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Abstract 
It is very necessary to represent arbitrary function as a polynomial in many situations 
because polynomial has many valuable properties. Fortunately, any analytic function can 
be approximated by Taylor polynomial. The quality of Taylor approximation within 
given interval is dependent on degree of Taylor polynomial and the width of such 
interval. Taylor polynomial gains highly precise approximation at the point where the 
polynomial is expanded and so, the farer from such point it is, the worse the 
approximation is. Given two successive Taylor polynomials which are approximations of 
the same analytic function in given interval, this research proposes a method to improve 
the later one by minimizing their deviation so-called square error. Based on such method, 
the research also propose a so-called shifting algorithm which results out optimal 
approximated Taylor polynomial in given interval by dividing such interval into sub-
intervals and shifting along with sequence of these sub-intervals in order to improve 
Taylor polynomials in successive process, based on minimizing square error. 

1. Introduction to Taylor Polynomial 

Given analytic function f(x) and there exists its n+1th derivative, the theorem of Taylor 
expansion states that f(x) can be approximated by a so-called Taylor polynomial P(x) 
constructed based on high order derivatives of f(x) with note that P(x) is expanded at 
arbitrary point x0 as follows: 

���� = ����� + �	������ − ��� + 12 �		������ − ���
 +⋯+ 1�! ���������� − ����+ 1�� + 1�! ����������� − ������ 
Where c is a real number between x and x0 and c can be considered as function of x. If 

n is large enough, the final term is very small and is called truncation error [Burdden 
2011 p. 11] denoted Rn(x). 

����� = 1�� + 1�! ����������� − ������ 
When Rn(x) is very small, the Taylor polynomial is approximated by removing 

truncate error Rn(x) from it. 

���� = ����� + �	������ − ��� + 12 �		������ − ���
 +⋯+ 1�! ���������� − ���� 
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Therefore, the quality of approximation is firstly dependent 
on how large the degree n of Taylor polynomial. On the other 
hand, Taylor polynomial gains highly precise approximation 
at the point x0 where the polynomial is expanded. The farer 
from such point it is, the worse the approximation is. This 
issues the problem that how to improve quality of a Taylor 
polynomial in given interval if some other Taylor 
polynomials expanded at different points are known before. 
In other words, given two successive Taylor polynomials 
which are approximations of the same analytic function in 
given interval, how to improve the later one based on 
previous one. The problem is solved by method to minimize 
square error between two successive polynomials described 
in next section. 

2. Improving Taylor Polynomial by 

Minimizing Square Error 

Given two successive Taylor polynomials P1(x) and P2(x) 
which are expansions of the same analytic function f(x) at 
two distinguish points x1 and x2, respectively, it is required to 
correct P2(x) so that it is likely that P2(x) is more 
approximated to f(x). The square error s(x) of P2(x) given 
P1(x) is the integral of squares of deviations between P2(x) 
and P1(x) over interval [x1, x2] as follows: 

���� = � ��
��� − ������
d���
��

 

Note that s(x) ≥ 0 for all x. The concept of integral square 
error is described in [Callahan 2008 p. 669] and it is 
generality of the concept of sum of square error 
[Montgomery 2003 p. 379]. 

The smaller the square error s(x) is, the more approximated 
to f(x) the P2(x) is. The polynomial P2(x) is improved by 
adding itself by an augmented trinomial Q(x). ���� = ��
 +  � + ! �
∗��� = �
��� + ���� 

The polynomial �
∗��� is an improvement of P2(x) in the 
interval [x1, x2] or [x2, x1] and it is expected that �
∗��� is 
approximated to f(x) better than P1(x) and P2(x) are with 
smaller square error. It is easy to infer that the augmented 
Q(x) is a factor that makes decrease in square error. The 
square error s(x) is modified as follows: 

���� = # ��
��� + ���� − ������
d����� 	          (1) 

Note that s(x) ≥ 0 for all x and all coefficients α, β and γ of 
Q(x). 

