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Abstract 
This paper presents an improved imperialist competitive algorithm (ICA) for real power 

loss minimization using optimal VAR control in power system operation. In this paper, 

the modified imperialist competitive algorithm (MICA) is then offered for handling 

optimal reactive power dispatch (ORPD). The ORPD problem is formulated as a mixed 

integer, nonlinear optimization problem, which has both continuous and discrete control 

variables. The MICA is applied to ORPD problem on IEEE 30-bus, IEEE 57-bus and 

IEEE 118-bus test power systems for testing and validation purposes. Simulation 

numerical results indicate highly remarkable results achieved by proposed MICA 

algorithm compared to those reported in the literature. 

1. Introduction 

The problem of optimal reactive power dispatch problem (ORPD) has played an 

important role in optimal operation of power system; including generator reactive-power 

outputs and compensators for static reactive power, tap ratios of transformers, outputs of 

shunt capacitors/reactors, etc., with the aim to minimize interested objective functions 

such as real power loss, and summation of bus voltage deviation while at the same time 

satisfying a given set of operating and physical limitations. Since voltage of the 

generators are inherently continuous variables while the transformer ratios and shunt 

capacitors are discrete variables, the whole ORPD problem is considered as a non-linear 

multi-modal optimization problem with a combination of discrete and continuous 

variables [1–4]. 

In recent years many techniques ranging from conventional mathematical methods to 

computational intelligence-based techniques have been proposed to for application of 

optimal VAR control problem. Examples of the progress which has been made in this 

field are Khazali’s application of a harmony search algorithm (HSA) for achieving 

optimal reactive power dispatch and voltage control by reaching a global optimization of 

a power system [5]. Also in [6] Roy demonstrated higher ability of biogeography based 

optimization (BBO) technique introduced to solve multi-constrained optimal VAR 

control problem in power systems. In [7] Zhang introduced the mixture of dynamic 

multi-group self-adaptive differential evolution algorithm (DMSDE), as a solution for 

reactive power operational problems. Zhao in [8, 14] purposed a multi-agent based PSO 

for the ORPD problem. In [9, 15] a fuzzy adaptive PSO (FAPSO) for reactive power and 

voltage control is used and in [10] DE algorithm has been chosen to constitute the core 

of the solution for handling the optimal reactive power dispatch problem. In another 

reported case, Mahadevan and et al. in [11, 17] offers another method based on 

comprehensive learning PSO (CLPSO) for solving optimal VAR control problem. Other  
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approaches for optimization of the above mentioned problem 

such as seeker optimization algorithm (SOA) and self-

adaptive real coded genetic algorithm (SARCGA) are also 

presented in [12, 13-18, 19] and finally, the teaching learning 

algorithms (TLAs) are used for solving a stochastic in [14-

18]. 

In 2007, Atashpaz-Gargari and Lucas introduced a novel 

with inspiration from social and political relations [21]. The 

performance of this evolutionary optimization algorithm has 

been continuously reinstated by successful utilization in many 

engineering applications such as optimal economic load 

dispatch [22], the multi-objective optimal power flow 

problems [23], and the electric power optimal planning [24-26]. 

The rest of this article is classified in four sections as 

follows: section 2 covers formulation of an optimal reactive 

power dispatch while section 3 explains the standard 

structure of the ICA and modified ICA (MICA) approaches, 

section 4 of the paper is allocated to presenting optimization 

results and undertaking comparison and analysis of the 

performance of the mentioned methods used to solve the case 

studies of optimal reactive power dispatch problem on 

standard IEEE systems and finally, in section 5, the 

conclusion of the implementation for the modified method is 

presented. 

2. ORPD Problem 

In general view, the goal of a solution of ORPD problem is 

to optimize the active power loss (Ploss) in the transmission 

network through optimal adjustment power system control 

parameters while satisfying equality and inequality 

constraints at the same time [1-4]. 

2.1. Problem Formulation 

The ORPD problem can be mathematically formulated as 

follows: 

Minimize: ( , )J x u                                 (1) 

Subject to: ( , ) 0g x u =                           (2) 

( , ) 0h x u ≤                                       (3) 

In the above equation, J(x, u) is the objective function to 

be minimized, and x is the vector of dependent variables 

(state vector) consisting of: 

1. Load bus voltage VL. 

2. Generator reactive power output QG. 

3. Transmission line loading (or line flow) Sl. 

Accordingly, the x vector can be illustrated as the 

following: 

1 1 1... , ... , ...T
L LNPQ G GNG l lNTLx V V Q Q S S =            (4) 

where NG defines the number of generators. 

u is the vector of independent continuous and discrete 

control variables consisting of: 

1. Generation bus voltages VG. 

2. Transformer taps settings T. 

3. Shunt VAR compensation QC. 

Therefore, u can be expressed as: 

1 1 1... , ... , ...T
G GNG C CNC NTu V V Q Q T T=              (5) 

where NT and NC represent the number of tap regulating 

transformers and number of shunt VAR compensators, 

respectively. 

