2 2 2 21 2( )V x y z w= + + +  

and the time derivation of the Lyapunov candidate function is:  

1 2

3 4

( )

V xx yy zz ww

x a y x u y cx xz w u

z xy bz u w dy u

= + + +

  = − + + − + +      
   + − + + − +      

ɺ ɺɺ ɺ ɺ

    (8) 

Substituting the Controller (7) into (8), yields:  

2 2 2 2 0V ax y bz w= − − − − <ɺ  

then Vɺ  is negative definite and the Lyapunov function V  is  

positive definite. From Lyapunov stability theory it follows 

that the system (2) is asymptotically stable with control (7), 

this completes the proof. 

Also the following figures describe the attractor of system (2) 

before and after add the feedback controllers. where it is 

obvious the control of system (2) is achieve successfully with 

control (3),(5) and (7). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 2. (a) the attractor of system (2) in  x-y-w space before control , (b) the 

attractor of system (2) in  x-y-w space with control (3), (c) the attractor of 

system (2) in  x-y-w space with control (5), (d) the attractor of system (2) in  

x-y-w space after control (7).  

But in order to increasing to accuracy of this results, we 

use numerical simulation based on fourth-order Runge -Kutta 

scheme with time step 0.5 .we choose the parameters 

10a = , 8 3b =  28c =  and 10d =  the initial values are 

taken as ( 5, 3,20,10)− − . Fig. 3 show the state of 

hyperchaotic system (2) with four feedback controllers, while 

Fig.4 show the state of hyperchaotic system (2) with three 

feedback controllers. finally controlling system (2) with two 

feedback controllers is present in Fig. 5. Obviously, the 

convergent of hyperchaotic system (2) in Fig. 3, Fig. 4 and 

Fig. 5 are the time 8, 4 and 2.5 respectively. Consequently, 

wherever reduce the numbers of feedback controllers then we 

get fast convergent.  

 

Fig. 3. Controlling system (2) with four feedback controllers. 

 

Fig. 4. Controlling system (2) with three feedback controllers. 

 

Fig. 5. Controlling system (2) with two feedback controllers. 

4. Chaos Synchronization  

The main focus of this section is to investigate the 

synchronization problem of system (1) by designing two 

suitable feedback controllers and studying the effective 

numbers of feedback controllers with speed to achieve the 

synchronize for each design. also we found those results 

analytically based on the Lyapunov stability theory as well as 

graphically by using MATLAB. 

We choose the modified hyperchaotic pan system (1) as 

the drive system, and the controlled modified hyperchaotic 

pan system (2) as the response system. 

Subtracting system (1) from the system (2), we obtain the 

error dynamical system between the drive system and the 

response system which is given by: 

1 2 1 1

2 1 4 1 3 3 2

3 3 1 2 2 1 3

4 2 4

( )

( )

e a e e u

e c z e e e e xe u

e be e e xe ye u

e de u

 = − +

 = − + − − +

 = − + + + +

 = − +

ɺ

ɺ

ɺ

ɺ

      (9) 

where 1 1 2 1 3 1
, ,e x x e y y e z z= − = − = −  and 

4 1
e w w= − .  

System (9) describes the error dynamics. It is clear that the 

synchronization problem is replaced by the equivalent 

problem of stabilizing the system (9) using a suitable choice 

of the feedback controller. 
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4.1. Chaos Synchronization of System (9) 

with Four Feedback Controllers 

In this subsection, the synchronization is performed 

through a nonlinear controller which contains four feedback 

controllers based on Lyapunov stability theory to stabilize the 

error dynamics system (9), then we obtain the following 

theorem:  

Theorem 4. The zero solution of the error dynamical 

system (9) is asymptotic stable if nonlinear control is 

designed as following:  

1 1 2

2 2 4

3 3 1

4 4

( 1) ( )

( 1)

( 1)

u a e a c z e

u e d e

u b e ye

u e

 = − − + −

 = − + −

 = − −

 = −

       (10) 

Proof. Let us consider Lyapunov function is: 

2 2 2 2

1 2 3 4
1 2( )V e e e e= + + +  

Time derivation of the Lyapunov function is: 

1 1 2 2 3 3 4 4

1 2 1 1

2 1 4 1 3 3 2

3 3 1 2 2 1 3

4 2 4

2 2

1 3 1 2

2 4 1 3

1 1 2 2 3 3 4 4

( )

( )

( )

(1 )

V e e e e e e e e

e a e e u

e c z e e e e xe u

e be e e xe ye u

e de u

ae be a c z e e

d e e ye e

e u e u e u e u

= + + +

 = − +  
 + − + − − +  
 + − + + + +  
 + − +  

= − − + + −

+ − +

+ + + +

ɺ ɺ ɺ ɺ ɺ

     (11) 

Substituting the Controller (10) into (11), yields: 

2 2 2 2

1 2 3 4
0V e e e e=− − − − <ɺ               (12) 

From (12) we show that Vɺ  is negative definite and 

Lyapunov function V  is positive definite. From Lyapunov 

stability theory it follows that error dynamical system (9) is 

asymptotic stable. The proof is completed.   

