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Abstract

The proposed extended tan-cot method is applied to obtain new exact travelling wave
solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation and (2+1)-
dimensional equation. The method is applicable to a large variety of nonlinear partial
differential equations. The tan-cot method seems to be powerful tool in dealing with
nonlinear physical models.

1. Introduction

Solitons are found in many physical phenomena. Solitons arise as the solutions of
a widespread class of weakly nonlinear dispersive partial differential equations
describing physical systems. Solitons are solitary waves with elastic scattering
property. Due to dynamical balance between the nonlinear and dispersive effects
these waves retain their shapes and speed to a stable waveform after colliding with
each other. Onebasic expression of a solitary wave solution is of the form[1]:

u(x,t) = f(x— At) 1))

where A is the speed of wave propagation. For A > 0 , the wave moves in the

positive x direction, whereas the wave moves in the negative x direction for A < 0 .

Travelling waves, whether their solution expressions are in explicit or implicit
forms are very interesting from the point of view of applications.

These types of waves will not change their shapes during propagation and are thus
easy to detect. Of particular interest are three types of travelling waves: the solitary
waves, which are localized travelling waves, asymptotically zero at large distances,
the periodic waves, which rise or descend from one asymptotic state to another.
Recently, algebraic method, called the mapping method [2], is proposed to obtain
exact travelling wave solutions for a large variety of nonlinear partial differential
equations (PDEs). Other methods are proposed to obtain exact travelling wave
solutions such as sine-cosine-function method[3], tanh-coth method[4-5], tan-cot-
function method [6-7], sech method [8].
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2. Description of Extended Tan-Cot
Function Method

For a given nonlinear evolution equation, say, in four
variables (3+1) - dimensional

Pu v, i, U U U )=0 2)

We seek a travelling wave solution of the form:

u(x,y,z,t) =U(&),and E=hkx+ay+ Lz +at +6, 3)

Where k ,a, ,B , W, 90 are considered constants. The following chain rule

ouv _ dU 9dU _ , dU 0dU _

dU 0U 02U =k2d2U

ot d&’ 0x dé’ ady

converted the PDE Eq.(2), to an ordinary differential
equation ODE

ow,u,u",u”,....

with O being another polynomial form of their argument,
which will be called the reduced ordinary differential
equations of Eq.(4). Integrating Eq.(4) as long as all terms
contain derivatives, the integration constants are considered
to be zeros in view of the localized solutions. However, the
nonzero constants can be used and handled as well. Now
finding the traveling wave solutions to Eq.(4) is equivalent
to obtaining the solution to the reduced ordinary differential
equation Eq.(4). introduce the ansatz, the new independent
variable

T = tan(¢) 5)
that leads to the change of variables:
diuz(l.'.]‘z)diu
dé dT
42U _ 2,dU. 2.2 42U
e =2+ T T (AT S0 (6)
43U 3d3U

2
—:2(1+3T2)(1+T2)d—U+6y(1+72)2d—g+(1+T2)
dT drT

dé3 dr?

The next step is that the solution is expressed in the form

m

U(.f):Zal.TWib,.T"' (7)

i=0

where the parameter m can be found by balancing the
highest-order linear term with the nonlinear terms in Eq.(4),
and k,a,ﬂ,a),ao,al,....,am 7b1>""9bm are to be
determined. Substituting Eq.(7) into Eq.(4) will yield a set
of algebraic equations for
k,a,B,w,a,,a,,....,a, ,b,.....b,  because all
coefficients of T have to vanish. Having determined these
parameters, knowing that m is positive integer in most
cases, and using Eq.(7) we obtain analytic solutions
u(x,t) ,in a closed form.

The trigonometric functions can be extended to

df’azzﬁdf’axz dé?

hyperbolic functions by using the complex form. So that a
tanh-function expansion solution generates from a tan
function expansion solution for 7' = tan(i) =itanh(¢) ,

and a cot-function expansion solution generates from a coth
function expansion solution for

77" = cot(if) = —icoth(£) .

3. Applications

In this section, we will bring to bear the new tan- cot
method discussed in Section 2 to the (3+1)-dimensional KP
equation and the (2+1)-dimensional equation which are
very important in the field of nonlinear mathematical
physics.

3.1. Exact Solutions to the (3+1)-
Dimensional KP Equation

The (3 + 1)-dimensional KP-I equation is given by [9]:
(u, +6uu, +u, ) —3w, +u_)=0 (3

This explains wave propagation in the field of plasma
physics, fluid dynamics, etc. Soliton simulation studies for
Eq.(8) have been done by Hasibun et al [10-11], Senatorski
et al. [12],and Anwar et al. [13].

