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Abstract 
The purpose of this paper is to obtain a solution for a fractional Black- Scholes 

formula for the price of an option for every ���0, ��. For this purpose, we first 

derive the Black- Scholes equation for a generic pay-off function whose value is 

equivalently the worth of the stock at time �. We further obtain the equilibrium price 

and growth rate of the stock that is priced in the market. An analysis of the stability 

and convergence of the solution is given in concrete setting. 

1. Introduction 

Fractional differential equation (FDE) can be extensively applied to various 

disciplines such asphysics, mechanics, chemistry and engineering, see [1-3]. Hence, 

in recent years, fractionaldifferential equations have been of great interest and there 

have been many results onexistence and uniqueness of the solutions of FDE, see [4-

8], thus giving good motivation forfurther development of this topic. A fractional 

Black-Scholes formula for the price of an option for every ��	�0. ��driven by a 

fractional Brownian motion is a family member of the FDE. Let
Ω, �, ℙ�be a 

complete probability space. A standard fractional Brownian motion (fBm) ���
��, � ∈ ℝ�with Hurst parameter � ∈ 
0,1� is a zero mean Gaussian process 

with continuous sample paths such that 

����
����
��� = �� 
��� + ��� − |� − �|���                        (1.1) 

for �, � ∈ ℝ. It is clear that for � = 1 2⁄ , this process is a standard Brownian motion. 

In this paper, it is assumed that � ∈ "�� , 1#. 

This process has been introduced and studied by researchers [9 and the references 

therein]. Its self-similar and long-range dependence make this process a useful 

driving noise in models arising in physics, telecommunication networks, finance 

and other fields. 

Consider a time interval �0, �� with arbitrary fixed horizon � and let  ���
��, � ∈ �0, ���  the one-dimensional fractional Brownian motion with Hurst 

Parameter � ∈ "�� , 1#. It is well known that �� has the following Wiener integral 

representation: 

��
�� = $ %�
�, ��&�
��'( ,                                 (1.2) 
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where � = ��
��: � ∈ �0, ���  is a Wiener process, and %�
�, �� is the kernel given by 

%�
�, �� = *��+,-� $ 
. − ���-/,.�-+,&.'0 ,      (1.3) 

for � > � , where *� = 2 �
��-��3"�-��,�-+,# and �
, �  denotes the 

Beta function. We put %�
�, �� = 0 if � ≤ �. 

Denote by ℋ  the reproducing kerrnel Hilbert space of 

the fBm, then ℋ  is the closure of the set of indicator 

functions 61�(;'�, � ∈ �0, ��8  with respect to the scalar 

product  

〈1�(,'�, 1�(,0�〉ℋ = ;�
�; ��. 
The mapping 1�(,'� → ��
��  can be extended to an 

isometry between ℋ and the first Wiener chaos and we will 

denote by ��
=� the image of = by the previous isometry. 

Recall that for >,= ∈ ℋ their scalar product in ℋ is given 

by 

〈>, =〉ℋ = �
2� − 1�$ $ >
��=
��|� − �|��-�&�&�?(?( .  (1.4) 

Let us consider the operator %�∗  from ℋ  to A�
�0, ��� 
defined by 


%�∗=�
�� = $ =
B� CDCE 
B, ��&B?0 .             (1.5) 

%�∗ is an isometry between ℋ and A�
�0, ���. Moreover 

for any = ∈ ℋ we have 

��
=� = $ 
%�∗=�
��&�
��?( .                (1.6) 

It follows from[10] that the elements of ℋ may not be 

functions but distributions of negative order. In the case � > �� , the second partial derivative of the covariance 

function 

CFGC'C0 = H�|� − �|��-�,                    (1.7) 

where H� = �
2� − 2�, is integrable, and we can write 

;�
�, �� = H� $ $ |. − I|��-�&.&I0(?( .          (1.8) 

In order to obtain a space of functions contained in ℋ, 

we consider the linear space |ℋ|  generated by the 

measurable functions > such that 

‖>‖|ℋ|� ≔ H� $ $ |>
��||=
��||� − �|��-�&�&�?(?( < ∞,    (1.9) 

whereH� = �
2� − 1�. The space |ℋ| is a Banach space 

with the norm ‖>‖|ℋ|. 
If 0 < � < 1 the fractional Brownian motion (fBm) with 

Hurst parameter �  is the continuous Gaussian process ���
��, � ∈ ;�, ��
�� = 0  with mean N���
��� = 0  and 

whose covariance is given as in equation (1.1), If 	� =��then ��
�� coincides with the standard Brownian motion �
�� . The fractional Brownian motion is a self-similar 

process meaning that for any H > 0, ��
H�� has the same 

law as H���
��. 
The constant � determines the sign of the covariance of 

the future and past increments. This covariance is positive 

when � > ��, zero when � = �� and negative when � < ��. 

