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Abstract 
The main theme in the book “Introduction to Quasi-Quadrilaterals” is that of quasi-

quadrilaterals and their properties. The first topic is about quasi-square represented 

by the equation  ��� � �� � 1  	
 �� � ��� � 1 .It is well-defined: the curve lies 

between the unit circle and the specified square which has its center at the origin of 

the Cartesian system and, sides of length 2 which are parallel to the coordinative axes. 

These type of closed curves do not represent squares but for values of n larger than 

100 they are almost squares. From this phenomenon derives the name “quasi-

square”.Also, it is proved that the curve, represented by such equation,perfectly fits 

to the sides of the specified square as n increases beyond bound. In this paper we 

present a more general case of the sequence of the quasi-squares and confirm the 

above fitness by proving that there exists the limit curve of such a sequence. Other 

subsidiary theorems are proved as well. 

1. Introduction 

The quasi-square is a closed curve and has only four points in common with the 

unit circle and the specified square. They are the intersection points of the curves 

with the coordinative axes. An observation done (using GeoGebra software or other) 

is that the region between two consecutive curves corresponding to the equations ��� � �� � 1   and ������ � �� � 1  , respectively , diminishes as n  increases. This 

region loses of sight as n grows beyond bound, in other words, it completely 

disappears as � � ∞. The geometrical interpretation of this fact is that for extremely 

large natural values of n the areas of two neighbor quasi-squares are almost equal or, 

the ratio of the mentioned areas is 1. This phenomenon is proved by the theorem at 

the end in which is considered a quasi-square represented by a more general equation: ��� � ��� � 1 

This equation represents the two cases mentioned above. The content of the 

theorem and its proof relate to the distance between any point on the quasi-square 

represented by the equation ��� � ��� � 1 

and the respective point on the neighbor quasi-square represented by the equation  ������ � ������ � 1 

 



32 Pellumb Kllogjeri and Adrian Kllogjeri:  The Quasi-Squares and their Limit Curve 

 

 

2. Existence of the Limit Curve  

Let be given the quasi-square represented by the 

equation ��� � ��� � 1, � � �; �, � � � 

Let M= (X,Y) be any point on the curve. Then its 

coordinates satisfy the equation: ��� � ��� � 1 

We use polar coordinates for a point M instead of 

rectangular or x-y coordinates. They are determined by the 

distance of point M from the origin O (denoted by r) and by 

the angle the line OM forms with the positive x-axis 

(denoted by ��. Then, the coordinates of any point on the 

quasi-square are:���������, ��	������. The distance of the 

point M from the origin is: 

 �!, "� � #����������� � ���	�������

� $��������� � ��	������ 

The coordinates of the respective point N on the quasi-

square represented by the equation ������ � ������ � 1 

are������� ��%�, ��	��� ��%��, and its distance from the origin 

is: 

 �&, "� � #������� ��%��� � ���	��� ��%���

� $������� ��%� � ��	���� ��%� 

The points O, M and N are not on a straight line, but this 

statement is another topic - not part of this paper. M and N 

are two respective points belonging to two neighbor or 

consecutive curves, respectively. As mentioned above, the 

areas of two neighbor quasi-squares are almost equal, or 

their ratio is 1, for extremely large natural values of n. This 

statement is equivalent to the statement that the distance 

between two respective points of two consecutive curves 

(that is, corresponding to the values n and n+1 of the 

exponent) becomes smaller and smaller beyond bound. The 

points O, M and N are not on a straight line (this can be 

easily seen for the first few values of n), but the points M 

and N are so close for large values of n, and merge in one 

point for extremely large values of n, hence it is not a 

significant error to estimate the distance between them 

using the difference   �&, "� '  �!, "�  or their ratio:  �&, "�/ �!, "�. The error done for large values of nis 

insignificant. The error continually decreases as n is 

increased, it is almost 0. The above statement is equivalent 

to the statement that  �&, "� '  �!, "� � 0  or     �&, "�/ �!, "� � 1. To prove the above statement, for 

simplicity, we have chosen the second option. So, we prove 

that  

lim��-  �&, "� �!, "� � lim��-
$������� ��%� � ��	���� ��%�

$��������� � ��	������
� 1 

which is equivalent to the statement:  

lim��- ������� ��%� � ��	���� ��%���������� � ��	������ � 1 

Consequently, we prove the following statement. 