4.2. Chaos Synchronization of System (9) 

with Three Feedback Controllers 

In this theorem we propose nonlinear control which 

contains number of feedback controllers less than in theorem 

4. 

Theorem 5. The zero solution of the error system (9) is 

asymptotic stable if nonlinear control is designed as 

following :  

1

2 1 2

3 1

4 4 2

0

( )

( 1)

u

u a c z e e

u ye

u e d e

 =

 = − + − −

 = −

 = − + −

           (13) 

Proof. Let us consider Lyapunov function is: 

2 2 2 2

1 2 3 4
1 2( )V e e e e= + + +  

Time derivation of the Lyapunov function is: 

1 1 2 2 3 3 4 4

1 2 1 1

2 1 4 1 3 3 2

3 3 1 2 2 1 3 4 2 4

2 2

1 3 1 2 2 4

1 3 1 1 2 2 3 3 4 4

( )

( )

( ) (1 )

V e e e e e e e e

e a e e u

e c z e e e e xe u

e be e e xe ye u e de u

ae be a c z e e d e e

ye e e u e u e u e u

= + + +

 = − +  
 + − + − − +  
   + − + + + + + − +      

= − − + + − + −

+ + + + +

ɺ ɺ ɺ ɺ ɺ

 (14) 

Substituting the Controller (13) into (14), yields: 

2 2 2 2

1 2 3 4
0V ae e be e=− − − − <ɺ           (15) 

then Vɺ  is negative definite and the Lyapunov function V  is  

positive definite. From Lyapunov stability theory it follows 

that the error dynamical system (9) is asymptotically stable, 

Consequently, the drive system (1) is synchronous 

asymptotically with the response system(2) with control (13). 

This completes the proof. 

Numerical simulations are used to investigate the 

controlled error dynamical system (9), and also achieved 

synchronization between drive system (1) and response 

system (2) using fourth-order Runge-Kutta scheme with 

time step 0.3 . We choose the parameters 10a = , 8 3b =  

28c =  and 10d =  the initial values for the drive system 

and the response system are ( 5, 3,20,10)− −
 
and (5, 3, 35,-

10) respectively. From Fig.6 and Fig.7, we can see the 

speed of convergent for system (9) while Fig .8 and Fig. 9 

show the synchronization between two identical 

hyperchaotic systems with controller (10) and (13) 

respectively . 

Obviously, from Fig.6 and Fig.7, both controller (10) and 

(13) are guarantee to convergent system (9) at the origin, but 

controller (13) is faster than from controller (10) to 

convergent. Also, Fig. 8 and Fig.9 show the synchronization 

between system (1) and system (2) with controller (10) and 

(13) respectively, and justified the same result in Fig. and Fig. 

7. where it is obvious that the synchronization in Fig. 9 with 

controller (13) is better than the synchronization in Fig.8 with 

controller (10). Consequently, the synchronization with 

controller (13) is also faster than controller (10). So, 

wherever we reduce numbers of feedback controllers then we 

obtain fast convergent . 

Remark 1. In the linear feedback control methods, if we 

use multiple feedback controllers such as enhancing feedback 
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control  then get least complexity and cost, but in the 

nonlinear control method we get fast convergence if we 

reduce the number of feedback controllers. 

Remark 2. In both active and adaptive methods, we can 

design only one feedback controllers since those methods are 

depended on fixed base or law for designing while in 

nonlinear method don't need to the fixed base, Consequently, 

we can design more than one suitable feedback controllers. 

 

Fig. 6. controlling error dynamical system (9) with four feedback controllers. 

 

Fig. 7. controlling error dynamical system (9) with three feedback 

controllers.  

 

 

Fig. 8. The synchronization between the drive system (1) and the response system (2) with controller (10). 

 

Fig. 9. The synchronization between the drive system (1) and the response system (2) with controller (13). 
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5. Conclusions 

In this paper, based on the Lyapunov stability theory, 

nonlinear control method and numbers of feedback 

controllers, we consider the control and synchronization of a 

modified hyperchaotic pan system with unknown parameters. 

First, three controllers designed by nonlinear control method 

are used to control a modified hyperchaotic pan system to the 

unstable equilibrium point successfully. Second, 

synchronizations between two identical hyperchaotic systems 

are achieved via two designed controllers. Obviously from 

those controllers, time control and time synchronization are 

different according to those controllers  and we can get a fast 

convergence speed if we reduce the numbers of feedback 

controller Finally, numerical simulations show the 

effectiveness of the proposed chaos control and 

synchronization schemes 
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