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Abstract 
The latest research on determining maximum allowable displacements at the top of a 

shear wall (or maximum Drift) has contributed considerably to the improvement of 

concrete structures. Aiming at limiting maximum displacement, various investigators 

and seismic codes use values ranging from H/50 to H/2000, (H=building height). 

Difference shows considerable uncertainty in these limits. This article evaluates 

maximum allowable drift and provides general formulae for constant and variable 

stiffness shear walls by using FEM along with structural dynamics and reinforced 

concrete design considering cracked shear wall sections suggested by UBC and ACI. 

A comparison is made with various codes. 

1. Introduction 

Steel structures are allowed to drift more than reinforced concrete structures due to 

the fact that steel can accommodate tension as well as compression, while concrete 

tensile strength is generally less than 10% of its compressive strength. Under any 

tensile movement concrete will crack when subjected to wind and seismic reversals. 

Many investigators and seismic codes [1-9] suggest values for maximum allowable 

story drift or maximum allowable lateral displacement but these values differ 

significantly. 

Suggested maximum drift at the top of buildings vary between H/50 and H/2000 

where H is the height of the building. In addition to the fact that this difference is 

large, the question is how the actual structural behavior can be used to determine 

maximum allowable drift?  Some codes such as UBC section 1630.10.2 consider that 

buildings are allowed to drift H/50 as long as top floors occupants stay confortable 

without feeling the swing; they also base their estimate on the nonlinear behavior of 

the structure and materials. Other codes such as the Lebanese code reduce the drift 

values to H/2000 because land lots are scarce and expensive consequently, the code 

allows engineers and developers in certain areas to construct without setbacks.  This 

requires two adjacent buildings to be very stiff in order to eliminate/reduce 

hammering between structures when subjected to seismic or wind loads. 

One of the first attempts to evaluate the maximum allowable drift based on real 

shear wall behavior was done by the author [10], where the maximum allowable drift  
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was determined by assuming a shear building and making 

use of the finite element analysis along with the structural 

dynamics and reinforced concrete design.  In that initial 

study, a constant stiffness was assumed from bottom to top 

of the shear wall. In a later study, drift limitations in a shear 

wall was done considering a cracked section [11] as 

suggested by UBC and ACI where shear wall inertia was 

reduced. Another study was done to evaluate the drift with 

variable stiffness where the stiffness in a shear wall can 

vary from bottom to top; in addition, the effect of cracked 

section reduced inertia was considered [12].  In this article, 

the previous work done is combined and the effect of the 

vertical load contribution is added to present complete 

formulae that can be used to determine the maximum 

allowable drift for both constant and variable stiffness shear 

walls and for cracked as well as un-cracked reinforced 

concrete sections. 

2. Shear Building Formulation 

The objective is to generate the stiffness matrix for a 

shear building and afterwards add the contribution of the 

vertical load. As presented by references [10-12], and after 

applying boundary conditions, the stiffness matrix of an 

element on the shear wall is: 
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Where E is the concrete modulus of elasticity, I is the 

wall inertia and L is the wall length. 

 

Figure 1. Representation of an N-story building. 

From Figure 1, and taking into consideration the 

boundary conditions presented in reference [11], the 

structure stiffness matrix can be assembled relative to 

degrees of freedom 4, 7,…3j+1…3N+1.  Using constant 

and/or variable stiffness shear walls where the lateral 

stiffness is constant or can vary from the bottom to the top 

level as desired, the setup of the stiffness matrix for 

constant stiffness shear wall where K
(1)

= K
(2)

……=K
(N) 

=K 

and for a variable stiffness shear walls where K
(1)

 ≠ K
(2)

… 

≠K
(N) 

are presented in the following section.  

3. Base Shear, Displacement and 

Relative Displacement 

To find a relation between the total base shear V, stiffness 

k and maximum displacement ∆ for N stories structure, a 

triangular distribution of V is assumed. The base shear can 

be found by any procedure or from any seismic code.  This 

distribution of V gives a formula of the applied force Fi at 

every level i of the structure as a function of N, 
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Let the vector q represent the displacement in the 

particular case where the stiffness of all stories is the same 

as computed and presented in references [10-12].  The 

objective now is to determine the displacement q’ for 

variable stiffness shear walls. 