Theorem1 Let be given the trigonometric function 

.��, �� � ������� ��%� � ��	���� ��%���������� � ��	������  

determined on � ( � � �, � � �, where � is expressed in 

radian - �  is the set of real numbers). Then, this function is 

non-increasing on the respective domain with respect to the 

variable n.  

Proof: For two consecutive values of n consider the 

difference of the respective function values (denoted as 

below): 

∆� .��� ' .�� � 1� � ������� ��%� � ��	���� ��%���������� � ��	������ ' ������� ��%0 � ��	���� ��%0������� ��%� � ��	���� ��%� � 

� 1234�056 ��%��2783056 ��%�90:1234�056 ��%0�2783056 ��%09·1234�056���2783056��9
1�34�05� ��%���78305� ��%�9·1�34�05�����78305���9                                     (1) 

Since we have trigonometric functions then the following inequality implications hold true: 

0 < ����� < 1 = 0 < ��������� < ������� ��%� < ������� ��%0 (2) 
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0 < �	��� < 1 = 0 < ��	������ < ��	���� ��%� < ��	���� ��%0 

It follows that 

��������� � ��	������ < ������� ��%� � ��	���� ��%�>�? 

(3) ������� ��%� � ��	���� ��%� < ������� ��%0 � ��	���� ��%0 

From (3) it follows that 

@ ������� ��%� � ��	���� ��%� � ��������� � ��	������ � A�A B 0�
������� ��%� � ��	���� ��%�  �  ������� ��%0 � ��	���� ��%0 ' C       �C B 0�   D                               (4) 

Multiplying side by side in (4) we have 

E������� ��%� � ��	���� ��%�F� �  E��������� � ��	������F · E������� ��%0 � ��	���� ��%0F � 

�A · E������� ��%0 � ��	���� ��%0F ' C · E��������� � ��	������F ' A · C                    (5) 

But,  

A · E������� ��%0 � ��	���� ��%0F ' C · E��������� � ��	������F ' A · C � 

�  A · E������� ��%0 � ��	���� ��%0F ' C · GE��������� � ��	������F � AH � 

� A · E������� ��%0 � ��	���� ��%0F ' C · E������� ��%� � ��	���� ��%�F                                             (6) 

Denoting by 

I��� �  ������� ��%� � ��	���� ��%� ' ��������� � ��	������ 

(4) can be written as following: 

J A �  I���C �  I�� � 1�D 
Can be easily proved (by differentiating or by subtracting) 

that the functional sequence KI���L is a strictly decreasing 

one with respect to n. That is: � M � � 1 = I��� N I�� � 1� 

Consequently, A N C . 

From (3) we have:  

������� ��%� � ��	���� ��%� < ������� ��%0 � ��	���� ��%0 

Hence, 

C · E������� ��%� � ��	���� ��%�F< A · E������� ��%0 � ��	���� ��%0F O 

A · E������� ��%0 � ��	���� ��%0F ' C· E������� ��%� � ��	���� ��%�F B 0 

Turning back to (6) we get, 

A · E������� ��%0 � ��	���� ��%0F ' C· E��������� � ��	������F ' A · C B 0 

Therefore, considering (5), it is true that 

E������� ��%� � ��	���� ��%�F� B E��������� � ��	������F ·E������� ��%0 � ��	���� ��%0F                           (7) 

Thus way, in (1) the nominator is non-negative, whereas 

the denominator is positive since the expression  P��, �� ���������� � ��	������   takes only positive values for 

every � � �. For values of �  such that  � � Q · R � S�  or � � Q · R�Q � T� we have: 

P �� � Q · R � R2 , �� �  P�� � Q · R, �� � 1 

For the other values of � we observe that  P��, 1� �  ����� � �	��� � 1  
� B 1 = ��������� � ��	������ B ����� � �	��� � 1  (8) 

Comparing (1) with results in (7) and (8) conclude that 
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.��� ' .�� � 1� B 0 O .��� B .�� � 1� 

This finishes the proof of the theorem.  