2.2. Objective Function for ORPD Problem 

The objective is of ORPD problem to minimize the real 

power transmission losses in the power system. The objective 

function is described as follow: 

2 2

1
( , )

( , ) ( 2 cos )

NTL

Loss k i j i j ij

k
k i j

J x u P g V V V V δ
=
=

= = + −∑       (6) 

where PLoss is the total active power losses of the 

transmission network.
 
gk is the conductance of branch k, Vi 

and Vj are the voltages of ith and jth bus respectively, NTL 

depict the number of transmission lines, NPQ depict the 

number of PQ buses, δij phase difference of voltages between 

bus i and bus j. 

2.3. Constraints 

2.3.1. Equality Constraints 

In the terms below, g is the equality constraints, 

illustrating typical load flow equations [1]: 

1

1

cos( ) sin( ) 0

and sin( ) cos( ) 0

NB

Gi Di i j ij ij ij ij

j

NB

Gi Di i j ij ij ij ij

j

P P V V G B

Q Q V V G B

δ δ

δ δ

=

=

 − − + = 

 − − − = 

∑

∑
   (7) 

where NB is the number of buses, PGi is the active power 

generation, QGi is the reactive power generation, PDi is the 

active load demand, QDi is the reactive load demand, Gij and 

Bij are the conductance and susceptance, respectively. 

2.3.2. Inequality constraints 

h is the inequality constraints that include: 

i. Generator related constraints: the active power 

generation at slack bus, generation bus voltages, and 

reactive power outputs are restricted by their lower and 

upper limits as: 

min max
, , ,

min max

min max

, 1,...,

, 1,...,

G slack G slack G slack

Gi Gi Gi

Gi Gi Gi

P P P

V V V i NG

Q Q Q i NG

≤ ≤

≤ ≤ =

≤ ≤ =

             (8) 



 International Journal of Electrical and Electronic Science 2017; 4(1): 1-15 3 

 

where min
GiV and max

GiV  are the minimum and maximum 

generator voltage of ith generating unit; min
GiP  and max

GiP  the 

minimum and maximum active power output of ith 

generating unit and min
GiQ and max

GiQ are the minimum and 

maximum reactive power output of ith generating unit. 

ii. Transformer limitations: transformer tap settings are 

restricted by their lower and upper limits as: 

min max
, 1,...,i i iT T T i NT≤ ≤ =                    (9) 

where min
iT  and max

iT  define minimum and maximum tap 

settings limits of ith transformer. 

iii. Shunt VAR compensator constraints: shunt VAR 

compensations are restricted by their limits as: 

min max
, 1,...,Ci Ci CiQ Q Q i NC≤ ≤ =                (10) 

where min
CiQ and max

CiQ define minimum and maximum VAR 

injection limits of ith shunt compensator. 

iv. Security constraints: include the constraints of voltages 

at load buses and transmission line loading as: 

min max , 1,...,Li Li LiV V V i NPQ≤ ≤ =        (11) 

max , 1,...,li liS S i NTL≤ =              (12) 

where min
LiV  and max

LiV  minimum and maximum load voltage 

of ith unit. liS defines apparent power flow of ith branch. 

max
liS  defines maximum apparent power flow limit of ith 

branch. 

Dependent variables are constrained using penalty terms to 

the objective function. Therefore, Eq. (1) is changed to the 

following form [5, 8 and 12]: 

lim lim

lim 2 lim 2( , ) ( ) ( )

V Q

V i i Q Gi Gi

i N i N

f J x u V V Q Qλ λ
∈ ∈

= + − + −∑ ∑  (13) 

where Vλ and Qλ  is the penalty terms, lim
VN is the set of 

numbers of buses on which voltage is outside limits, lim
VN  is 

the set of numbers of generator buses on which injected 

reactive power outside limits, lim
iV  and lim

GiQ  are defined as: 

min

lim min min

max

,

,

,

max
i i i i

i i i i

max
i i i

V if V V V

V V if V V

V if V V

 ≤ ≤
= <
 >

                    (14) 

min max

lim min min

max max

,

,

,

Gi Gi Gi Gi

Gi Gi Gi Gi

Gi Gi Gi

Q if Q Q Q

Q Q if Q Q

Q if Q Q

 ≤ ≤
= <
 >

           (15) 

3. Modified Imperialist Competitive 

Algorithm 

3.1. Imperialist Competitive Algorithm 

ICA [21] is (the flowchart shown in Figure 1) purposed for 

general searching that is inspired from imperialistic 

competition. Each individual of the population this algorithm 

is called a ‘country’. The countries in the population with the 

minimum cost (equal with elites in GA) are selected to be the 

imperialist states and the rest countries form the colonies of 

these imperialists. Note that the power of each country is 

inversely proportional to its cost [21]. 

