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Abstract 
We introduce a stochastic iteration method for the solution of a non-linear Black- 

Scholes equation which incorporates both the transaction cost and volatile portfolio 

risk measures. We first reduce the equation to a linear complementarity problem 

(LCP) and then propose an explicit steepest decent type stochastic method for the 

approximate solution of the LCP govern by a maximal monotone operator in Hilbert 

space.  This scheme is shown to converge strongly to the non-zero solution of the 

LCP. 

1. Introduction 

In a complete financial market without transaction costs, the celebrated Black- 

Scholes no-arbitrage argument [1] provides not only a rational option pricing 

formula but also a hedging portfolio that replicates the contingent claim. However, 

the Black-Scholes hedging portfolio requires trading at all-time instants, and the 

total turnover of stock in the time interval [0, T] is infinite. Accordingly, when 

transactions cost – directly proportional to trading- is incorporated in the Black-

Scholes model the resulting hedging portfolio is prohibitively expensive. It is 

therefore acceptable that in the continuous-timemodel with transaction costs, there 

is no portfolio that can replicate the European calloption with finite transaction 

costs. To proceed, the condition under which hedging can take place has to be 

relaxed such that the portfolio only dominates rather than replicates the value of the 

European call option at maturity. With this relaxation, there is always the trivial 

dominating hedging strategy of buying and holding one share of the stock on which 

the call is written. From arbitrage pricing theory, the price of an option should not 

be greater than the smallest initial capital that can support a dominating portfolio. 

Interesting results have evolved from this line of approach to pricing option without 

transaction cost, however, in the presence of constraints, in the presence of 

transaction costs.Soneret al [2] proved that the minimal hedging portfolio that 

dominates a European call option is the trivial one. In essence this suggests another 

way or technique to relaxing perfect hedging in models with transaction costs. 

Leland [3] used a relaxation with the effect that his model allowed transactions only  
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at discrete times. By a formal δ - hedging argument, one 

can obtain a generalized option price that is equal to a 

Black- Scholes price but with an adjusted volatility of the 

form; �� = ����1 − �	
��������, 

where� > 0 is a constant historical volatility,�	 = ��� ����√∆� 
is the Leland number and∆� is time lag. 

Assuming that inventor’s preferences are characterized 

by an exponential utility function, Barles and Soner[4] 

derived a nonlinear Black- Scholes equation with volatility � = �����, 
, �� given by 

�� = ���  1 + "�#�	$%&��
������'� , 

Where "(� ≈ �3 2, �� -, (. -,  for close to the originand��� 

is a constant. 

Market models with transaction cost have been 

extensively dealt with (see for example Amster, et al [5], 

Avellanda and Paras [6]).  A solution in Sobolev space 

which implies a weak solution of the nonlinear Black- 

Scholes equation has been obtained (see Osu and 

Olunkwa[7]). In a related paper,thesolution of a nonlinear 

Black-Scholes equation with the Crank-Nicholson scheme 

had also been obtained (see Mawah [8] and the references 

therein). The objective of this paper is to further 

incorporate volatile portfolio risk and show that a 

stochastic iteration method for the solution of a non-linear 

Black- Scholes equation which incorporates both the 

transaction cost and volatile portfolio risk measures exists 

and converges strongly to the nonzero solution. 

2. The Model 

Transaction costs as well as the volatile portfolio risk 

depend on the time –lag between two consecutive 

transactions. Minimizing their sum yields the optimal 

length of the hedge interval –time lag. This leads to a fully 

nonlinear parabolic PDE. If transaction costs are taken into 

account perfect replication of the contingent claim is no 

longer possible. Modeling the short rate / = /��  by a 

solution to a one factor stochastic differential equation. 0
 = 12, ��0� + �2, ��03,                                   (1.1) 

where1
, ��0� represent a trend or drift of the process and �
, ��  represents volatility part of the process, the risk 

adjusted Black-Scholes equation can be viewed as an 

equation with a variable volatility coefficient 

��� + ��4,��� 
�  1 − 1
����56' �4�� + /2��� − /� = 0,

  ( 1.2) 

where ��2, ��  depends on a solution � = �2, ��  and  1 = 3  ��7�� '56
, since 

���2, �� = ��1 − 1
����
, ���56. 

Incorporating both transaction costs and risk arising from 

a volatile portfolio into equation (1.2) we have the change 

in the value of portfolio to become. 

				��� + ���2, ��2 
��4�� + /
��� − /� = /%� + /9:�
 

where /%� = �|<|���√�� .√∆� is the transaction costs measure, /9= =.�>��?
�Γ�Δ�	 is the volatile portfolio risk measure and Γ = �4��. 