Another property of the fractional Brownian motion is 

that for � > �� it has long range dependence in the sense 

that if we put 

B
O� = PQIR��
1�, ��
O + 1� − ��
O�S       (1.10) 

then 

∑ B
O� = ∞UVW� . 

Our aim in this paper is to derive fractional Black-

Scholes equation driven by a fractional Brownian motion ��
��, �� < � < 1. We also determine the equilibrium price 

and the market growth rate of shares and analyze the 

stability and convergence criteria of a solution of the fBm 

in a general case. 

2. Derivation of the Fractional 

Black-Scholes Equation 

We base our derivation on replicating portfolio that 

ensures that no arbitrage opportunities are allowed. As in 

the discrete case, consider a portfolio⋀ = �⋀'�'Y(, which is Z'- measurable( we can choose as we go, but any point in 

time the choice is deterministic) ⋀' denotes the proportion 

of shares invested at time � , the rest of the money is 

invested in the money market account, giving risk-free rate 

of return, B, say.  In what follows, we state: 
Lemma 1 (Fractional Ito formula): Consider the 

fractional differential equation 

&[
�� = \
�, ]�&� + ^
�, ]�&��
��, \, ^ ∈ _�̀,� 

If a ∈ P�
;b × ;� then we have; 

aR�, [
��S = aR0, [
0�S + $ CdCe Rf, [
��S&� +'( $ CdCg Rf, [
f�Sh\
f�S'( &f + $ CdCg Rf, [
f�S^
f�&��
��'( + $ C,dCg, Rf, [
f�S^
f�i0∅
f�&f'( . 

Where i0∅f
k� = ^f
k� $ ∅
k, .�&. = ^�f
k�k��-�l( . 

Theorem 1: Given a generic payoff function m
�� = i
�, ��, the PDE associated with the price of a 

derivative on the stock price is 

CnC' + Bf CnCe + �^�f����-� C,nCe, = −Bi     (2.1) 

Proof: The stock price f'  follows the fractional 

Brownian motion process  

oee = \&� + ^&��
��	, f
0� = �,       (2.2) 

and the wealth of an investor [', follows a diffusion driven 

by (with time suppressed ) 



 International Journal of Mathematical Analysis and Applications 2014; 1(3): 38-42 40 

 

&[ = ⋀&f + B
[ − ⋀f�&�.                   (2.3) 

Putting equation (2.2) into equation (2.3) yields; 

&[ = �B[ − ⋀f
\ − B��&� + ⋀f^&p�,        (2.4) 

where \ − B is the risk premium. 

Suppose that the value of this claim at time � is given by 

m
�� = i
f, ��, f = f' .                    (2.5) 

Applying the fractional Ito’s formula on equation (2.5) 

and using lemma 1, we have  

&m = qCnC' + \f CnCe + �^�f����-�r &� + ^f CnCe &p�.(2.6) 

To track m
�� at all times, we have under the assumption 

of complete market that 

[' = m
�� = i
f, ��	∀� ∈ 	 �0, ��.         (2.7) 

Thus 

CnC' + \ CnCe + �^������-� C,nCe, = Bi + ⋀'f
\ − B�  (2.8) 

and 

^f CnCe = ⋀'f^.                         (2.9) 

Equation (2.9) gives the delta-hedging optimal (rule) 

⋀' = CtC0 
�, ��.                       (2.10) 

While equation (2.7) with [
�� = i
�, �� gives 

uiu� + \f uiuf + �^�f����-� u�iuf� = Bi + f\ uiuf − fB uiuf  

which implies equation (2.1) as required. 