To study the travelling wave solutions to Eq.(8),

substitute u(x,y,z,t) =U($) ) and
E=hkx+tay+ fz+wt+ 6, Eq.(8) and
integrating twice with zero constants, we have:

into

KU +[kw-3(a’+ B*)U +%k2U2 =0 (9)

we postulate tan series , and the transformation given in
Eq.(5), so that Eq.(9) reduces to:

d*U
dr ?

k4[2T(1+T2)%+(1+T2)2 1+ AU +%kZU2=0 (10)

where:
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A=[kw=3(a* + )] (i ~ and

/- _ -2 _ -3
Now, to determine the parameterm, we balance the linear U =a +2a,T -bT 2b,T

term of highest-order with the highest order nonlinear terms. and

2 /"
So, in Eq.(10) we balance U with U , to obtain:m+2
=2m, then m=2. The tan-cot method admits the use of the v’ = 2a, + 2b1T_3 + 6b2T_4 (12)
finite expansion for :
Substituting 7 ', U ” from Eq.(7) in Eq.(5),
U=a,+aT+aT> +bT" +bT
2k*(a (T +T°)+2a,(T*+T*)=b (T " +T)=2b,(T 7 +1))
+k*(2a, + 26T > + 6b,T " +4a,T> +4bT "' +12b,T > +2a,T* +2b,T + 6b,)
3 - - -

+ AU +5k2(a0(a0 +aT +a,T°+bT " +b,T *)+a,(a, T +a,T>+a,T> +b, +b,T")

+a,(a,T*+aT>+a,T*+bT +b,)+b(a,T " +a, +a,T +bT > +b,T’)

+b,(a,T *+aT " +a,+bT > +b,T ") =0

then equating the coefficient of T’ ! ,1=0,1,2,3,4, -1, -2, -3, -4 leads to the following nonlinear system of algebraic
equations:

—4byk* + k*(2a, + 6by) + A(ay) + %kZ(aoao +aby + ayby + bja; +bya,) =0
2k*(a, = b))+ Aa, +%k2(a0a1 +a,ay + a,b, +bja,) =0
4 4 3 5
2k*2a, +k"4a, + Aa, +Ek (aga, +aja, +a,ay) =0
2k*a, + %/’cz(czla2 +a,a;)=0
2k*a,2a, + k*2a, +%k2a2a2 =0 (13)
-2k*a,b, + 4k*b, + Ab, +%k2(a0b1 +ab, +bjay +bya;) =0
-4k*ab, + k*12b, + Ab, +%k2(a0b2 +bb, +byay) =0
2k*h, +%k2(b1b2 +b,yb) =0
4 3 2 —
6k by + ~k’byby = 0
Solving the nonlinear systems of equations (13) we can get the following solutions,

u; (%, 2,2,) = dg +ay tan® () +b, cot* ()

s $=hetay+ F+at+6, (14)
J=L2,.... R

There are two families of solutions:
Family 1
Where:
_A+3@’+pB?)
k

2
a =b =0, a2:—§k2,w

With the following cases
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Case 1

4 )
=14k 43 + ) 4, :—§(4+\/ﬁ)k2 b, = —%kQ
k

g (x, y 2,1) = —%kz{(zt +14)+ (tan () + cot> (0))} as)
For k=a=f4=1,6,=0, @ = 2~/14 + 6
U, (xy.2.0) = —%{(4+Jﬁ)+<tan2<5)+cot2<z»} (16)

E=x+y+z+(2-/14 +6)t

Fig.(1). Represents the solitary soliton solution u(x,y,z,t) in Eq.(16) for =5 < x <5, 0<t <5 y=2z=0

u(x,0,0,t)

Fig(1).Solitary soliton solution u(x,y,z,t) in Eq.(16) for =5 < x <5, 0<t <5, y=2z=0

Case 2
o= 2\/ﬁk4+z(02 + %) a, = _§(4 Tk b, = _%kz
1 (53,50) == 2R (4 =13+ an* (€ + cot* () (1)
Case 3
= 214 +2("2+ﬁ2) ay= =S IE
(5, 7,2,0) = =K {(4 +14) + tan* (€) + 60t (D)} (18)
Case 4

4 2 2
w:24/14k +3(a’ + B%) a, =—£(4_‘/14)k2b = —4)2
k 3 o

u (x,y,2,1) = —§k2{<4—ﬂ)+tan2<5)+6cot2(5)} (19)