Minimizing the total risk with respect to the time lag ∆�yields min∆�/%� + /9:� = -�  ��7�� '56 ���|
����|E6. 
They change in the value of the portfolio after 

minimizing the total risk with respect to time lag is given as 

��� + ��.&F�GH�I4,���56� 
��4�� + /
��� − /� −
-�  ��7�� '56 ���|
����|E6 = 0.                    (1.3) 

LetJ
, �� = -�  ��7�� '56 ��|
����|E6,  and if we assume that 

there is no round trip transaction cost ,ie if we say there is 

no transaction cost by making J
, �� = 0  then equation  

(1.3) becomes 

��� + ��.&F�GH�I4,���56� 
��4�� + /
��� − /� = 0. (1.4) 

Equation (1.4) above is one form of Black-Scholes 

equation that incorporates both transaction costs and the 

volatile portfolio risk measures. 

We are interested in the Black-Scholes equation of the 

form below that incorporates both the transaction costs 

measure and the volatile portfolio measure. That is a fully 

nonlinear parabolic equation of the form 

��I + .���K2� L1 ± 3  ��7�� '. -, 2�4�N�. -, O�4�N + /2�4N −/N = 0, 2 > 0, � ∈ 0, Q�.    (1.5) 

Note: (i) if R=0 or C=0, equation (1.5) reduces to the 

classical Black-Scholes equation. 

(ii) Minus sign indicates Bid option price [9]. 

Denote RS� = ���  1 − 1S. -, ' S1 = 3  ��7�� '. -, , T =Q − � and ( = ln�
 V, �( ∈ > → 2 > 0� with S(, Q� =
�4�N2, ��, then equation (1.5) can be transformed into a 

quasilinear equation of the form �XS = �Y�RS� + �XRS� + /�YSQ ∈ 0, Q�,			( ∈ >,  (1.6) 
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with boundary conditions: S−∞, Q� = S∞, Q� = 0. 

For S[\ ≈ S]ℎ, _`�, ` = %a , ℎ = bK  we have (1.6) 

becoming; 

 − cd� R.�S[&.\&.� + cd /' S[&.\&. e1 + cd� R.�S[&.\&.� − cd / − cd� R.�S[\&.�fS[\ −cd� R.�S[\&.�S[&.\ = S[\&. + cd �R�S[\&.� − R�S[&.\&. g�           (1.7) 

For ] = −� + 1,… , � − 1  and _ = 1,… ,i, SK\ = 0 =SK\and Sjj = S([ , 0�. 
In matrix X form, we have 

kS[\ + l = 0.                                       (1.8) 

Equation (1.8) in a linear complementarity problem 

(LCP) which is finding n-dimensional S ∈ >K such that kS + l ≥ 0, S ≥ 0, S	′kS + l� = 0,     (1.9) 

with 

k =
o
ppq

 / − Kr s' %Kab − %K�ab�s´ 0 ⋯ 																																																						01 − / %Kab + %K�ab� �s − s´� ⋱ ⋯																																																								 ⋮	⋮0 ⋮0 ⋱⋯1 − / %Kab + %K�ab� �s − s´� 					0 / − Kr s' %Kab − %K�ab�s´x
yyz, 

where s = R′�S[&.\&.�, s′ = R′�S[\&.�  and 

l = {%Kab|}0%Kab|~. 

Interest on LCP stems from the fact that many important 

Mathematical problems can be formulated as LCP (Cottle 

et al., [10]). This problem has been extensively studied by 

many authors including Murty[11]. 

We formulate (1.9) into an equivalent minimization 

problem: 

min�S%kS + Sl: � ≥ 0, kS + l ≥ 0�.               (1.10) 

We observe that from (1.10) that JS� = S%kS + S%l 

has zero as a feasible minimize. Thus the problem reduces 

to that of searching for the global minimizer: �S�>K: S ≥ 0, l + kS ≥ 0, S%kS + l� = 0�. 
But S = 0, JS� = 0. 

This suggests a reformation of the problem as a search 

for �� = �S∗�>K: S∗ > 0: �JS∗� = 0�,  (1.11) 

where 

�JS∗� = G��∗�G� = kS + l. 

In this study stochastic gradient type recursive sequence 

is suggest: S\�. = S\ − �\0\,   (1.12) 

where	0[  is the estimate of �JS� = kS + l and ��\� is a 

sequence of positive scalars to be specified. 