The stiffness matrix [A] can be written in terms of the 

lateral stiffness of each story in the following manner: 
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Where, k(i) is the stiffness of one story, 
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The stiffness matrix for a constant stiffness shear wall in 

the case where k
(1)

 = k
(2)

 = … = k
(i)

 = ... = k
(n)

 = k , is as 

demonstrated in a reference [10]:  
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At this time matrix C can be found such as: A = C x B => 

C = A x B
-1
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The shear force Fi at any level i is computed as: F = A x 

q’, and A = C x B => F = C x (B x q’). Therefore, once the 

values of the displacements q’ are known, the shear forces 

can be calculated.  

Now, find matrix D as follows: A = B x D => D = B
-1

 x 

A, and D = C 
T
. 
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The value of the relative displacement q’j – q’j-1 is given by: 
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4. Computing Maximum Strain 

Similar to what was presented in references [10-12] and 

using references [13] and [14], it was demonstrated that the 

strain in the x direction along a shear wall between the two 

levels (j-1) and j is: 
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of the vertical load, the strain equation becomes: 
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where y is the algebraic distance measured from the neutral 

axis to the extreme fiber of the shear wall section;  y is 

considered to be positive in the opposite direction of the 

deflection.  The maximum value of εi is obtained when 

maximum value of y is replaced, x is the abscissa of the 

section along the shear wall between the two levels (j-1) 

and j, and ε x is the strain in x direction. 

Note that equation (4) includes the effect of the vertical 

load above the level considered where L is the story height 

and Pi is the axial load at level i applied at the center of the 

shear wall with an area of Ai and modulus of elasticity E. 

By substituting the values of (q’j – q’j-1) from eq. (3) into 

eq. (4), the strain formula becomes: 
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The maximum value of the strain εi between levels (i-1) 

and i is found as follows: 
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The function εi is decreasing which means that the 

maximum strain in a shear wall, between levels (j-1) and j, 

occurs at the bottom of the shear wall (x = 0,  j=0 and i=1), 

where P1 is the axial load at level 1 applied at the center of 

the shear wall with an area of A1 and this maximum strain 

is equal to: 
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5. Maximum Displacement 

The maximum drift at the top of the shear wall is reached 

when the strain of the reinforcement in the tensile zone at 

the critical section of the shear wall is equal to εst 

(maximum allowable strain in steel), and the strain in the 

extreme fiber of the compression zone in the same section 

is equal to εc = maximum strain limit of concrete in 

compression = 0.003.  So the critical section in the shear 

wall is considered to have the behavior described in Figure 

2.[15] 

 

Figure 2. Balanced Reinforced Concrete Section. 

From eq. (3) we have the maximum displacement at the 

top of the shear wall ∆  is given as follows: 
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Let  
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But V R =∆ , and replacing V in equation 6 => 
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From similar triangles of the balanced section of Figure 

2, the following can be written: 
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The maximum strain in the shear wall presented in eq. (9) 

at the level of steel should be smaller than εy (the yield 

strain of steel): 
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Replace y from eq. (10) =>  
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If the strain in the steel is considered to stay within εy 

(the yielding strain of steel), the maximum allowable 

displacement at the top of a variable stiffness shear wall 

obeys the following equation: 
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For constant stiffness shear walls from bottom to top, eq. 

(13) becomes: 
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In this case, the critical section of the shear wall behaves 

as a balanced section; the limits are reached in the 

reinforcement in tension and in the concrete in compression 

at the same time, and at that point, the maximum allowable 

displacement at the top of the shear wall is reached.  

Notice that, in both equations (13) and (14), as the height 

L of a story increases, the maximum allowable 

displacement increases, and as d increases the maximum 

allowable displacement decreases since any small 

movement tends to cause larger strain at the critical section 

of the shear wall.  On the other hand, and as far as 

maximum displacement is concerned and disregarding 

economical and architectural issues, it is better to use larger 

number of shear walls with small d than to use fewer shear 

walls with large d; keeping in mind that the inertia of a 

shear wall is increased cubically as a function of d, and a 

bigger d will increase the stiffness significantly. 