 
Figure 1. Flow chart showing the working of ICA. 

3.1.1. Generating Initial Empires 

The algorithm-user creates an array of variable values 

which are desired to be optimized. In the ICA terminology, 

this array is called a ‘country’ (equal with ‘chromosome’ in 

GA). It is clearly figured out that when solving a Nvar 

dimensional optimization problem, a country is a 1 × Nvar 
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array. This country is defined as follow: 

var1 2 3country [ , , ,..., ]NP P P P=                     (16) 

where Pis are considered as the variables that should be 

optimized. 
The candidate solutions of the problem, called country, 

include a combination of some socio-political characteristics 

such as, welfare, culture, religion and language. Figure 2 

shows the interpretation of country using some of socio-

political characteristics. 

 

Figure 2. Interpretation of country using some of socio-political 

characteristics. 

By evaluating the cost function, f, for variables 

(
var1 2 3, , ,..., Np p p p ), the cost of a country will be found (Eq. 

(17)): 

var1 2 3cos (country) ( , , ,..., )i Nt f f P P P P= =      (17) 

In the first step of ICA algorithm, initial population of size 

Ncountry is produced. We select Nimp of the strongest 

population in order to form the empires. The remaining Ncol 

of the population will form the colonies which are under 

control of one of the empires. We give some of these 

colonies to each imperialist for dividing the early colonies 

among the imperialist according to their power. To 

proportionally divide the colonies among imperialists, the 

normalized cost of an imperialist is explained as follows: 

max{ }n i n
i

c cC = −                              (18) 

In the above mentioned equation, cn is defined as the cost 

of nth imperialist and Cn is its normalized cost. When the 

normalized costs of all imperialists are gathered, the 

normalized power of each imperialist is evaluated according 

to the following equation: 

1

imp

n
n N

i

i

C
P

C

=

=

∑
                          (19) 

The initial colonies are distributed among empires based 

on their power. Accordingly, initial number of colonies for 

nth empire will be: 

. . { . }n n colN C round P N=                  (20) 

where N.C.n factor represents the initial number of colonies 

of the empire and Ncol is the total number of existing colonies 

countries in the initial countries crowds. 

3.1.2. Absorption Policy Modeling 

Actually, the central government attempts to close colony 

country to its self by applying attraction policy, in different 

political and social dimensions, with considering showing 

manner of country in solving optimization problem. Figure 3 

illustrates this movement in which a colony moves toward 

the imperialist by units. 

In Figure 3, d and x variables present distance between 

imperialist and colony countries is and accidental number 

with steady distribution, respectively. 

Therefore, x can be defined as follows: 

~ (0 , )x U dβ ×                             (21) 

where β is a number greater than one and nears to two. A 

good selection can be β=2. In Figure 3, θ is a parameter with 

uniform distribution. Then: 

~ ( , )Uθ γ γ− +                        (22) 

where γ  (the its value is about π/4 (Rad)) is ideal parameter 

that it's growth causes increase in searching area around 

imperialist [21]. 

 

Figure 3. Giving a move to the colonies toward their corresponding imperialist in an accidental deviated orientation. 
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3.1.3. Position Displacement of Colony and 

Imperialist 

If a colony reaches a better point than an imperialist in its 

movement towards the imperialist country (equal to having 

more power than the country), it will replace that imperialist 

country. 

3.1.4. Total Power of an Empire 

Taking into account the both above mentioned factors 

affecting the power of the empire, the sum cost of an empire 

calculates as follow: 

. . (imperialist )

mean{ (colonies of empire )}

n n

n

T C Cost

Costξ
=

+
             (23) 

where T.C.n is defined as the total cost of the nth empire and 

ξ is a positive number that has value between zero and one 

and near to zero. The value of 0.15 for ξ has shown good 

balanced results in most of the implementations. 

3.1.5. Imperialistic Competitions 

The imperialistic competition in ICA is modeled by the 

above fact and works by just picking some (usually one) of 

the weakest colonies of the weakest empire and making a 

competition among all empires to possess these (this) 

colonies. These weakest colonies will not definitely be 

possessed by the most powerful empire. 

3.2. The Proposed Modified Algorithm (MICA) 

In real geo-political interactions between countries, the 

imperialist countries themselves will also move towards 

the most powerful imperialist countries on different 

economic, political and social axis which they see 

themselves weak. Even at some points, the affiliated 

imperialists will overtake the greater imperialist in this 

axis and its power will be increased as the result. Of 

course they don’t always succeed or will face some 

resistance. But this interaction will force inevitable 

changes on geopolitical status of imperialist countries and 

as a result of that, force changes on absorption of their 

colonies. On this modification of MICA propose these 

actions between imperialist countries. 

Figure 4 illustrates the whole schematics of this 

movement, which is similar to the movement of colonies 

towards their imperialists. But the difference of this 

movement is that the movement will occur only if the new 

position gives more power to the imperialist country. 