Case 5

Case 6

Case 7

Case 8

Case 9

Case 10

Case 11

International Journal of Mathematical Analysis and Applications 2014; 1(1): 9-19

_-2Vl4k 43’ + )
k

= —%(4 ++/14)k* b, = —%lﬁ

ug(x,y,2.0) = —%kz{(ét+Jﬁ)+<tan2(5)+cot2<5)>}

_ 4 2 2
— 2+14k" +3(a” + B7) a0=_§(4_ /14)k2 bzz_§k2
k

Uy (5, y.2,0) = —§k2{<4—ﬂ)+<tan2<z>+cot2<z>)}

LK@ ) 22 e

‘ b, = —4k*

(5,720 = =2 K4+ 18+ an*(§) + 600t (0]

_ 4 2 2
_ 2\14k* +3(a +,8)a0=—§(4—\/ﬁ)k2b2=—4k2
k

(5,7, 200) = =5 {4 1) +tan* (€) + 60t (O}

2\/_k4+3(0’ +,3) (6+\/§)b
k

uy(x,y,z,t) =— 213(

234k +3(a” + B° 2k>
= ( ﬁ)aoz—?(6—4/34)b2:—_

k

—\34)+tan*({) +cot*({)}

2k
um(x,y,z,t) == 3

—2J_%4;xa B (6+Jﬁ3b

13

(20)

@n

(22)

(23)

24

(25)
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2
0y (5,7.2,0) = =2 (6 338) +tan*(€) + ot (O}
Case 12
_ 4 2 2 2
W= 234k ;3(” tA) a, = —%(6 -\34) b, = —%kz
2k* s ) )
u12(x9y929t):_ 3 {(6_ 34)+tan (Z)+C0t (Z)}
Case 13
/ 4 2 2 2
a): 190k +2(a +ﬁ )aoz—k?(12+ /190 )b2=_4k2
__k 2 2
%J%ygj)——3%12+VHm +2tan"({)+12cot"({)}
Case 14
4 2 2 2
o= V190 +z(a B, - _%(12 ‘M)bz Cap?
__k 2 2
um(xﬁ%zgﬂ-———g—IZ-V190 +2tan"({)+12cot”({)
Case 15
-J190k* +3(a* + B*) _  k?
w = A ao——T(IZ + /190 )b2=_4k2
— k2 2 2
us(x,y,z,t) ——?{(12+\/190)+2tan ({)+12cot™({)}
Case 16
-NI90k* +3(a*+ B>  _ k® —
w = 2 ao——T(IZ— 190 )b2=_4k2
k2
ulﬁ(x,y,z,t):—?{(12—\/190)+2tan2(Z)+12cot2(Z)}
Family 2
Where:

a, = b, :O,a2:_ik2’w:,4+3(a2+,32)

3 k

With the following cases:

(26)

@7

(28)

(29)

(30)

(€2))



Case 17

Case 18

Case 19

Case 20

Case 21

Case 22

Case 23
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4 2 2 2
= 214k +3(a@ +’8)a0=——2§ (4 + 1) b2=—§k2

k

2k?
3

M17(X,y,Z,[) ==

4 2 2
wzzﬂk +Z(a ), -

2

ulg(xayazat) =~

_ 4 2 2
o= 214k +3(a +,8)a0:
k
2k?
3

u19(x9y929t) ==

_ 4 2 2
= 214k +3(a” + B7) . =

k

2k*
3

HZO(X,y,Z,t) ==

4 2 2
= N, -

{(4++/14) +2tan*({) + cot*({)}

2
2
24V b= Tk

’: (4=+12) +2tan> () + cot> ({))

2
2
%(4 ++/14) b, = —;kz

{(4+14) +2tan?({) +cot*({)}

2
2
—%(4 -J14) b, = —§k2

{(4=+14) +2tan*({) + cot*({)}

4 2
FOHVOR 4y

(5,200 = = K12 +6) + tan* (€) + 300t (0)

4 2 2
w= R, -

4 2
—;(Z—Jg)k b, = —4k°

s (5,2,2,0) = =S K2 =8) + tan* () + 3c0t* (D)}

_ 4 2 2
. 46k +k3(a +B) , -

4 2
EERCAR O LAY

15

(32)

(33)

(34)

(35)

(36)

(37
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(., 20) = =K (2 6) + tan* (€ + 300t (O}