3. Solution to Equation (2.1) 

For a European option with maturity date � , striking 

price %, and payoff function m, the value price i = 	i
f, �� 
which satisfies the following fBm 

CnC' + ����-�f�^� C,nCe, + Bf CtC0 Bi = 0	, 
f, �� ∈ 
0,∞� ×
0, ��i
�, 0� = ℎ
��,               (3.1) 

we set f = wg ⟹ y = zO � 	, \
y, �� = i
wg, ��  and ℎ
wg� = {
y�(see Thapa, et al, 2012) to get 

u.u� + ����-�^� |u�.uy − u.uy} + B u.uy − B. = 0 

= C~C' ����-�^� C,~Cg, − 
����-�^� − B� C~Cg − B., 

this implies that  

C,~Cg, − "1 − E��, ��-��# C~Cg − E��, ��-��. = − g��, ��-��.  (3.2) 

By [11], equation (3,2) reduces to the following second 

other differential equation 

." + �.′ + H. = −Hy, � = H − 1.        (3.3) 

We obtain the auxiliary solution of the homogenous part 

of equation (3.3) as (see [10]) 

~′

~ =
��
��
��
��� + ��,-��� ��+ ��� ���,���, 'b�, ������,���, '

�+ ��� ���,���, 'b�, ��� ���,���, '� , �� > 4H
�� + ��,-��� �-�+ �����,���, 'b�, �����,���, '

�+ �����,���, 'b�, �����,���, ' � , �� < 4H
�� + �+�+b�, 	,																																				� − 4H = 0	 ��

��
��
�

,                                          (3.4) 

which is equivalent to 

~′

~ =
��
��
��
��� + ��,-��� � ������,���, 'b�, �+�

�b�+ �,� ��� ���,���, '� , 			�� > 4H
�� + ��,-��� �- �����,���, 'b�, �+�

�b�+ �,� �����,���, '� , 			�� < 4H
�� + �+�+b�, 	,																																					� − 4H = 0		��

��
��
�

,                                                (3.5) 

with solution 

.
y, �� = .(wy�
��
�
��"-�� h + ��,-���  P� sin ℎ ��,-��� h � + P� cos ℎ h��,-��� ¦ y, 			�� > 4H
"-�� h + ��,-���  P� sin ��,-��� h � + P� cos h��,-��� ¦ y, 									�� < 4H
"− �� + �+�+b�,# y	,																																																																				�� = 4H	��

�
��,                        (3.6) 
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or equivalently 

.
y, �� = .(w§g .                                  (3.7) 

Where ¨� = "-�� h + √�,-���  P� �ªO ℎ √�,-��� h � + P� *Q� ℎ h√�,-��� ¦ y, 
¨� = "-�� h + √�,-���  P� �ªO √�,-��� h � + P� *Q� h√�,-��� ¦ y and 

¨« = "− �� + �+�+b�,# y,are copies of ¨. 

For the particular solution, it is not difficult to see that .¬ = �� wg, so that the general solution becomes 

.
y, �� = .(w§g + �� wg . 

Or  

i
f, �� = .(�§ + e�.                          (3.8) 

From equation (3.8) notice that i
0� = 0 and  

0 = .(¨�̂§ + 0̂®�.                              (3.9) 

Under equilibrium condition, the discounted profit from 

a unity capacity at  �̂ must be equal to the expected unit 

cost�̅of risky option. Therefore by (3.9), we have 

f̅ = .(�̂§ + 0̂®�.                            (3.10) 

Solving for .( in (3.9) and (3.10)and equating the results 

gives 

f® = �e̅�-+° ,                              (3.11) 

which is the equilibrium price. 

Alternatively one can solve equation (3.1) for stock 

which is already priced in the market. To do this, we 

remove the effect of the discount rate B  by lettingi± =w-E'i ⟹ i = i±wE'	, f̅ = w-E'f ⟹ f = f̅wE' , so that 

equation (3.1) becomes; 

on²o' + �^����-�f̅� C,n²Ce̅, = 0.               (3.12) 

Solution by variation of parameter is given by; 

i
�, �� = exp ¶−|Hf-�^� + H���2 }· exp�B�� 
= exp ¶−|2Hf-� + H^����2^� }h exp�B�� 
= exp ¸− "��e�+bR��,',GbE'S��, #¹                    (3.13) 

Equation (3.13) is now the growth rate of the worth of 

stock of an investor. 