Otherwise the imperialist will maintain its previous position. 

As it’s shown in Figure 4, the imperialist which sees itself 

weaker at some, will move towards the position of the most 

powerful imperialist by ximp units and take new position 

with condition of more power. The ximp is a random value 

with uniform distribution and as it’s shown in the Figure 4, 

the distance between to imperialist is illustrated by dimp. Of 

course this movement of imperialists doesn’t fully comply 

with the applied policies of the imperialist country and 

some deviation was observed in the final result which is 

modelled by adding random angle (θimp) to the movement 

course of imperialists. The θimp angle is also a random value 

with uniform distributed (although any other appropriate 

distribution can be used). So we have as follows: 

~ (0 , )imp imp impx U dβ ×                        (24) 

~ ( , )imp imp impUθ γ γ− +                        (25) 

The act βimp and γimp like the β and γ. 

Figure 5 illustrates the new absorption action, in which 

first imperialists move towards the most powerful imperialist 

to increase their power and then, colonies will pull to their 

imperialists. 

 

Figure 4. Giving a move to the imperialist toward the strongest imperialist in an accidental deviated orientation. 
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Figure 5. General model of absorption policy of MICA. 

4. Numerical Results 

In order to verify the performance and efficiency of the 

proposed modified algorithm (MICA) based ORPD approach, 

MICA is tested on IEEE 30-bus [8], IEEE 57-bus [9] and 

IEEE 118-bus [9] power systems. The MICA algorithm has 

been implemented in MATLAB 7.6 and the simulation run 

on a Pentium IV E5200 PC 2 GB RAM. Iterations for all the 

test systems are limited to maximum number of 300. 

The population size and the number of the imperialists in 

ICA and MICA are, respectively, set as 70 and 7 for IEEE 

30-bus power system; 140 and 12 for IEEE 57-bus power 

system; 200 and 18 for IEEE 118-bus power system. A good 

selection can be β = βimp =2 and γ = γimp = π/4 (Rad). The 

reactive powers of capacitor banks and the transformer taps 

are discrete variables with the step size of 0.01 p.u and the 

penalty factors in (13) are set to 500. The results of ICA and 

MICA, which follow, are the best solutions over 30 

independent trails. 

4.1. IEEE 30-bus Test System 

In the following section, numerical results extracted from 

solving ORPD problems by implementation of ICA and 

MICA in the simulation runs will be presented. In order to 

evaluate the performance of the ICA and MICA approach 

based on is tested on standard IEEE 30-bus test system as 

shown in Figure 6. The IEEE 30-bus system data and initial 

operating conditions of the system are presented in [8-9]. The 

minimum and maximum limits for the control variables are 

given in Table 1. 

 
Figure 6. Single line diagram of IEEE 30-bus test system. 
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Table 1. The limits of the control variables. 

Limits of generation reactive power (p.u.) 

Bus 1 2 5 8 11 13 

max
GQ  0.596 0.48 0.6 0.53 0.15 0.155 

min
GQ  -0.298 -0.24 -0.3 -0.265 -0.075 -0.078 

 

Limits of voltage and tap-setting (p.u.) 

max
GV  

min
GV  

max
PQV  

min
PQV  max

kT  
min
kT  

1.1 0.9 1.05 0.95 1.05 0.95 

 

Limits of reactive power sources (p.u.) 

Bus 3 10 24 

max
CQ  0.36 0.36 0.36 

min
CQ  -0.12 -0.12 -0.12 

The IEEE 30-bus test system’s components include six 

generators at the buses 1, 2, 5, 8, 11 and 13 and. In addition, 

buses 3, 10 and 24 have been chosen as shunt VAR 

compensation buses [8, 24]. 

The system loads are given as follows: 

Pload = 2.834 p.u., Qload = 1.262 p.u. 

The initial total generations and power losses are as 

follows: 

∑PG = 2.893857 p.u., ∑QG = 0.980199 p.u., Ploss 

=0.059879 p.u., Qlosss = -0.064327 p.u. 

There are three bus voltages outside the limits in the 

network: 

V26 = 0.932 p.u., V29 = 0.94 p.u., V30 =0.928 p.u. 

Table 2 illustrates the best ORPD solutions obtained by the 

methods in the 30 trials. Comparison between Simulation 

results with various techniques, specifically SGA method, 

PSO method and multiagent-based particle swarm 

optimization (MAPSO) approach is given in [8]. The results 

show that employing MICA results in 0.048595 p.u active 

power loss which is less than the amount obtained by other 

algorithms, particularly, 0.048608 p.u active power losses 

which obtained by the ICA. In the MICA* both penalty 

factors in (13) equal with 2000 are chosen. 

Table 2. Best control variables settings and active power loss for IEEE 30-

bus test system (p.u.). 