Note: The equality stands only for values of � �>V��.���W VXY �	�?�V�	��: � � Q · R � S� or � � Q · R�Q � T� . For �  satisfying the 

condition � [ Q · R � S�   and � [ Q · R�Q � T� we have a 

strict inequality:  

E������� ��%� � ��	���� ��%�F�
N E��������� � ��	������F· E������� ��%0 � ��	���� ��%0F 

Hence, the given function is strictly decreasing with 

respect to n. That is, .��� N .�� � 1� 

Since, ��������� � ��	������ B 1 N 0 , \ � � � , 

inequality (7) can be written as 

1234�056���2783056��9·1234�056 ��%0�2783056 ��%09
1�34�05� ��%���78305� ��%�90 < 1    (9) 

Corollary: Let be n (natural number) and � � �  (�  is 

expressed in radian where �  is the set of real numbers). 

Then 

1) The sequence of functions P��, �� � ��������� ���	������ is non-decreasing with respect to n and bounded 

on �. 

2) The sequence of functions 

.��, �� � ������� ��%� � ��	���� ��%���������� � ��	������  

is non-increasing with respect to n and bounded in �. 

The first part is straightforward: 

1 � ����� � �	��� < ��������0 � ��	�����0 < ]< ��������� � ��	������ < ] M 2 

The equalities stand for values of variable �  such that  � � Q · R  	
  � � Q · R � S�  , Q � T . 

From (2) can be seen that 

��������� � ��	������ M 2  .	
 \ � � � >�? \ � � �   
Notice that P��, �� � ��������� � ��	������ M 2  since 

for no value of �  we have simultaneously                  ���� � 1  >�? �	�� � 1. 
The second part derives from the theorem just proved. So, 

we can write (starting with n=1): 

��������0 � ��	�����0����� � �	��� B ��������_ � ��	�����_��������0 � ��	�����0 B ]
B ��������� � ��	������������� ��`� � ��	���� ��`� B ] 

As in the first part, the equalities stand for values of 

variable � such that � � Q · R  	
  � � Q · R � S�  , Q � T . 

Let find the maximum value of the first term using the 

differentiation technique.  

Denote by 

.��� � 234�056�0�2783056�034�05�78305 � √����� � √�	��� , � � �  . 
.b��� � 2���� · �	��2√����� ' 2���� · �	��2√�	��� � sin�2�� · 2√�	��� ' √�����62 · √����� · √�	���  

The domain of the derivative is � � �   >�?                 � [ Q · R>�?� [ Q · S� 

.b��� � 0 O ���� � �	�� O V>�� � 1 = 

� � Q · R � R4 

The case sin�2�� � 0 is excluded because: sin�2�� � 0 O 2� � Q · R O � � Q · S�  but � [ Q · S�   ? ! 
It follows, then, that 

.b��� � h�	��� ' h����� � 0 = �	�� � ���� = V>��� 1 = 

� � Q · R � R4 

Having into consideration the expression for �, which is 

the set of the roots of the equation .b��� � 0, we determine 

the signs of  .b��� in the following intervals. They include 

all possible situations and any one can confirm the results 

by using the unit circle for trigonometric functions. 

2.1. First Case 

� � F2Q · R ' Si , 2Q · R � SiE , � [ 2Q · Ror� �F2Q · R � jSi , 2Q · R � kSi E , � [ �2Q � 1� · R 
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l√22 M �	�� M 1  >�? ' √22 M ���� M √22 m  
= n12 M �	��� M 1  >�?  0 M ����� M 12o 	
 

l'1 M �	�� M ' √22 >�? ' √22 M ���� M √22 m  
= n12 M �	��� M 1  >�?  0 M ����� M 12o 

In the two intervals it is true the implication:        �	��� N ����� = √�	��� ' √����� N 0 . 
2.2. Second Case 

� � F2Q · R � Si , 2Q · R � jSi E , � [ 2Q · R � S�or� �F2Q · R � kSi , 2Q · R � pSi E � [ 2Q · R � 3 · S� 

l√22 M ���� M 1  >�? ' √22 M �	�� M √22 m  
= n12 M ����� M 1  >�?  0 M �	��� M 12o rs 