The error s(x) is totally determined because the inner part ��
��� + ���� − ������
 of the integral is also a polynomial 
with degree k2 where k is the maximum among deg(P2(x)), 
deg(Q(x)) and deg(P1(x)) where deg(.) denotes degree of 

given polynomial. It is necessary to minimize s(x) to be as 
small as possible. If the error s(x) is considered as function of 
its coefficients α, β and γ, then it is re-written as follows: ���,  , !� = &��
 + &
 
 + &'!
 + &(� + &)�! +&* ! + &+� + &, + &-!	                 (2) 

Of course, equation (2) is the result of equation (1), where 
a1, a2,…, and a9 are coefficients associating with variables α, 
β and γ. The error s(α, β, γ) is convex function because it is 
quadratic three-variable function and it is larger than or equal 
to 0 for all α, β and γ and so it has minimum point (α*, β*, γ*). 

The polynomial �
∗��� = P2(x) + Q(x) has two properties 
that it goes through points x1 and x2 with attention that P1(x) 
and P2(x) is expanded at x1 and x2, respectively and so we can 
infer that: 

.�
���� + ����� = �������
��
� + ���
� = �
��
�/ 
Let b be ������ − �
����, we have: 

.����� = 0���
� = 0/ 
When P1(x1) and P2(x1) are totally evaluated and the 

polynomial Q(.) is considered as function of α, β and γ, we 
have two constraints h1(α, β, γ) and h2(α, β, γ): 

.ℎ���,  , !� = ����� − 0 = ��
� + �� + ! − 0 = 0ℎ
��,  , !� = ���
� 								= �

� + �
 + !								 = 0/ 
The error s(α, β, γ) is minimized with regard to variables α, 

β and γ with two constraints h1(α, β, γ) and h2(α, β, γ); this is 
problem of convex optimization when s(α, β, γ) is convex 
function and h1(α, β, γ) and h2(α, β, γ) are affine functions. 

3minimize9,:,; ���,  , !�ℎ���,  , !� = ��
� + �� + ! − 0 = 0ℎ
��,  , !� = �

� + �
 + !							 = 0 /	     (3) 

Let ∇�, ∇ℎ� and ∇ℎ
 be gradient vectors of s(α, β, γ), h1(α, 
β, γ) and h2(α, β, γ), respectively with convention that these 
gradient vectors are column vectors, we have: 

∇� = =2&�� + &( + &)! + &+2&
 + &(� + &*! + &,2&'! + &)� + &* + &-> , ∇ℎ� = =��
��1 > , ∇ℎ
 = =�

�
1 > 

Suppose (α*, β*, γ*) is minimum point of s(α, β, γ) given 
two constraints h1(α, β, γ) and h2(α, β, γ), according to 
Lagrange’s theorem [Jia 2013] of convex optimization, there 
are two real numbers µ1 and µ2 so that (α*, β*, γ*) is solution 
of following equation: 

∇� + ?�∇ℎ� + ?
∇ℎ
 = =000> 

It implies that 

32&�� + &( + &)! + &+ + ?���
 + ?
�

 = 02&
 + &(� + &*! + &, + ?��� + ?
�
 = 02&'! + &)� + &* + &- + ?� + ?
 									= 0 /  
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Adding two more constraints h1(α, β, γ) = 0 and h2(α, β, γ) 
= 0, we have: 

@AB
AC2&�� +		&( +		&)! + ��
?� + �

?
 = −&+&(�		 + 2&
 +		&*! + ��?� + �
?
 = −&,&)�		 + 		&* + 2&'! +				?� +					?
 = −&-��
�		 +		�� + 							!																													 = 	0�

�		 +		�
 + 							!																													 = 0

/		    (4) 

When (4) is the set of five linear equations with five 
variables α, β, γ, µ1, and µ2, it is easy to apply methods such 
as Gaussian and Cramer [Nguyen 1999 pp. 136-144] into 
solving (4) or determining whether or not (4) has solution. 
Suppose (α*, β*, γ*) is the solution of equation (4), the 
polynomial �
∗��� is totally determined: �
∗��� = �
��� + �∗��� 

