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Abstract 
The nonlinearity is an essential characteristic of structural materials, and there’s 

luck indeed in the literature, when talking about nonlinear structures rested on 

active or semi-active base isolations. Except the electro-rheological base isolations, 

there are be developments of semi-active mechanical models even nonlinear with 

their resolution algorithms, which analyze the structures as ideally linear, these 

analyses make these algorithms and the results obtaining less efficiency. In this 

contribution, a nonlinear closed-loop optimal control algorithm and a Semi-Active 

Isolator (SAI) model are developed. The algorithm developed represents a discrete-

time mathematical procedure for determining the optimal control matrix which 

allows to deducting the output optimal feedback. The combination of active, and 

passive variable stiffness and friction model developed, which in turn a 

combination of strings and frictions arranged in a certain manner, to reduce as 

possible the responses due to earthquakes in the two horizontal principal directions 

of the structures analyzed. As an application, a same seven floors uncontrolled, 

active-controlled and semi-active-controlled structure was studied according to the 

new developments. The illustrations shown below the responses and the acted 

forces and too, the considerable differences between them for uncontrolled, active-

controlled and semi-active-controlled for the same structure studied. 

1. Introduction 

In fact that, the structural materials are not linearly elastic; but their behaviors in 

reality are nonlinear, and this essential characteristic shall being considered when 

analyzing these constructed with structures. The algorithms proposed in the 

literature [1-10,12-20] for the analyses of structures supported by active or semi-

active base isolations, avoiding the nonlinearity of the real behavior of the 

structures, such analyses make the numerical studies made and the results obtained 

less effectively and efficiency. 

The development of semi-active base isolations is being more and more 

interesting field of research in the earthquake engineering and anti-seismicity. The 

researchers and researches in this domain are growth since the beginning of this 

century, and of course that there are be tenths of semi-active base isolation models 

developed. Among these developments, Krishnamoorthy A. [10] had developed a  
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Variable Curvature Pendulum Isolator with the Viscous 

Fluid Damper, which represents a combination of a 

mechanical organ VCPI and the passive VFD. Lu L. Y. et 

Lin G. L. [13] proposed too, a combination of a mechanical 

Semi-Active Isolation System SAIS with the Variable 

Friction Damper VFD that combined some strings and 

dampers. Lu L. Y. et al. [12] also, expanded a Variable 

Stiffness Isolation System using a Leverage mechanism, 

that represent a combined leverage-string mechanical 

system, Nagarajaiah S. et al. [15] developed a model called 

the Semi-Active Independently Variable Stiffness SAIVS 

which is represent a combination of strings and dampers by 

such manner.  

However, herein, a discrete-time algorithm for the 

resolution of the matrix differential equation of Riccati for 

the active closed-loop optimal control of nonlinear dynamic 

structures is proposed (the reader would see too, Latreche T. 

[11] for more details and another demonstrative way); this 

algorithm allows deducting numerically the optimal control 

output feedback for the nonlinear analysis of controlled 

structures according to the Non-Linear Quadratic Regulator 

method. 

Moreover, the mechanical passive variable stiffness and 

friction proposed model, is composed of four strings and 

frictions arranged intelligently under the form of plus, such 

that it sturdiest more and more when the displacements and 

the velocities of the base increase and then by conclusion, 

allows to reduce more and more the semi-active structural 

responses in comparison with the increasing active 

intensities. The combination of this mechanical model with 

two perpendicular actuators posed according the two 

principal horizontal axes of the structure, which can realize 

in reality, to interestingly improve the resistance and reduce 

the drifts of the structures subjected to seismic excitations. 

A same seven floors-structure was analyzed with an active 

isolator, and with a semi-active model proposed. The 

results such that the responses versus time and the forces 

for the uncontrolled, active and semi-active controlled 

structure, show the great differences between the 

uncontrolled and controlled results, and the differences 

between the active and semi-active results in comparison 

with the results cited in the literature with the indicated 

proposed models. It is certain that active control is an 

interesting way for the structural responses reduction in 

comparison with the uncontrolled ones, and a good 

proposed variable stiffness and friction model which stands 

up behind of the more decreasing of the structural 

responses when the active ones increases. 