Variable 
SGA 

[8] 
PSO [8] 

MAPSO 

[8] 
ICA MICA MICA* 

VG1 1.0751 1.0725 1.078 1.07863 1.07929 1.07376 

VG2 1.0646 1.0633 1.0689 1.06941 1.07016 1.06472 

VG5 1.0422 1.041 1.0468 1.04702 1.04802 1.04256 

VG8 1.0454 1.041 1.0468 1.04702 1.04831 1.0428 

VG11 1.0337 1.0648 1.0728 1.06837 1.03822 1.03716 

VG13 1.0548 1.0597 1.0642 1.07118 1.07064 1.06993 

T6-9 0.94 1.03 1.04 1.05 1.04 1.05 

T6-10 1.04 0.95 0.95 0.96 1.0 0.97 

T4-12 1.04 0.99 0.99 1.0 1.0 1.0 

T28-27 1.02 0.97 0.97 0.97 0.98 0.97 

QC3 0.0 0.0 0.0 -0.05 -0.06 -0.07 

QC10 0.37 0.16 0.16 0.24 0.36 0.35 

QC24 0.06 0.12 0.12 0.11 0.12 0.12 

Ploss 0.0498 0.049262 0.048747 0.048608 0.048595 0.049039 

When considering convergence characteristics, Fig. 7 

shows MICA has faster convergence to a better solution than 

ICA. Also Figs. 8 - 10 shows the convergence graphs of the 

optimized control variables by the MICA with respect to the 

number of generations for the best solution. 

 

Figure 7. Performance characteristics for IEEE 30-bus test system. 
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Figure 8. Convergence of generator voltages VG for IEEE 30-bus test system. 

 

Figure 9. Convergence of transformer taps T for IEEE 30-bus test system. 
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Figure 10. Convergence of shunt capacitor QC for IEEE 30-bus test system. 

The concerned performance indexes including the best 

active power losses (Best), the worst active power losses 

(Worst), the standard deviation (Std), the mean active power 

losses (Mean), and average execution times (sec) for IEEE 30-

bus system for 30 independent runs are shown in Table 3. The 

Table 3 illustrates that an 18.84% decrease in active power loss 

is achieved by employing the MICA approach, which is the 

biggest reduction of active power loss compared to that 

obtained by the other approaches. Judging from the presented 

results, it turns out that MICA algorithm has better 

performance and robustness than ICA. Table 3 indicates that 

MICA algorithm literally has the smallest Best, Mean and Std. 

Table 3. Statistical details for IEEE 30-bus power test system. 

Algorithms Best (p.u.) Worst (p.u.) Mean (p.u.) Std. %Psave Average times (sec) 

SGA [5] 0.049408 0.051651 0.050378 - 16.07 - 

PSO [5] 0.049239 0.050576 0.04972 - 17.02 - 

HSA [5] 0.049059 0.049653 0.04924 - 17.32 - 

DMSDE [7] 0.04922 - 0.049242 1.7×10-5 18.3883 143.88 

DE [7] 0.049338 - 0.049443 6.6×10-5 18.1918 141.3891 

CLPSO [7] 0.049292 - 0.049453 1.14×10-4 18.2689 128.7073 

PSO-cf [7] 0.049228 - 0.049378 1.71×10-4 18.3751 144.3448 

PSO-w [7] 0.049232 - 0.049516 5.62×10-4 18.3684 143.499 

AGA [7] 0.04971 - 0.051067 1.074×10-3 17.5759 147.563 

CGA [7] 0.04984 - 0.051429 8.47×10-4 17.3603 165.0224 

SGA [8] 0.0498 0.05214 0.05081 - 16.84 156.34 

PSO [8] 0.049262 0.050769 0.049973 - 17.62 59.21 

MAPSO [8] 0.048747 0.048759 0.048751 - 18.59 41.93 

ICA 0.048608 0.050992 0.049367 9.943×10-4 18.82 63.05 

MICA 0.048595 0.04861 0.0486 9.7×10-6 18.84 64.62 

 

4.2. IEEE 57-bus Test System 

In order to evaluate the effectiveness and performance of 

proposed method in IEEE 57-bus test system. This system is 

includes seven generators at the buses 1, 2, 3, 6, 8, 9 and 12, 

80 transmission lines and 15 branches under load tap setting 

transformer branches. The shunt reactive power sources are 

considered at buses 18, 25 and 53. The bus data, the line and 

minimum and maximum limits of real power generations are 

taken from Refs [24-29] and the variable limits are given in 

Table 4. 
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Table 4. The limits of the control variables for IEEE 57-bus test system. 

Limits of generation reactive power (p.u.) 