6. Maximum Drift Considering a 

Cracked Section 

According to UBC, Modeling Requirement Section 

1630.1.2, “Stiffness Properties of Reinforced Concrete and 

masonry elements shall consider the effects of cracked 

sections”.[1] 

This means that when a designer uses cracked section 

analysis then according to ACI 318, section 10.10.4.1, the 

shear wall moment of Inertia would have to be reduced by 

a factor 0.35 such that the inertia would become 0.35Ig.[12]  

This will consequently reduce the stiffness of the lateral 

load resisting elements and will equally increase the drift 

by the same factor, which means that the drift should be 

multiplied by a factor of (1/0.35) to get a value taking into 

consideration the effects of a cracked section suggested by 

UBC-97 and ACI-318-08. Equation 13 for a cracked 

section of variable stiffness shear walls becomes: 

vvm ∆)
35.0

1
(∆ ≤                           (15)  

and equation 13 for constant stiffness shear walls becomes: 

ccm ∆)
35.0

1
(∆ ≤                        (16) 

The formulae of eqns. (15) and (16) suggested by the 

authors gives the maximum allowable drift as a function of 

the height of one story, the number of stories, the effective 

depth of the shear walls used, and the elastic properties of 

the materials used in the shear wall (steel and concrete). 

7. Examples 

In order to see how these formulas work, consider an 

example of a 20 story building with shear walls having 

variable lateral stiffness as we go up the building as follows: 

- from level 1 to 5 the stiffness is k,  

- from level 6 to 10 the stiffness is 0.9 k, 

- from level 11 to 15 the stiffness is 0.8k, 

- and from level 16 to 20 the stiffness is 0.7k.  

Yield Strength, fy = 414 Mpa, Modulus of Elasticity, Es = 

2.105 Mpa, Reinforcement Steel Yield Strain, εy = 0.00207, 

Story Height, L = 3m; Concrete Crushing Strain εc = 0.003.  

For the sake of simplicity of calculations, load P1 is taken 

such that the influence area around the shear wall is (2h)
2
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with a slab thickness of 0.25 m, but in real evaluation it can 

be calculated exactly, where h is the shear wall length. 

Table 1 presents the values of the maximum allowable 

displacement for constant and variable stiffness shear walls 

with length h= 3m and effective depth d=0.9h=2.7m, and 

for h=4 with d=3.6m. The shear walls have a constant 

width b=0.3m. 

Table 1. Allowable drift for Example 1 using Eqns (14)&(15). 

Stor

y 

Heig

ht 

(m) 

Dm 

(Constant 

Stiffness) 

Dm 

(Variable 

Stiffness) 

Dm 

(Constant 

Stiffness) 

Dm 

(Variable 

Stiffness) 

h=3, d=2.7 m h=4, d=3.6 m 

1 3 0.0093 0.0093 0.0073 0.0073 

2 6 0.0157 0.0157 0.0124 0.0124 

3 9 0.0220 0.0220 0.0173 0.0173 

4 12 0.0282 0.0282 0.0222 0.0222 

5 15 0.0345 0.0345 0.0270 0.0270 

6 18 0.0408 0.0400 0.0321 0.0313 

7 21 0.0470 0.0460 0.0370 0.0362 

8 24 0.0533 0.0522 0.0419 0.0410 

9 27 0.0596 0.0584 0.0468 0.0458 

10 30 0.0658 0.0645 0.0518 0.0508 

11 33 0.0721 0.0629 0.0567 0.0493 

12 36 0.0784 0.0684 0.0616 0.0536 

13 39 0.0846 0.0737 0.0665 0.0579 

14 42 0.0909 0.0792 0.0714 0.0622 

15 45 0.0972 0.0848 0.0764 0.0666 

16 48 0.1034 0.0789 0.0813 0.0619 

17 51 0.1097 0.0837 0.0862 0.0657 

18 54 0.1160 0.0885 0.0911 0.0694 

19 57 0.1222 0.0932 0.0961 0.0733 

20 60 0.1285 0.0980 0.1010 0.0770 

Results show that the effect of adding the contribution 

of the axial load P1 on the drift limitation value for a 20 

story building is around an addition of 10% increase in 

the story drift depending whether the structure is with 

constant or variable stiffness. This percentage increases 

progressively with increasing the number of stories due to 

the increase in the axial load P1. 