2. The Closed-Loop Optimal Control 

Resolution Algorithm 

In this section, we will present the algorithm that it shall 

follows by the computer, connected with the sensor of the 

ground motion accelerations, and the actuators connected 

by their role to the structural platform (the base of the 

structure) directly, or by means of the after proposed 

passive variable isolator according to the case, which it 

being active or semi-active, the mentioned computer 

following the steps of the present algorithm have then to 

compute, for every step of time, the closed-loop optimal 

control matrices and the output optimal forces that the 

actuators should be provoke to the base or platform of the 

structure or to the connected, to the structure, passive 

variable stiffness and friction organ. 

The second order matrix equation of dynamic 

equilibrium of the structure to be analyzed is given by 

��� ��� + ��������	 + 
������� = −��� 

�,����, 
��� and  are respectively, the mass, damping, 

stiffness matrices of the structure and, the unity vector with 

the dimension of number of degrees of liberty of the 

structure, and �� is the ground acceleration. 

The state space formulation of this matrix dynamic 

equilibrium equation, of the controlled structure, would be 

expressed as 

�	��� = �������� + ������ + ������           (1) 

�����  is the controlled force vector expressed after. �����, ����, ����, �  are respectively, the seismic vector 

force, the state space response vector, and state space 

matrices given by 

															����� = −��                         ���� = ���������	 � 
���� = � 0 �−���
 −�����          � =  0−�! 

Where " is the unity matrix. 

Suppose that the optimal control matrix, for the closed-

loop control, is expressed as following 

#��� = $���������                        (2) 

According to the mathematics, the derivatives of any 

inverse vector or matrix, should have the form 

%	 �� = −%��%	 %��                         (3) 

Thus, the derivative of &�'� with respect to t (Eqns. 2. 

and 3.) is given by the expression 

#	 ��� = $	��������� − $����������	���������   (4) 

As known that, the Riccati equation is expressed 

#	 ��� = �(���#��� + #������� − #����)���(#��� + *��� (5) 

Expression, with )  and *  represent the weighting 

matrices. Replacing #��� by its expression (2) in equation 

(5), and standing up by equalizing the two expressions (4) 

and (5), one can obtain 

$	��������� − $����������	��������� =
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�(���$��������� + $������������� −																	$����������)���($��������� + *���             (6) 

Thus, we can obtain, multiplying rightly by ����, the two 

sides of the equation (6): 

$	��� − $����������	��� = 		�(���$��� 
																				+$����������������� 

																										−$����������)���($��� 
+*������� 

Then, it can rewrite this expression as  

$	��� − $���������+�	���,= �(���$��� + *�������− $���������-�)���($��� − ��������. 
And then, it can decompose this expression, in the two 

expressions 

$	��� = �(���$��� + *�������; 
�	��� = �)���($��� − �������� 

Finally, these two expressions could have the matrix 

form 

/$	����	���0 = 1 �(��� *����)���( −����2 �$��������           (7) 

As it is known, from the derivation of the Hamiltonian 

function, that 

����� = −)���($���                        (8) 

The expression (7), represent the matrix equation which 

it has to resolve for #���  for the closed-loop optimal 

control. 

Suppose that, 

1 �(��� *����)���( −����2 = 3����              (9) 

This matrix is called the Hamilton Matrix. 

From (2), we have  

$��� = #������� 

Then, from (8), one can obtain 

����� = −)���(#�������                 (10) 

Integrating the Equation (7) with respect to time, from �4 

to �45�, we obtain 

67 �$��45�����45��� − 67 �$��4����4�� = 8 3����9�:;<=:;    (11) 

Suppose that ∆% = �45� − �4, a so small step of time for 

the raison that the Hamiltonian Matrix elements vary 

linearly.  