Where, �∗��� = �∗�
 +  ∗� + !∗ 
Let s* be minimum value of square error function s(α, β, γ) 

at minimum point (α*, β*, γ*), we have: �∗ = ���∗,  ∗, !∗� 
The minimum mean error r is defined as the root of mean 

of s*: 

D = E F∗|��H��|  
Given a very small threshold ε, if the minimum mean error 

r is determined and it is smaller than or equal to ε, then �
∗��� 
is the improved version of P2(x), which results out the 
optimal approximation of target function f(x). If r is 
determined and larger than ε, it is impossible to improve 
P2(x). If r is not determined, for example, s* is not found out, 
then there is no conclusion about whether �
∗���  is the 
improvement of P2(x) or not. 

3. Shifting Algorithm to Approximate 

Analytic Function 

It is required to approximate an analytic function f(x) in a 
given interval [u, v]. Suppose the interval [u, v] is divided 
into n sub-intervals as follows: IJ, KL = I&�, &�L ∪ I&�, &
L ∪ …∪ I&OH�, &OL ∪ …∪ I&�H�, &�L 

Where, J = &� < &� < &
 < ⋯ < &OH� < &O < ⋯ < &� = K  

Moving from left to right (from a0 to an), the shifting 
algorithm is to construct current Taylor polynomial at point ai 
and improve such current polynomial based on minimizing 
the aforementioned square error between the current 
polynomial and previous polynomial expanded at point ai–1. 
This is shift-and-improve process and the algorithm is 

stopped when such process reaches point an. 
Given an error threshold ε, suppose the algorithm moves to 

point ai and let Pi–1(x) and Pi(x) be Taylor polynomials 
expanded at point ai–1 and ai, respectively, there are three 
cases: 

1 If the minimum mean error ri of Pi(x) given Pi–1(x) is 
not determined, then the algorithm moves next. Note 
that the method to calculate r i is described in previous 
section.  

2 If the minimum mean error r i is determined and larger 
than threshold ε, then the algorithm moves next. 

3 If the minimum mean error r i is determined and smaller 
than (or equal to) threshold ε, then the polynomial Pi(x) 
is replaced by polynomial �O∗���  where �O∗���  is the 
improved version of Pi(x) as aforementioned in 
previous section. After that the algorithm moves next. 

Recall that �O∗��� is: �O∗��� = �O��� + �O∗��� 
Where, �O∗��� = �O∗�
 +  O∗� + !O∗  
Note that ��O∗,  O∗, !O∗� is the minimum point of square error 

function �O��O ,  O , !O� at point ai like in equations (1) and (2). 

�O��O ,  O , !O� = # ��O��� + ���� − �OH�����
d�QRQRS�   

The minimum value �O∗ of square error function si(α, β, γ) 
is: �O∗ = �O��O∗,  O∗, !O∗�  

The minimum mean error r i is: 

DO = E FR∗|QRHQRS�|  
Finally, when the algorithm reaches point an, then Pn(x) is 

the best approximation of target function f(x). 
For example, given exponent function f(x) = ex, we apply 

minimizing square error method and shifting algorithm into 
approximating f(x) in interval [0, 1] with initial degree 1. For 
convenience, the interval [0, 1] is kept intact, which means 
that there is only one sub-interval [0, 1]. Firstly, shifting 
algorithm visits the first point x1 = 0 and so Taylor 
polynomial expansion of f(x) at x1 = 0 is: ����� = ��0� + �	�0�� = 1 + �  

The shifting algorithm moves next and the Taylor 
polynomial expansion of f(x) at the second x2 = 1 is: �
��� = ��1� + �	�1�� = T�  

Suppose the augmented Q(x) is: ���� = ��
 +  � + ! 

Substituting x1, x2, P1(x) and P2(x) into equation (2), the 
square error is: 
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���,  , !� = # ��
��� + ���� − ������
d��� = 9�) + :�' + !
  