Case 24
- 46kt +3(a*+ B>  __4 .
= k( A7) ao——?(2—\/g)k b = —ak?
1 (5.3,2,0) = =T K2 =8) + tan* () + 30t (D))
Case 25
A1k +3(a’ + B2 4k>
_ k( ﬁ)aoz_T(3+\/ﬁ)b2=_4kz
s (5.3,2,0) = = T {3+ + tan* (€ + 3e0t* (€)
Case 26
4 2 2 2
_ AWK +3@* + ) 4k G 5y
k 3 :
(5,920 = =5 KB =D + tan* () # 30t (O}
Case 27
:_4\/ﬁk4+3(0’2+ﬂ2)a :_£(3+\/ﬁ) _ )
k 0 b2 = -4k
s (5.3,2,0) = = BB+ V1) +1an (€ + 300t (O)
Case 28
_ 4
411k +k3(a +B) (3_\/—)17 o
u28<x,y,z,z>:—%k%@—dﬁ)+tan2<z>+3cot2<z>}
Case 29
_ 243 4k* +3(a’ +,B) (6+J37) _2,
k 3 3

sy (3,9, 2,0) = —§k2{<6+ds_4)+2tan2<Z)+cot2<Z)}

(3%)

(39)

(40)

(41)

(42)

(43)

(44)
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Case 30
_ 234k* +3(a’ +B7) (6 JiT) b, = - 2i
k 3 3
g (X, 9, 2,1) = _§k2 {(6=~/34) +2tan*({) + cot*({)} (45)
Case 31
_T2VME 3@+ B | S22k (o4 3w )b, = -2k
_ . =2 =2
gy (5, y,2.0) = —%k% +434) +2tan () + cot ()} (46)
Case 32
_ -4k +3@’ + B (6 S )b, =2k
k 3 3
iy (X, 3,2.1) = —§k2 (6-+34) +2tan’ () +cot ({)} @)

Results of solving (3+1)-dimensional KP in this paper are compatible with that results obtained by Anwar et al. [13].
3.2. Exact Solutions to the (2+1)-Dimensional Equation

The (2 + 1)-dimensional equation [13]:

u,~4uu, ~2uu tu, =0 (48)

XXXy

Substituting #(x,y,) =U (&) and € =kx+ay +wt + 6, into Eq. (48) and integrating once with zero
constant, we have:
Kau” +wu' -3kau? =0 (49)
we postulate the following tan-cot series , and the transformation given in Eq.(4),then Eq.(49) reduces to:

2 2 2 dU 2 2d2U 2 dU 2 _
al[2(1+T*)(3T +1)ﬁ+6T(1+T) T +(1 T) ]+a)[(1+T) ] 3ka[+T )ﬁ] =0 (50)

Now, to determine the parameter m, we balance the linear term of highest-order with the highest order nonlinear terms.

So, in Eq. (50) we balance {J /> with {J /' , to obtain m+3 = 2m+2 , then m=1. The tan-cot method admits the use of
the finite expansion for :

U=a,+aT+bT",
U'=a, -bT7?,
U’ =2b6T73,
U" =-6bT 6D
Substituting U, U ", U """ from Eq.(51) in Eq. (50),
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2k*a(4a,T? —4b, +a, + a,3T* = 4b,T*) +12k*ab (T > +2+T?)
—6k*ab(T™* +3T 2 +3+T*)+afa, -bT > +T%a, - b;]

then equating the coefficient of T’ ! ,1=0,2,4, -2,-4 leads to the following nonlinear system of algebraic equations:

8k*a(a, — b)) +6k*ab, + wa, -3kaa,> =0

2k*aa, - 2k*ab, +[w-3kaa, +3kab1(a, — b )+ 6kaba, =0
(53)

6k*aa, =0
—6k*ab, — wb, +3kaa,b, =0
Solving the nonlinear systems of equations (53) we can
get:
a; =0,b = %,w = —6k’*a

4k (54)
u(x,y,t) = a, +TCOt(kx+ay -6kar+ 60)

For a, =1,k =a =1,8, = 0 the solitary

solution in Eq.(54) is
4
u(x,y,t) =1+§cot(x+y—6t) (55)

Figure (2) solitary solution u(x, 1, t)ffory =1,-5<x <5,
0<st<s.

-50

u(x,1,t)

-100

-150

Figure (2).solitary solution u(x,1,t) for-5<x<5,0<t<5.

4. Conclusion

The exact travelling wave solutions to (3+1)-dimensional
KP and (2+1)- dimensional equations have been studied by
means of the extended tan-cot method. It can be easily seen
that the implemented method used in this paper is powerful
and applicable to a large variety of nonlinear partial
differential equations.
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