'1 M ���� M ' √22 >�? ' √22 M �	�� M √22  = 12 M ����� M 1  >�?  0
M �	��� M 12 

On the two intervals it is true the implication:     �	��� M ����� = √�	��� ' √����� M 0 . 
Identical results can be obtained on infinitely many other 

intervals, so we summarize the above results in the 

following table. Because of the limited space on the table 

we study the sign of derivative in four intervals (even six), 

and we denote the respective roots of the derivative and 

some important values by: 

� � 2Q · R � R4 , �� � 2Q · R � R2  , �j � 2Q · R � 3R4 , �i � 2Q · R � R, �k � 2Q · R � 5R4  

u  uv uv M u M uw uw uw M u M ux ux ux M u M uy uy uy M u M uz uz  h�	��� ' h����� + 0 -  - 0 + 0 + 0 - 

sin(2�) +  + 0 -  - 0 +  + . ′��� + 0 - ? + 0 - ? + 0 - .��� {  |  {  |  {  | 

 

From the table can be understood that at the points �, �j 

and  �k  the given function attains maximum. At the points ��  and �i the given function does not attain minimum 

because its derivative is undefined at these points. 

Calculate the maximum: 

.}~� � . �� � 2Q · R � R4� � . n� � 2Q · R � 3R4 o � . n� � 2Q · R � 5R4 o � 

� $���� �2Q · R � R4� � $�	�� �2Q · R � R4� � $���� �R4� � $�	�� �R4� � √2 

Conclude, this way, that the lowest upper bound of the 

sequence of functions 

.��, �� � ������� ��%� � ��	���� ��%���������� � ��	������  

is √2 . On the other side we have: 

������� ��%� � ��	���� ��%� B ��������� � ��	������ = 

������� ��%� � ��	���� ��%���������� � ��	������ B 1 

Definitely, we have: 

√2 B ��������0 � ��	�����0����� � �	��� B ��������_ � ��	�����_��������0 � ��	�����0 B ]
B ��������� � ��	������������� ��`� � ��	���� ��`� B ] B 1 

The sequence of the above functions is bounded on both 

sides. 

Prove now the next theorem related to the uniform 

convergence of the sequence of the above functions. 

Theorem 2:Let be given the trigonometric function 

.��, �� � ������� ��%� � ��	���� ��%���������� � ��	������  

determined on � ( � � �, � � � where �  is expressed in 

radian and �   is the set of real numbers). Then, the 

sequence of given functions converges uniformly to 1 on 

the respective domain as n increases beyond bound. 

Proof For values of �   such that � � Q · R � S�   or � � Q · R�Q � T� we have: .��, �� � 1 

Consider values of �  such that � � � and� [ Q · R � S� 

or  � [ Q · R�Q � T�. There are two general cases to treat 

with the respect to the values of �����  and  �	��� . 

Case 1 Values of � such that 0 M |����| < √��    hence √�� < |�	��| M 1 . This means that 0 M ����� < � and   � < �	��� M 1. 
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It follows that  ����� < �	��� = ��������� < ��	������ = ��������� � ��	������ B 2 · ��������� = 1��������� � ��	������ < 12 · ��������� = 

������� ��%���������� � ��	������ < ������� ��%�2 · ��������� 

On the other side, ��������� � ��	������ < 2 ·��	������ = 1��������� � ��	������ B 12 · ��	������  = 

������� ��%���������� � ��	������ B ������� ��%�2 · ��	������ 

Definitely, 

234�056 ��%�
�·�78305��� < 234�056 ��%�

�34�05�����78305��� < 234�056 ��%�
�·�34�05���    (10) 

Similarly we have: 

12 · ��	������ < 1��������� � ��	������ < 12 · ���������  = 

2783056 ��%�
�·�78305��� < 2783056 ��%�

�34�05�����78305��� < 2783056 ��%�
�·�34�05���     (11) 

Adding up side by side (10) and (11) we obtain: 

������� ��%� � ��	���� ��%�2 · ��	������ < ������� ��%� � ��	���� ��%���������� � ��	������
< ������� ��%� � ��	���� ��%�2 · ���������  

But, ������� ��%� � ��	���� ��%�2 · ��������� < 2 · ��	���� ��%�2 · ��������� >�? ������� ��%� � ��	���� ��%�2 · ��	������ B 2 · ������� ��%�2 · ��	������  

It follows that 

234�056 ��%�
�78305��� < 234�056 ��%��2783056 ��%�

�34�05�����78305��� < 2783056 ��%�
�34�05���     (12) 

We show now that the functions ����� � 2783056 ��%�
�34�05���  (on 

the right side) and ����� � 234�056 ��%�
�78305���   (on the left side) 

converge uniformly on the given interval. 