4. Stability and Convergence 

Criteria 

We use the explicit method in order to ensure stability 

and convergence. By convergence, we mean that the results 

of the method approach the analytical values as ∆� and ∆� 

both approach zero. By stability, we mean that errors made 

at one stage of the calculations, do not cause increasingly 

large errors as the computations are continued, but rather 

damp out eventually[12].  

Let » = −�^����-�f̅�, then Eq. (3.12) gives 

on²o' = » C,n²Ce̅,.                            (4.1) 

Let us the symbol use i to represent the exact solution to 

Eq.(4.1), and I  to represent the numerical solution. Recall 

that in the implicit method, »  must be 
��  or less. This 

condition is true only true if f = ^ ≤ 1and � ≤ ��.At the 

moment we assume that I is free of round-off, so the only 

difference between i and I is the error made by replacing 

Eq. (4.1) by the difference equation. Let w¼½ = i¼½ − I¼½ , at 

the point f = f¼ , � = �½. By the explicit method, Eq. (4.1) 

becomes 

I¼½b� = »RI¼½ + I¼-�½ S + 
1 − 2»�I¼½.    (4.2) 

Substituting I = i − w into Eq. (4.2), we get 

w¼½b� = »Rw¼b�½ + w¼-�½ S + 
1 − 2»�w¼½ − »Ri¼b�½ + I¼-�½ S −
1 − 2»�i¼½ + i¼½b�.                  (4.3) 

By using Taylor series expansions, we have 

i¼b�½ = i¼½ + "CnCe#¼,½ ∆f + 
∆e�,� C,nR§+,'¾SCe, 	 , f� < ¨� < f¼b�, 

i¼-�½ = i¼½ + "CnCe#¼,½ ∆y + 
∆e�,� C,nR§,,'¾SCe, 	 , f¼-� < ¨� < f¼, 
i¼½b� = i¼½ + Δ� Cn
eÀ,Á�C' 	 , �½ < Â < �½b�. 

Substituting these into Eq. (4.3) and simplifying, we get 

w¼½b� = »Rw¼b�½ + w¼-�½ S + 
1 − 2»�w¼½ − Δ� ÃCn
eÀ,Á�C' −u2i¨,	�Äuf2,	fª−1<¨<fª+1.         (4.4) 

Let N½  be the magnitude of the maximum error in the 

row of calculations for � = �½, and let Å > 0 be an upper 

bound for the magnitude of the expression in brackets in Eq. 

(4.4). if » ≤ ��, all the coefficients in Eq. (4.4) are positive 

(or zero) and we may write the inequality 

Æw¼½b�Æ ≤ 2»N½ + 
1 − 2»�N½ +Å	∆� = N½ +Å	∆�. 
This is true for all the w¼½b�at � = �½b�, so 
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N½b� ≤ N½ +Å∆�. 
Since this is true at each time step, 

N½b� ≤ N½ +Å	∆� ≤ N½-� + 2Å	∆� ≤ ⋯ 

≤ N( + 
Ä + 1�∆� = N( +Å�½b� 

= Å�½b�, 

because N(, the errors at � = 0 are zero, since i is given 

by the initial conditions.  

Now, as ∆f → 0, ∆� → 0if » ≤ ��, and Å → 0, because, 

as both ∆y and ∆� get smaller, 

ÃCn
eÀ,Á�C' − C,nR§,'¾SCe, È → "CnC' − ÉÊ¬ C,nCe,#¼,½ = 0. 

This last is by virtue of Eq. (4.1), of course. 

Consequently, we have shown that the explicit method is 

convergent for » ≤ ��, because the errors approach zero as ∆� and ∆y are made smaller. 

5. Conclusion 

We have obtained the solution of a fractional Black- 

Scholes formula of the price of an option. We also have 

shown that the explicit method is convergent for » ≤ ��. The 

fractional Brownian motion has a long memory. Therefore 

the growth rate of the worth of a stock no longer depend on 

time, � − � but on the stock price, f'. Notice from equation 

(3.13)that the growth rate i
f, �� depends largely on how f → ∞ or how f → 0. 
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