Bus no. 1 2 3 6 8 9 12 

max
GQ  1.5 0.5 0.6 0.25 2.0 0.09 1.55 

min
GQ  -0.2 -0.17 -0.1 -0.08 -1.4 -0.03 -1.5 

 

Limits of voltage and tap-setting (p.u.) 

max
GV  

min
GV  

max
PQV  

min
PQV  max

kT  
min
kT  

1.06 0.94 1.06 0.94 1.1 0.9 

 

Limits of reactive power sources (p.u.) 

Bus no. 18 25 53 

max
CQ  0.1 0.059 0.063 

min
CQ  0.0 0.0 0.0 

 

The system loads (p.u.) 

Pload 12.508 Qload 3.364 

 

The initial total generations and power losses (p.u.) 

∑PG 12.7926 Ploss 0.28462 

∑QG 3.4545 Qlosss −1.2427 

Table 5 summarizes the results of the optimal settings as 

obtained by different methods. In this table we can see that a 

14.7752% reduction in power loss is accomplished using the 

MICA approach, which is more than that obtained by the 

other approaches. It can be seen that MICA algorithm is 

more robust than ICA. In order to guarantee a near optimum 

solution for any random trial, the standard deviation for 

multiple runs should be very low, which is satisfied better by 

MICA in comparison with main ICA. 

Table 5. Statistical details for IEEE 57-bus power system. 

Algorithms Best (p.u.) Worst (p.u.) Mean (p.u.) Std. %Psave Average times (sec) 

SGA [5] 0.2564 0.277651 0.268378 - - - 

PSO [5] 0.2503 0.270576 0.264742 - - - 

HSA [5] 0.249059 0.269653 0.25924 - - - 

DMSDE [7] 0.24266 - 0.24359 1.011×10-3 14.7425 156.11 

DE [7] 0.250862 - 0.255509 3.003×10-3 11.8607 152.0557 

CLPSO [7] 0.250684 - 0.256381 3.601×10-3 11.9233 104.4016 

PSO-cf [7] 0.243449 - 0.263949 2.6513×10-2 14.4653 152.7011 

PSO-w [7] 0.2440741 - 0.274727 4.9692×10-2 14.2456 155.4432 

AGA [7] 0.244857 - 0.253251 6.635×10-3 13.9706 165.8703 

CGA [7] 0.248853 - 0.264826 6.671×10-3 12.5666 176.6708 

CGA [12] 0.2524411 0.2750772 0.2629356 6.2951×10-3 11.3059 411.38 

AGA [12] 0.2456484 0.2676169 0.2512784 6.0068×10-3 13.6925 449.28 

PSO-w [12] 0.2427052 0.2615279 0.2472596 7.0143×10-3 14.7266 408.48 

PSO-cf [12] 0.2428022 0.2603275 0.2469805 6.6294×10-3 14.6925 408.19 

CLPSO [12] 0.245152 0.2478083 0.2467307 9.3415×10-4 13.8669 426.85 

SPSO-07 [12] 0.2443043 0.2545745 0.2475227 2.833×10-3 14.1647 137.35 

L-DE [12] 0.2781264 0.4190941 0.3317783 4.7072×10-2 2.2815 431.41 

L-SACP-DE [12] 0.2791553 0.3697873 0.310326 3.2232×10-2 1.92 428.98 

L-SaDE [12] 0.2426739 0.2439142 0.2431129 4.8156×10-4 14.7376 410.14 

SOA [12] 0.2426548 0.2428046 0.2427078 4.2081×10-5 14.7443 391.32 

ICA 0.244799 0.2554803 0.2538722 8.0561×10-3 13.9909 44.32 

MICA 0.2425668 0.2429263 0.2426758 2.8859×10-5 14.7752 49.28 

 

Table 6 illustrates the best results obtained by ICA and 

MICA methods. In the 30 trial runs performed, MICA found 

the best solution. It can be seen that the active power losses 

obtained by the MICA method is 0.2425668 p.u.. Figure 11 

shows the convergence characteristics of real power loss by 

the number of iterations and as it can obviously be seen, the 

MICA obtained solution converges to high quality solutions 

at initial stage. A good optimization results in convergence of 

all control variables to a steady value. Figure 12 shows the 

variation of the continuous control variable, VG, with respect 

to the number of generations. It is observed that by 120 

iterations all generator voltages settle to a steady value. Figs. 

13 and 14 show the variation of the discrete control variables 

– tap position and capacitor bank switching. It can be seen 

that all discrete control variables also converge to an 

acceptable state before 120 iterations. 

Table 6. Best control variables settings and active power loss for IEEE 57-bus test system (p.u.). 