The procedure is a way of stochastically locating the set 

(1.11) when it exists. The iteration method described in this 

study differs from most iterative methods mainly in the 

way the search direction at each iteration and the starting 

point of the search algorithm are estimated to determine the 

optimum direction and provide maximum rate of decrease 

of JS�. 
Definition 1: Let �  be a real Hilbert space with inner 

product (.,.) and norm ‖∙‖. If Q is a mapping with domain �Q�in �, then Q is said to be monotone if 〈�.∗ − ��∗, S. − S�〉 ≥ 0		∀	S., S� ∈ �Q�, ∀	�.∗ ∈ QS., ∀	��∗ ∈QS� (1.13) 

We shall be interested in an important class of monotone 

operator which consists of the gradient of convex 

functions:Let J  be a convex lower semi continuous 

function from �into −∞,+∞�. 
We assume that J ≠ +∞  and let �J� = �S ∈�:JS<+∞ be the effective domain J. 

For S ∈ �J� , the set �JS� = �� ∈ �: J�� − JS� ≥�,�−S∀�∈�JS is called the sub differential of J at �. The 

set �JS� is closed and convex. 

We assume that � is a real separable Hilbert space with 

inner product (.,.) and norm ‖∙‖. A random vector in � is a 

measurable mapping defined on a probability space Ω, ℑ, �� and taking values in �. 

If �, N are random vectors in � and � is fixed vector in �, 

then ‖�‖, �, N�, �, �� are real-valued random variables in 

the usual sense. 

Let V  denote the expectation operator. If V‖�‖ < ∞ , 

then V�  is defined by the requirement V�, �� =�, V��∀� ∈ �. 

Definition 2: Let �Q��S\��  be a complete orthonormal 

basis of �  associated with the data points S., S�, … , S� .Then��J  is linear least square estimable in 

terms of some discrete function values computed from data 

point S., S�, … , S�  if the data points are suitably chosen 

such that: 

∑ �Q��S\�, Q$�S\���\�. = �0	]J` ≠ / ]J` = /g     (1.14) 
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If �  is � −dimensional Euclidean space a convenient 

basis for J, considered in (Okoroafor and Ekere,[12]) with 

concrete examples, is the set ��\� in >K satisfying 

∑ �[\ = 0, ] = 1,2, … , �, � + 2 <   < KK�.���\�j , 

.�∑ �[\� = 1�\�. . 

This yields the same result. 

For the convex function J with �J� = �S ∈ �: JS� < ∞� ≠ ¡ 

Let ��J  be a single valued selection of �J . For every � ∈ � and ��J�� ∈ �J��, theTaylor theorem implies that 

J� + N� − J�� = 〈N, ��J�� + .� 〈���N, N〉 + 0‖N‖��〉, 
(1.15) 

for N ∈ � . Where 0∙�  indicates terms which can be 

ignored in the limit and ��� is the second derivative of J 

if it exists. 

Remark 1: Where the second derivative of J  does not 

exist in any sense, we consider the Taylor theorem of the 

form J� + N� − J�� = 〈��J��, N〉 + 0‖N‖�, (1.16) 

where, 0‖. ‖�  indicates terms which can be ignored 

relative to N in the limit and ignore all second conditions 

since they have no influence on the convergence analysis of 

the method as we shall see in the sequel. For completeness 

assume the second derivative exists in some sense.Let ��S\� = J  Sc + Q�S\�' − JSc�, Sc ∈ �J�for a fixed ` and _ = 1,2, … ,  . 

Definition 3: The non-observable random errors of 

approximation on the data points S., S�, … , S� , is the 

sequence of random variables �	�S\�� satisfying V	�S\� =0 for each _ and V	�S\�	�S\� = ��£[\  where 0 < �� < ∞. 

A convenient basis for the function (1.15) is the complete 

orthonormal basis 〈Q$〉 in � , so that the approximation 

function is given by: 

��S\� = 〈�JS∗�, Q$�S\�〉 + .� 〈�S∗�, Q4�S\�〉 + 	�S\�(1.17) 

which is identifiable with (1.15). 

The discrete function values ��S\�, for each _, are real 

valued independent observable random variables performed 

on �\ ∈ � whose distribution is that of 	�S\�. If at the point Sc ∈ � , for each ` , the data points S., S�, … , S�  suitably 

chosen so that S\ = Sc + Q$�S\�.    (1.18) 

Then; 

Theorem 1 

A strong approximation of ��J at Sc that is consistent is 

the random vector 

0c = ¤∑ Q$�S\�, Q$�\�. ¥&. ∑ Q$�S\�, ��S\��\�.    (1.19) 

Which is the least square approximation computed from 

different data points S., S�, … , S�. 

Proof: Assume 

0c = ¦§Q$�S\�, Q$�
\�. ¨&. §Q$�S\�, ��S\��

\�.  

1 §�[\� = 1�
\�.  

then 

V0c = 1 §Q$�S\�, V��S\��
\�.  

= ��Jc. 

So that V©0c − ��Jc© = V©0c − V��Jc© 

= V©Q$�S\�, 	�S\�© 

and V©0c − ��JSc�© = 0. 
Moreover, 

V©0c − ��Jc©� = V§〈Q$�S\�, 	�S\�, Q$�S\�, 	�S\�〉�
\�.  