Consider ��2�����6 � �� · ����	���� ' � · �����������-����  0 ' 0 � 0 

It follows that, 

����� ��-����  1 

In the same way is proved that 

����� ��-����  1 

Applying the squeeze theorem is obtained that the 

sequence of functions 

.��, �� � ������� ��%� � ��	���� ��%���������� � ��	������  

converges uniformly to 1. 

Case 2: Values of �  such that 0 M |�	��| < √��  hence 

√�� < |����| M 1 . This means that 0 M �	��� < � and  � < ����� M 1. As in the previous case, following the same 

steps of estimations, it is proved again that the sequence of 

given functions converges uniformly to 1. This concludes 

the theorem.  

Theorem 3 There exists the limit curve of the quasi-

square represented by the equation ��� � ��� � 1 �� � �; �, � � �� as n increases beyond bound. 

Proof: The quasi-square is a closed curve lied between 

the unit circle and the specified square: square with center 

at the origin of the Cartesian system and sides of length 2 

which are parallel to the coordinative axes. Indeed, the 

equation shows that the coordinates of a point M = (X,Y) 

on the quasi-square satisfy the condition: |�| < 1  >�?|�| < 1 

and, there is no case that |�| � |�| � 1. The condition of 

inequalities implies that the points of the quasi-square are 

within the specified square. 

On the other hand, the points of the unit circle have a 

distance of 1 unit from the center of the coordinative 

system. Compare the distance of any points on the quasi-

square from the origin with the radius of the unit circle, by 

calculating the difference. The distance of any points of the 

quasi-square from the origin is: 

 � h�� � �� � $�� � �1 ' ������ = 
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 ' 1 � $�� � �1 ' ������ ' 1
� �� � �1 ' ������ ' 1

$�� � �1 ' ������ � 1 

But, |�| < 1 = ��� < 1 = 0 < 1 ' ��� < 1 =�1 ' ������ B 1 ' ��� = 

�1 ' ������ ' 1 B 1 ' ��� ' 1 � '��� 

On the other side, |�| < 1  = ��� < �� = �� ��1 ' ������ ' 1 B �� ' ��� B 0 =  ' 1 B 0  =  B 1 

The obtained result shows that the points of the quasi-

square are outside the unit circle, or on it. 

Also, in the first part of the corollary it is proved that the 

sequence of functions P��, �� � ��������� � ��	������ is 

non-decreasing with respect to n and bounded on �. This 

means that the distance of any points on the quasi-square, 

which is $��������� � ��	������ , is continually growing as  

n increases but it is smaller than √2  (the sequence is 

bounded). In addition, there exists the limit of the ratio of 

the distances from the origin of the respective points on the 

neighbor curves as n grows beyond bound, fact which is 

supported by theorems 1 and 2: 

lim��-  �&, "� �!, "� � lim��-
$������� ��%� � ��	���� ��%�

$��������� � ��	������
� 1 

It is a uniform convergence (by theorem 2). The point 

chosen in the above arguments is arbitrary and it has a limit 

position. Follows that there exists the limit curve of the 

sequence of the quasi-squares represented by the equation ��� � ��� � 1 as n increases beyond bound. 

3. Conclusion 

Paper results are of special interest: firstly, for 

mathematicians in studying the properties of the above 

family of closed curves by the use of analytical tools and 

methods and exploring other properties of such curves; 

secondly, for engineers and architects for whom the most of 

designs appear to be quasi-rectangles, or parts of quasi-

rectangles. Knowing the algebraic representations of such 

curves it is easier for them, using software, to construct 

their geometric representations. 
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