Suppose that 

3���?� = 3�?                            (12) 

3���� = @�3�45� −3�4�� + �3�4�45� − 3�45��4�A ∆%⁄  (13) 

Integrating the expression (13) with respect to t (from �4 

to �45�), and after simplification, then the equation (11) can 

be expressed as 

67 �$��45�����45��� − 67 �$��4����4�� = �3�45� + 3�4�∆% 2⁄ = D4 

Or, by elevate it to a power 

�$��45�����45��� = E�FG;<=5FG;�∆( H⁄ �$��4����4��     (14) 

The matrix E�FG;<=5FG;�∆( H⁄  has the same dimensions 

like 3�? , then we can compute it by the Taylor series, as 

D#45� = E�FG;<=5FG;�∆( H⁄ = EI; = ∑ I;;4!L4MN      (15) 

We can suppose that $4 = $��4� and �4 = ���4�, and we 

subdivide D#45� on four equal dimensions matrices, such 

as 

D#45� = OD#45��� D#45��H
D#45�H� D#45�HH P               (16) 

As we suppose that # = $���  (Eq. 2), then we can 

obtain for any step of time, using the subdivision of Eq. (19) 

#45� = @D#45��� $4 + D#45��H �4A@D#45�H� $4 + D#45�HH �4A��
 (17) 

Multiplying rightly the nominator and the denominator 

of the right side of Eq. (20) by �4��, one would obtain then 

#45� = �D#45��� #4 + D#45��H ��D#45�H� #4 + D#45�HH ���(18) 

For Q = 0, we can obtain 

#� = �D#���#N + D#��H��D#�H�#N + D#�HH��� (19) 

Such that #N  represent the given initial condition at Q = 0 (i.e. at � = 0). 

The Equations (18) and (19) represent the discrete-time 

solution for the Nonlinear Matrix Differential Equation of 

Riccati, such that its discrete solution represents the closed-

loop optimal control matrix. Note that, as we take a so 

small step of time ∆%, as the solution being more exact and 

accurate. 

And such that, ����� = −)���($��� and, 

$��� = #������� 

After that determining of #45� according to the discrete-

time algorithm presented, so it is possible to replacing ����� 

by its expression (10), putting #��� = #45�  and resolving 

the system (1) for �45� = ���45��  and with the seismic 

exterior vector force ��45� = ����45��. Then, one can get to 

the discrete expression of ����� as follows 

��,45� = −)���(#45��45�                (20) 
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This last expression (20) represents the vector of the 

optimal control force, applied to the total degrees of 

freedom for one axis of the two horizontal principal 

directions of the structure have someone to study, and the 

total force applied by the actuator posed under the base in 

this direction, represent the total sum of the elements of the 

vector �� for any step of time. 

3. The Developed Semi-Active 

Variable Stiffness and Friction 

Isolator (SAI) 

The structure to be analyzed or constructed is supposed 

constructed on a platform (base), supported perfectly by its 

role on slide solid metal balls that allow such structure by 

means of its base to move horizontally freely reported to 

the ground, except the Semi-Active Isolator proposed 

which being the connection between. As shown by Figure 

1., the two tubes of the two electromechanical actuators are 

fixed on a inner end metal vertical bar, which in turn fixed 

by its upper end on the central joint (Joint x-y) of the 

variable stiffness and friction isolator. The bodies of the 

actuators (that are connected to the ground acceleration 

sensors) are fixed to the ground by means of two rails that 

allow the actuators to slide freely in the perpendicular 

directions of their bodies and tubes. The Joint 1, 2, 3 and 4 

represent articulations of the first edge of any of these 

joints allow the spring-friction tubes to turn freely and to 

get any horizontal directions. These articulations are fixed 

too, to the base of the structure. The Joint x-y represent an 

articulation for the last end of all of the four cited spring-

friction tubes, and can move horizontally to any place of 

the X-Y square that contains the four tubes. 

 

Figure 1. The Semi-Active Isolator (SAI) connected with the sliding ends 

actuators. 