Variable Base case PSO-w [12] PSO-cf [12] L-SaDE [12] SOA [12] ICA MICA 

Generator voltage VG 

VG1 1.04 1.06 1.06 1.06 1.06 1.06 1.06 

VG2 1.01 1.0578 1.0586 1.0574 1.058 1.05747 1.05838 

VG3 0.985 1.04378 1.0464 1.0438 1.0437 1.04232 1.04556 

VG6 0.98 1.0356 1.0415 1.0364 1.0352 1.03504 1.03959 

VG8 1.005 1.0546 1.06 1.0537 1.0548 1.05088 1.06 

VG9 0.98 1.0369 1.0423 1.0366 1.0369 1.01917 1.02736 

VG12 1.015 1.0334 1.0371 1.0323 1.0336 1.02869 1.03498 

Transformer tap ratio T 

T4-18 0.97 0.9 0.98 0.94 1.0 0.9 0.98 
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Variable Base case PSO-w [12] PSO-cf [12] L-SaDE [12] SOA [12] ICA MICA 

T4-18 0.978 1.02 0.98 1.0 0.96 1.01 0.97 

T21-20 1.043 1.01 1.01 1.01 1.01 1.0 1.02 

T24-26 1.043 1.01 1.01 1.01 1.01 1.01 1.01 

T7-29 0.967 0.97 0.98 0.97 0.97 0.97 0.96 

T34-32 0.975 0.97 0.97 0.97 0.97 0.98 0.98 

T11-41 0.955 0.9 0.9 0.9 0.9 0.9 0.9 

T15-45 0.955 0.97 0.97 0.97 0.97 0.96 0.95 

T14-46 0.9 0.95 0.96 0.96 0.95 0.94 0.94 

T10-51 0.93 0.96 0.97 0.96 0.96 0.95 0.95 

T13-49 0.895 0.92 0.93 0.92 0.92 0.92 0.91 

T11-43 0.958 0.96 0.97 0.96 0.96 0.95 0.95 

T40-56 0.958 1.0 0.99 1.0 1.0 1.0 1.0 

T39-57 0.98 0.96 0.96 0.96 0.96 0.96 0.97 

T9-55 0.94 0.97 0.98 0.97 0.97 0.96 0.96 

Capacitor banks QC 

QC18 0.0 0.05136 0.09984 0.08112 0.09984 0.041 0.1 

QC25 0.0 0.05904 0.05904 0.05808 0.05904 0.059 0.059 

QC53 0.0 0.06288 0.06288 0.06192 0.06288 0.063 0.063 

Ploss 0.28462 0.2427052 0.2428022 0.2426739 0.2426548 0.244799 0.2425668 

 

Figure 11. Performance characteristics for IEEE 57-bus test system. 

 

Figure 12. Convergence of generator voltages VG for IEEE 57-bus test system. 
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Figure 13. Convergence of transformer taps T for IEEE 57-bus test system. 

 

Figure 14. Convergence of shunt capacitor QC for IEEE 57-bus test system. 
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4.3. IEEE 118-bus Test System 

Further study of effectiveness of the proposed algorithm is 

done by employing the algorithm on a practical 118-bus 

system. The IEEE118-bus system data and initial operating 

conditions of the system are given in [12, 24]. The minimum 

and maximum limits for the control variables are presented in 

Table 7. 

The IEEE 118-bus test system includes 54 generators, and 

nine transformers with off-nominal tap ratio, and 14 shunt 

VAR compensation [12, 24]. 

Fig. 15 illustrates the convergence characteristics of 

transmission loss obtained by ICA and MICA. According to 

this figure, the MICA algorithm has faster convergence to a 

better solution than the ICA algorithm. The best ORPD 

solutions in 30 runs for ICA and MICA algorithms and results 

in the [12] are presented in Table 8. The information of Table 

8 demonstrates that a power loss reduction of 14.22% is 

achieved using the MICA approach, which is biggest reduction 

of power loss than that obtained by other algorithms. 

Comparing the results given in Table 8, it is concluded that 

MICA has the best performance among all rival approaches. 

Table 7. The limits of the control variables for IEEE 118-bus test system. 

Limits of reactive power sources (p.u.) 

Bus 5 34 37 44 45 46 48 

max
CQ  0.0 0.14 0.0 0.1 0.1 0.1 0.15 

min
CQ  -0.4 0.0 -0.25 0.0 0.0 0.0 0.0 

Bus 74 79 82 83 105 107 110 

max
CQ  0.12 0.2 0.2 0.1 0.2 0.06 0.06 

min
CQ  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Limits of voltage and tap-setting (p.u.) 

max
GV  

min
GV  

max
PQV  

min
PQV  max

kT  
min
kT  

1.06 0.94 1.06 0.94 1.1 0.9 

 

The system loads (p.u.) 

Pload 42.42 Qload 14.38 

 

The initial total generations and power losses (p.u.) 

∑PG 43.7536 Ploss 1.33357 

∑QG 8.8192 Qlosss -7.8511 

 

 

Figure 15. Convergence of active power losses for IEEE 118-bus test system. 

Table 8. Statistical details for IEEE 118-bus test system (p.u.). 