7.1. Comparison of Results with Various 

Codes 

On performing a comparison for the maximum 

allowable lateral displacement between eqn.(16) and 

selected seismic codes as presented in Table 2 below, it 

can be observed that results of this equation lie between 

the formula suggested by Mark Fintel [16] and the French 

codes PS92 [3], while UBC97 [1] gives a larger value.  

The important point that needs to be made is that the 

suggested eqns. (15) and (16) considers the geometry of 

the shear wall and the effective depth of the reinforcing 

steel. They also consider the height of a story, while the 

code formulas consider only the height of the building 

disregarding any structural and material properties. 

 

 

Table 2. Allowable drift comparison between Eqn. (15) and various codes. 

Story 
Height 

(m) 

Dm (Constant 

Stiffness) Khouri-

Elias 

Dm (Constant 

Stiffness) Lebanese 

Code “H/2000” 

Dm (Constant 

Stiffness) M. Fintel 

“H/500” 

Dm (Constant 

Stiffness) PS92 

“H/250” 

Dm (Constant 

Stiffness) UBC97-

IBC2006 “H/50” 

h=3, d=2.7 m 

1 3 0.0093 0.0015 0.006 0.012 0.06 

2 6 0.0157 0.003 0.012 0.024 0.12 

3 9 0.0220 0.0045 0.018 0.036 0.18 

4 12 0.0282 0.006 0.024 0.048 0.24 

5 15 0.0345 0.0075 0.03 0.06 0.3 

6 18 0.0408 0.009 0.036 0.072 0.36 

7 21 0.0470 0.0105 0.042 0.084 0.42 

8 24 0.0533 0.012 0.048 0.096 0.48 

9 27 0.0596 0.0135 0.054 0.108 0.54 

10 30 0.0658 0.015 0.06 0.12 0.6 

11 33 0.0721 0.0165 0.066 0.132 0.66 

12 36 0.0784 0.018 0.072 0.144 0.72 

13 39 0.0846 0.0195 0.078 0.156 0.78 

14 42 0.0909 0.021 0.084 0.168 0.84 

15 45 0.0972 0.0225 0.09 0.18 0.9 

16 48 0.1034 0.024 0.096 0.192 0.96 

17 51 0.1097 0.0255 0.102 0.204 1.02 

18 54 0.1160 0.027 0.108 0.216 1.08 

19 57 0.1222 0.0285 0.114 0.228 1.14 

20 60 0.1285 0.03 0.12 0.24 1.2 

 

8. Conclusion 

In this study, shear building was analyzed using the finite 

element method for both constant and variable stiffness 

shear walls and the contribution of the vertical load to the 

strain was considered. The shear was obtained as a function 

of the displacement. A value for the displacement at any 

story was obtained, and from which a function for the 

relative displacement between two stories was then 
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determined. Using the above, an equation for the maximum 

strain was resolved. A limiting value for the maximum 

displacement within the elastic limits was obtained as a 

function of the height of a story, the stiffness of a story, 

number of stories, effective depth d of a shear wall, the 

yield strain of steel εy and the maximum allowable concrete 

strain εc. 

On the other hand, the value h/50 suggested by UBC97  

[1] and IBC 2006 [2] generates large strains at the bottom 

of a shear wall; it is important to note that even though 

UBC and other codes consider the non-linear inelastic 

behavior of the structure and high drift values correspond 

to a flexible structure thereby lower lateral forces, such 

large displacements limits may be dangerous when the 

structure depends on shear walls for lateral stiffness.  With 

this in mind, it is pertinent to mention that UBC provides a 

restriction on inelastic inter-story drift which will be 

evaluated in a future work. 

It is now left for the designing engineer to evaluate his 

structure and decide/choose a maximum allowable strain 

limit for concrete and steel, and determine the corresponding 

maximum allowable displacement values.  Finally, the 

formulae suggested by the authors can serve as a starting 

point after which the designing engineer would know that the 

shear wall in question has passed the elastic limit. 
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