Thus, as it can concludes, that this model proposed 

would get its stability when the tubes are not affected and 

in this case, the stiffness and friction have lowest values, 

and these values increase when the displacement and 

velocity of the base increase, this feature make it a good 

organ for decreasing the responses of stages when the 

responses of the base increase. 

Firstly, suppose that seismic excitation hits in the X 

direction only, the displacements of any of the four springs 

are given by 

RST
SUV� = W																							VH = W																							VX = YWH + 6H − 6VZ = YWH + 6H − 6

[ 

The forces due to the springs and frictions, according to 

the X-axis are expressed 

\]I = Q� 1V� + VH + VX W√WH + 6H + VZ W√WH + 6H2 
= 2Q� �1 + √`a5ba�b√`a5ba � W = 
�cIW                        (21) 

\dI = e� 1V� + VH + VX W√WH + 6H + VZ W√WH + 6H2 
= 2Q� �1 + √`a5ba�b√`a5ba � W	 = 					��cIW	                      (22) 

Such that Q� and e� are the element (one spring-friction 

tube) stiffness and friction coefficient, W  and W	  are the 

displacement and velocity of the base, 6 is the length of 

one element in its rest case (initial case) and 
�cI and ��cI 

are the equivalent stiffness and friction coefficient of the 

model, according to X axis for an earthquake hitting in the 

direction X only. 

Thus, the equivalent stiffness and friction coefficient are 

expressing as 


�cI = 2Q�f1 + @√WH + 6H − 6A √WH + 6H⁄ g          (23) 

��cI = 2e�f1 + @√WH + 6H − 6A √WH + 6H⁄ g          (24) 

Thus, we can remark that 

1
�cI = 2Q���cI = 2e� [                            for W = 0 

O
�cI = 2Q�f1 + @√2 − 1A √2⁄ g��cI = 2e�f1 + @√2 − 1A √2⁄ g [                for W = 6 

The same expressions as (23) and (24) can be deducted 

for the Y direction, replacing W by h. 

The displacements of any of the four springs according 

to X-axis, due to an earthquake hits on an arbitrary 

direction in the X-Y plan, are expressed as follows 

RS
T
SUV� = iY�6 + W�H + hH − 6iVH = iY�6 − W�H + hH − 6iVX = iY�6 + h�H + WH − 6i
VZ = iY�6 − h�H + WH − 6i

[                  (25) 

The absolute values implicate that the displacements and 

by consequence, equivalent stiffness must be positive 

whatever the signs of W and h. 

The resistant stiffness force according to X-axis, due to 
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such indicate earthquake, is obtained by 

\]I = Q� OV� 6 + W
Y�6 + W�H + hH + VH 6 − W

Y�6 − W�H + hH + VX W
Y�6 + h�H + WH

+ VZ W
Y�6 − h�H + WHP 

Replacing V? by their values (25), one can obtained the 

total stiffness and friction resistant forces, according to the 

X-axis, by 

\]I = Q�
jk
kl
mY�b5`�a5na�bm

Y�b5`�a5na ob̀ + 1p + mY�b�`�a5na�bm
Y�b�`�a5na ob̀ − 1p

+ mY�b5n�a5`a�bm
Y�b5n�a5`a + mY�b�n�a5`a�bm

Y�b�n�a5`a qr
rs W  (26-1) 

\dI = e�
jk
kl
mY�b5`�a5na�bm

Y�b5`�a5na ob̀ + 1p + mY�b�`�a5na�bm
Y�b�`�a5na ob̀ − 1p

+ mY�b5n�a5`a�bm
Y�b5n�a5`a + mY�b�n�a5`a�bm

Y�b�n�a5`a qr
rs W	    (26-2) 