Let �
∗��� be the improvement of P2(x), we have: �
∗��� = �
��� + �∗���  �∗��� = �∗�
 +  ∗� + !∗  
Where (α*, β*, γ*) is the solution of equation (4). 
After evaluating P1(x1) and P2(x2), the equation (4) is 

totally determined and solved as follows: 

@AB
AC4� + 5 + 10?� = 5 − 5T3� + 4 + 		6?� = 4 − 4T2� + 3 + 		3?
 = 3 − 3T		�	 + 	 															 = −1																										!		 = 1

/ ⇒ Z�∗ = )[H��
 ∗ = − )[H,
!∗ = 1 /  
The augmented polynomial Q*(x), the optimal Taylor 

polynomial �
∗���, the square error s* and the minimum mean 
error r are determined as follows: 

�∗��� = )[H��
 �
 − )[H,
 � + 1  

�
∗��� = �
��� + �∗��� = )[H��
 �
 − '[H,
 � + 1  

�∗ = ���∗,  ∗, !∗� = �[H
��, ≈ 0.0645  

D = E F∗|��H��| = E�.�*()|�H�| ≈ 0.254  

Suppose the error threshold is 0.5 which is larger than r, 
the polynomial �
∗��� is exactly the improvement of P2(x). 
The shifting algorithm reaches the end point x2 = 1 and the 
final optimal Taylor polynomial in given interval [0, 1] is: 

�
∗��� = )[H��
 �
 − '[H,
 � + 1  

 

Figure 1. Optimal Taylor polynomial �
∗��� 

Figure 1 depicts the optimal Taylor polynomial �
∗��� 
expanded in interval [0, 1].  

Note that horizontal shading area represents square error s 
between P1(x) and P2(x) while vertical shading area 
represents square error s* between P1(x) and �
∗���. These 
two areas are overlapped but s* is much smaller than s. Two 
polynomial P1(x) and P2(x) are drawn as dash lines while the 
optimal polynomial �
∗��� is drawn as bold curve. The target 
function f(x) = ex is drawn as normal curve. 

4. Conclusion 

Given target function f(x), the approximated Taylor 
polynomial gets more precise at so-called expansion point 
where it is expanded and it tends to lose accuracy when target 
function f(x) moves far away from expansion point. The 
essential idea of proposed method is to keep approximation 
in precise when Taylor polynomial expansion is moved 
forward within a given interval. Concretely, suppose P1(x) 
and P2(x) are Taylor polynomials expanded at x1 and x2, 
respectively. Of course, P2(x) is gain exactly precise 
approximation at x2 but its effectiveness at x1 is lower than 
P1(x) expanded x1. Therefore, P2(x) is modified by adding 
itself by an augmented trinomial Q(x), which aiming to 
minimize the square error between P1(x) and P2(x) so that it 
is likely that P2(x) keeps approximation in precise within 
sub-interval [x1, x2]. The important aspect of proposed 
method is to determine the trinomial Q(x) by minimizing 
square error, which is essentially polynomial interpolation. It 
is possible to imagine that Q(x) is the bridge concatenating 
two polynomial P1(x) and P2(x) together. 

Note that the square error is calculated as integral of 
deviation between P1(x) and P2(x), which means that if all 
Taylor polynomials are bad approximations, the output of 
proposed method will is also bad approximation of f(x). 
However, there are two observations: 

� Taylor polynomial always results out optimal 
approximation at which it is expanded, thus, there is no 
so bad Taylor polynomial. The quality of Taylor 
polynomial is also dependent on its degree. 

� All Taylor polynomials converge to target function f(x) 
and so the deviations between effective Taylor 
polynomials approach 0. Therefore, it is feasible to 
calculate the square error between Taylor polynomials.  

If we construct Taylor polynomial with degree k, then the 
final optimal polynomial resulted from shifting algorithm has 
degree which is maximum of k and 2. You can modify the 
proposed method to interpolate Q(x) with high degree (> 2) 
with expect that getting more accurate approximation but 
please pay attention to computation cost when equation (4) 
should not has many variables because of many constraints 
and it is very complicated to determined the integral in 
equation (1) with high degree polynomials. Finally, there is 
an issued problem that how to estimate the initial degree k in 
order to improve the quality of Taylor expansion, which is 
solved in another research. 
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