Algorithms Best Worst Mean Std. Average execution times (sec) 

ICA 1.1832197 1.2152677 1.1897025 6.4261×10-3 60.14 

MICA 1.1439722 1.1556274 1.1488262 1.635×10-3 63.02 

CGA [12] 1.3941498 1.4900944 1.4354781 2.6026×10-2 - 

AGA [12] 1.2420915 1.3107819 1.2770138 1.836×10-2 - 

PSO-w [12] 1.1581511 1.1821422 1.1677096 6.8971×10-3 - 

PSO-cf [12] 1.1564182 1.1805839 1.1620185 6.1864×10-3 - 

CLPSO [12] 1.2315216 1.2549893 1.2408008 6.4325×10-3 - 

SPSO-07 [12] 1.3927522 1.5024378 1.4626565 2.653×10-2 - 

L-DE [12] 1.5100861 1.7661426 1.6231526 8.2443×10-2 - 

L-SACP-DE [12] 1.4179864 1.7681178 1.606785 1.0643×10-1 - 

L-SaDE [12] 1.1690569 1.1886155 1.1759774 5.4041×10-3 - 

SOA [12] 1.1495013 1.1634725 1.1567443 3.5908×10-3 - 

 

Table 9 shows the control variable setting and active 

power losses obtained illustrates the best ORPD solutions 

found by the methods in 30 runs. Again, the numerical results 

indicate lower active power loss by MICA when compared to 

ICA algorithm. The numeric values of power losses obtained 

by the ICA and MICA methods are 1.1832197 p.u. and 

1.1439722 p.u. respectively. 
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Table 9. Best control variables settings and active power loss for IEEE 118-

bus test system (p.u.). 

Variable ICA MICA Variable ICA MICA 

VG1 1.00798 1.04138 VG89 1.06 1.06 

VG4 1.02957 1.05999 VG90 1.03401 1.04175 

VG6 1.01491 1.05238 VG91 1.03739 1.04553 

VG8 1.03805 1.06 VG92 1.04699 1.05498 

VG10 1.06 1.06 VG99 1.03088 1.04418 

VG12 1.01305 1.04848 VG100 1.02566 1.04515 

VG15 1.00058 1.04397 VG103 1.01126 1.02709 

VG18 0.99874 1.04621 VG104 0.99487 1.013 

VG19 1.00357 1.04311 VG105 0.99227 1.00716 

VG24 1.03884 1.04979 VG107 0.98004 0.99438 

VG25 1.06 1.06 VG110 0.99836 1.00601 

VG26 1.06 1.06 VG111 1.00797 1.01421 

VG27 1.00929 1.04215 VG112 0.98232 0.9915 

VG31 0.99575 1.03762 VG113 0.97864 1.05328 

VG32 1.00159 1.04102 VG116 1.04731 1.06 

VG34 1.02669 1.05887 T5-8 0.99 1.0 

VG36 1.02569 1.05707 T25-26 1.1 1.1 

VG40 1.01814 1.0369 T17-30 1.03 0.99 

VG42 1.02846 1.03799 T37-38 1.01 0.98 

VG46 1.04092 1.04618 T59-63 0.98 0.98 

VG49 1.05349 1.05936 T61-64 1.01 1.0 

VG54 1.02907 1.03743 T65-66 0.94 0.9 

VG55 1.02852 1.0366 T68-69 0.98 0.95 

VG56 1.02864 1.03668 T80-81 0.99 0.99 

VG59 1.04782 1.05999 QC5 -0.0732 -0.2991 

VG61 1.04059 1.05997 QC34 0.0477 0.0849 

VG62 1.03455 1.05581 QC37 -0.1268 0.0 

VG65 1.05998 1.06 QC44 0.0 0.0019 

VG66 1.06 1.06 QC45 0.0505 0.0459 

VG69 1.06 1.06 QC46 0.0669 0.0525 

VG70 1.03712 1.03489 QC48 0.0321 0.0093 

VG72 1.03898 1.03967 QC74 0.0 0.0759 

VG73 1.04109 1.03327 QC79 0.0 0.0 

VG74 1.02347 1.02471 QC82 0.0 0.0 

VG76 1.01068 1.0217 QC83 0.026 0.0001 

VG77 1.02966 1.04415 QC105 0.1995 0.0 

VG80 1.03889 1.05569 QC107 0.0235 0.0002 

VG85 1.05138 1.06 QC110 0.0483 0.0277 

VG87 1.04167 1.05856    

Ploss  1.1832197 1.1439722 

5. Conclusions 

In this study, an ICA and MICA algorithms has been 

offered as a novel solution for solving ORPD problem. The 

proposed ICA and MICA approach has been evaluated on 

IEEE test power systems and the gathered results are 

compared with other methods reported. The simulation 

results confirm the capability of MICA in more efficiently 

balancing global search ability and convergence speed than 

other algorithms. So, it is believed that the proposed MICA 

approach is able of swift and effective solving reactive power 

dispatch problem as one of the candidates. 
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