The equivalent stiffness and friction according to X-axis 

are then given by 


�cI = Q�
jk
kl
mY�b5`�a5na�bm

Y�b5`�a5na ob̀ + 1p + mY�b�`�a5na�bm
Y�b�`�a5na ob̀ − 1p

+ mY�b5n�a5`a�bm
Y�b5n�a5`a + mY�b�n�a5`a�bm

Y�b�n�a5`a qr
rs   (27-1) 

��cI = e�
jk
kl
mY�b5`�a5na�bm

Y�b5`�a5na ob̀ + 1p + mY�b�`�a5na�bm
Y�b�`�a5na ob̀ − 1p

+ mY�b5n�a5`a�bm
Y�b5n�a5`a + mY�b�n�a5`a�bm

Y�b�n�a5`a qr
rs   (27-2) 

The total forces due to the stiffness and friction and the 

equivalent stiffness and friction according to Y-axis are 

obtained with the same manner, for an earthquake excited 

on an arbitrary direction, or by replacing W by h and h by W 

in the equations (26) and (27). 

4. Illustration and Demonstrative 

Numerical Example 

As an demonstrative example for the utility and useful, 

of the algorithm presented in section 2 for the computing of 

the nonlinear optimal control feedback force, and the Semi-

Active variable stiffness and friction Isolator given in 

section 3, a seven floors prototype structure, with one 

horizontal X-axis degree of freedom by floor, was 

uncontrolled, active controlled and semi-active controlled 

analyzed. For the structure, equal masses are supposed 

concentrates at the level of the floors and equal stiffness is 

supposed attaching between any two floors. The damping is 

deducted according to the percentage of mass and stiffness 

formula (Rayligh formula). The mass, stiffness and 

damping matrices are then given by 

� =
jk
kk
kk
kl
t0 					 0t					00							00						0						0						0			0						0						0				0						000						0		0						t0 					 0t						0		0						0						0						0						0						0						000						0						0						00							00						t						0 					0					t					0						0			0						000						0						0						00							00						0						0						0						0						t					0				0					tqr

rr
rr
rs
 


��� =
jk
kk
kk
kl
Q−Q			−Q	2Q					 0−Q					0			0							0							0							0				0							0														0					0														000							−Q0 				2Q−Q			−Q	2Q				 0−Q					0					0							0														0							0														000								0								0								00				−Q		0 					2Q					−Q 	−Q				2Q					0															0	−Q													000								0								0								0	0		 				0					0								0								0			−Q						0					2Q							 − Q−Q			Q + Qu qr

rr
rr
rs
 

� = 0.05� + 0.05
��� 
The elastic stiffness between any two floors and the 

masses at the top of any floor are considered equal, and are 

take the values Q = 2.5�2x�H  and t = 0.25 . The Force-

Displacements constitutive model of the material is 

considered bilinear with the hardening stiffness Qy = Q 5⁄ . 

For the base stiffness Qu  indicated in the 
���  matrix is 

taken equal Q  (for the uncontrolled and active controlled 

structure) and 
�cI  (for the semi-active structure), in this 

last case we take for the base damping ��8,8� = 0.05t +0.05Q + ��cI  such that, Q� = Q 2⁄  and e� = 12.5 . The 

maximal elastic displacement is supposed equals to {N = 0.055, and the free length of any spring and friction 

tube is taken 6 = 0.12. The weighting matrix ) is supposed 

diagonal with a value 0.1 at each diagonal element, and the 

second weighting matrix * is proposed being equals 

* = 1���
��� 00 ����2 
The structure is supposed submitted to the Modified El-

Centro earthquake shown by Figure 2. The unities taken for 

data and results entities are the Kilogram, Newton, Second 

and Meter. 

The uncontrolled, active controlled and semi-active (for 

the first, fourth and seventh floors) displacements versus 

time are shown by Figures 3.-8. and the floors forces versus 

time by the Figures 9.-11. The variations, of the base 

displacement and of the control feedback force for the 

controlled structure, and of the fraction 
�cI Q⁄  (for the 

semi-active controlled structure) versus time are given by 

Figures 12.-14. The variation of  
�cI Q⁄  according to the 

variation of the semi-active base displacement is showing 

by the Figure 15. 