= ��� . 

Hence V©0c − ��Jc©� → 0 as   → ∞. 

3. Getting the Domain of Attraction 

Let R�« − N0�  be partitioned into exclusive segments, S®, j = 1,2, … , t, n < � ≤ 2«. Let F®  be chosen randomly in S®, such that f�F®� > 0, ∀_ 
Let P® = P�F® = α�be the probability that F® = α so that P® ≥ 0,∑ P® = 1¶®�. .    (1.20) 

Put P® = ·¸¹�∑ ·¸¹�º¹»5 , 

so that 

F¼ = ∑ F®P® = ∑ ¸¹·¸¹�∑ ·¸¹�º¹»5¶®�.¶®�. .          (1.21) 

It is shown in (Okoroafor and Osu,[13]) that if F½ = F¼ − ρd, ρ > 0	,                (1.22) 
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where 0  is as in(1.19), then f�F½� = min〈f�F®�: F® ∈ s〉.  It 
follows that the segment SÁ  where F½ ∈ SÁ  contains x > 0 

for which fF� is minimum and hence we have φVÅ¼� ⊂ SÁ 

so that if �0� is the attractor of the point x¼  and φ�0�� ∩	φVȨ̀� = ∅ then  0� ∩  ��½� = ∅ or else  0� =  ��½� 
with global domain of attraction "0� = "��¼�.  Where V¸∗ = �F∗ ∈ R«: F∗ > 0: �JF∗� = 0�  (1.23) 

is a way of stochastically solving problem (1.11). Thus we 

have 

Lemma 1: suppose that VȨ̂ ≠ ϕ.	thus there exists a 

neighborhood NVȨ̂� ⊆ D∂f� of VȨ̂ such that for any initial 

guess F½ ∈ φVȨ̀� , the non-negative minimizer VȨ̂  is 

obtained as the limit of iteratively constructed sequence �F®�®�.Ï  generated form F½	by	F®�. = F® − ρ®d®. 
Then with F½  as our starting point we search for the 

minimizer of	J as follows: starting at S½ as in Eq. (1.22). 

A. Compute the 0c as in Eq. (1.19) 

B. Compute the corresponding � as specified below 

C. Compute F®�. = F® − ρ®d®. 
Has the process converged? i.e., ©S\�. − S\© < �, � > 0	 

if yes, then S\�. = S\ if no return to A. 

Here we prove the strong convergence of the sequence to 

the solution of (1.22) 

Theorem 1: Let ��\be a real sequence such that 

I. �j = 1, 0 < �\ < 1∀_ > 1 

II. ∑ �\Ï\�j = ∞ 

III. ∑ ��\Ïc�j < ∞ 

Then the sequence �S\�\�jÏ  generated by S½ ∈ "��½� ⊆��J�  and defined iteratively by F®�. = F® − ρ®d® .remain 

in ��J� and converges strongly to ��½ . 
Proof: Let l\ = �\©0\ − �J\© 

Then �l\�\�.Ï  is a sequence of independent random 

variable and from (1.18) Vl\ = 0 for each _. 
Noticing that the sequence of partial sums �
\�\�.Ï , 
\ = ∑ l\c\�. ,  is a Martingale. Therefore, 

V
\� = §Vl\�c
\�. = §��\c

\�. V Ò©0\ − �J\©Ò�
 

= Ó&.�� ∑ ��\c\�. . 

And 

§Vl\� < ∞, 	2]�Ô		§��\c
\�. < ∞ 

Hence by a version of Martingale convergence theorem 

(Whittle, [15]), we have 

limc→Ï 
c = § l\ < ∞Ï
\�.  

So that lim\→Ï�\ = ©0\ − �J\© = 0 

Noticing that in (1.22), A is positive definite so that J�� 
is convex and hence �J is monotone. But an earlier result 

in theory of monotone operators, due to (Chidume, [15]), 

shows that the sequence �S\� generated by Sj ∈ ��J� and 

defined iteratively by: F®�. = F® − ρ®d®. 
remain in ��J� and converges strongly to �S∗: �JS∗� =0. It follows from this result that our sequence converges 

strongly to ��if ��∗ ≠ 0. 
4. Conclusion 

Transaction costs as well as the volatile portfolio risk 

depend on the time-lag between two consecutive 

transactions. Minimizing their sum yields the optimal 

length of the hedge interval - time-lag, which leads to a 

fully nonlinear parabolic Black-Scholes PDE.We have used 

an implicit finite difference approximation and transform 

this PDE to the linear complementarity problem. We then 

constructed a steepest decent type stochastic sequence in a 

separable Hilbert space and show strong convergence to the 

solution of the LCP when exit. 
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