0 4 8 12 16
-8

-4

0

4

t

ac

 

Figure 2. The Modified El-Centro earthquake. 
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0 4 8 12 16
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0
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t
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Active 

Semi-Active 

 

Figure 3. Controlled and uncontrolled displacements of the first floor. 
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Figure 4. Controlled and uncontrolled displacements of the fourth floor. 

0 4 8 12 16
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Figure 5. Controlled and uncontrolled displacements of the seventh floor. 

0 4 8 12 16
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Active 
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Figure 6. Active and Semi-Active Controlled displacements of the first 

floor. 

0 4 8 12 16
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Figure 7. Active and Semi-Active Controlled displacements of the fourth 

floor. 

0 4 8 12 16
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Active 
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Figure 8. Active and Semi-Active Controlled displacements of the seventh 

floor. 

-0.4 -0.2 0 0.2
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Figure 9. Controlled and uncontrolled forces of the first floor. 

-0.5 -0.25 0 0.25
-6

-3

0

3

6

u

F(u)  

Uncontrolled 

Active 

Semi-Active 

 

Figure 10. Controlled and uncontrolled forces of the forth floor. 
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Figure 11. Controlled and uncontrolled forces of the seventh floor. 

0 4 8 12 16
-0.03

-0.02

-0.01

0

0.01

0.02

t

u(t)  

Active 

Semi-Active 

 

Figure 12. Active and Semi-Active Controlled base displacement. 
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Figure 13. Active and Semi-Active Control force provoked by the actuator. 

0 4 8 12 16
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1.01
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Figure 14. Passive variable stiffness reported to the structural stiffness vs. 

time. 

-0.03 -0.02 -0.01 0 0.01 0.02
1

1.01
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u

PVS

 
Figure 15. Passive variable stiffness reported to the structural stiffness vs. 

base displacements. 

5. Discussion of the Results 

As shown by Figure 3. to Figure 8. and as indicated by 

Table 1. that there is no comparison between the 

uncontrolled and active controlled displacements, as we 

talk about 427 mm and 324 mm as greatest relative 

displacement for the first and the seventh floors for an 

uncontrolled structure, then we can reduce this 

displacement by 98.5 % to 99.2 % (9.8 to 2.7 mm) when 

the same structure was Active Controlled. Although, when 

the base of this controlled structure is replaced by the 

passive variable stiffness and friction (SAI), such that the 

stiffness of this organ can vary from Q  to 1.29Q  and the 

friction coefficient from 12.5 to 16.2, the Semi-Active 

displacements are reducing from 40.0 % to 68.3 %. Though, 

that the grand values of the control feedback forces for the 

cases of the Semi-Active based structure and the Active 

controlled structure are 10.2 and 8.4 respectively; but this 

difference is negligible compared with the differences of 

the displacements for the cases and the security which 

offers this last indicated base. 

6. Conclusion 

As introduced above, that the nonlinearity is an essential 

characteristic of the structural materials, then any study or 

analysis without taking in account this material propriety is 

insignificant and ineffective; among that, all the literature 

suppose that the Riccati equation solution is constant and 

reduced in the algebraic through all the time when the 

earthquake hitting. Moreover, the Semi-Active organs 

indicated in the literature are sometimes complex; but, 

because of the insufficiently understanding of the role of 

these organs for reducing as possible the drifts of the floors, 

unfortunately that these proposed organs being able to 

reduce sufficiently the displacements, velocities and 

accelerations of structural floors. 

Table 1. The Uncontrolled, Active and Semi-Active Controlled maximal displacements of different floors. 

 Uncontrolled and Controlled maximal Displacements Controlled maximal Displacements 

 Uncontrolled Active S-Active % A/U % SA/U Active S-Active % SA/A 

1st floor 0.35746 0.00976 0.00586 2.7 1.6 0.00976 0.00586 60.0 

4th floor 0.42755 0.00624 0.00321 1.5 0.8 0.00624 0.00321 51.4 

7th floor 0.32431 0.00268 0.00085 0.8 0.3 0.00268 0.00085 31.7 
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In this study, a nonlinear discrete-time algorithm for the 

resolution of the Riccati equation which indeed, take in one 

account the nonlinearity of the real structural properties 

such as the stiffness and damping matrices. Thus, a good 

passive variable stiffness and friction mechanical organ is 

proposed to be a base of the analyzed structure, such model 

is stiffened and fractioned more accordingly of the 

increasing of the base displacement. This property gives it a 

grand role for reducing the drifts of the analyzed structure. 

As mentioned in the previous section that because of the 

developments in this study, as we talk of tenth of 

centimeters for the relative displacements of the structural 

floors for the case of uncontrolled structure, then we talk 

only of about some millimeters and even less, for the case 

of Semi-Active controlled structure, and this returns to the 

role of the real analyzed controlled structure, and the role 

of the good passive variable stiffness and friction taken. 

References 

[1] Anderson, B. D. O. et Moore, J. B., (1971). Linear optimal 
control. First Edition, Prentice-Hall, Inc.  

[2] Anderson, B. D. O. et Moore, J. B., (1979). Optimal 
Filtering. First Edition, Prentice-Hall, Inc. 

[3] Anderson, B. D. O. et Moore, J. B., (1989). Optimal control, 
linear quadratic methods. First Edition, Prentice-Hall, Inc. 

[4]  Arfiadi, Y., (2000). Optimal passive and active control 
mechanisms for seismically excited buildings. PhD Thesis, 
University of Wollongong 

[5] Astolfi, A. et Marconi, L., (2008). Analysis and design of 
nonlinear control systems. First Edition, Springer Publishers 

[6] Elliott, D. L., (2009). Bilinear control systems. First Edition, 
Springer Publishers 

[7] Grewal, M. S. et Andrews, A. P., (2008). Kalman Filtering: 
Theory and practice. Third Edition, John Wiley and Sons, 
Inc. 

[8] Grune, L. et Pannek, J., (2011). Nonlinear model predictive 
control. First Edition, Springer Publishers 

[9] Isidori, A., (1999). Nonlinear control systems 2. First 
Edition, Springer Publishers 

[10] Krishnamoorthy A., (2010). Variable curvature pendulum 
isolator and viscous fluid damper for seismic isolation of 
structures. JVC, 17: 1779–1790 

[11] Latreche, T., (2014). A discrete-time algorithm for the 
resolution of the Nonlinear Riccati Matrix Differential 
Equation for the optimal control. AJCE, 2: 12-17 

[12] Lu L. Y. et al., (2011). Modeling and experimental 
verification of a variable-stiffness isolation system using a 
leverage mechanism. 17: 1869–1885 

[13] Lu L. Y. et Lin G. L., (2009). Fuzzy Friction Controllers For 
Semi-active Seismic Isolation Systems. JIMSS, 20: 1747-
1770 

[14] Marazzi, F., (2002). Semi-active control for civil structures: 
Implementation aspects. PhD Thesis, University of Pavia 

[15]  Nagarajaiah S. et al., (2006). Nonlinear response spectra of 
smart sliding isolated structures with independently MR and 
dampers and variable stiffness SAIVS system. SEM, 24: 
375-393 

[16] Preumont, A., (2002). Vibration control of active structures: 
An Introduction. Second Edition, Kluwer Academic 
Publishers 

[17] Vér, I. L. et Beranek, L. L., (2006). Noise and vibration 
control engineering. First Edition, John Wiley and Sons, Inc. 

[18] William, S. L., (2011). Control system: Fundamentals. 
Second Edition, Taylor and Francis Group, LLC   

[19] William, S. L., (2011). Control system: Applications. 
Second Edition, Taylor and Francis Group, LLC   

[20] William, S. L., (2011). Control system: Advanced methods. 
Second Edition, Taylor and Francis Group, LLC   

 

 


