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Abstract 
It is very necessary to represent arbitrary function as a polynomial in many situations 
because polynomial has many valuable properties. Fortunately, any analytic function can 
be approximated by Taylor polynomial. The higher the degree of Taylor polynomial is, 
the better the approximation is gained. There is problem that how to achieve optimal 
approximation with restriction that the degree is not so high because of computation cost. 
This research proposes a method to estimate feasible degree of Taylor polynomial so that 
it is likely that Taylor polynomial with degree being equal to or larger than such feasible 
degree is good approximation of a function in given interval. The feasible degree is 
called the feasible length of Taylor polynomial. The research also introduces an 
application that combines Sturm theorem and the method to approximate a function by 
Taylor polynomial with feasible length in order to count the number of roots of equation 
in given interval. 

1. Introduction to Taylor Approximation 

Suppose one variable function f whose n+1th order derivative exists and is bounded on 
given interval [a, b]. 

��(���)(�)� ≤ 
, ∀� ∈ ��, �� 
Where �(���)(�) denotes the n+1th order derivative of f(x). 
Let 

�� = (� + �)
2  

Taylor series of function f at x0 is: 

�(�) = �(��) + ���(�)��
�

��
= �(��) + ���(�)�(� − �)

�

��
 

Expending the inner integral [Rosenberg 2006] [Wikipedia 2014a], we have: 
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By induction [Rosenberg 2006] [Wikipedia 2014a], we 

have: 

� ��(�)���
�� = ��(��)(� − ��) + �

 ���(�)(� − ��) +⋯+
�
�!�(�)(��)(� − ��)� + (%�)&

(���)!� �(���)(�)�(� − �)����
��   

Let Pn(x) and Rn(x) be Taylor polynomial and remainder of 
function f(x), respectively, we have: 

'�(�) = �(��) + ��(��)(� − ��) + �
 ���(��)(� − ��) +

⋯+ �
�!�(�)(��)(� − ��)�  

(�(�) = (%�)&
(���)!� �(���)(�)�(� − �)����

�� =
�
�!� �(���)(�)(� − �)����

��   

If n approaches +∞, then 

�(�) = '�(�) + (�(�) 
Where n is defined the length of the Taylor polynomial Pn(x) 

with note that n is known as the degree of Pn(x). The function 
f(x) is approximated by the Taylor polynomial Pn(x) when 
Rn(x) is truncation error [Burdden 2011 p. 11]. The quality of 
approximation depends on two following factors: 

- The larger (longer) the length of Pn(x) is, the better the 
approximation is. 

- The smaller the truncation error Rn(x) is, the better the 
approximation is. 

Existing methods that improve the quality of 
approximation focus on minimizing the truncation error 
although lengthening Pn(x) also makes the truncation error 
Rn(x) in decrease. Please see the method “least squares 
approximation” and other ones inside chapter 8 of the book 
“Numerical Analysis” [Burdden 2011 pp. 497-558] for more 
details about approximation theory. Additionally, the square 
error [Callahan 2008 p. 669] between two Taylor 
polynomials is minimized so as to enhance the quality of 
approximation. By another way, this research focuses on how 
to determine the length of Pn(x) so that it is possible to 
achieve good approximation but keep such length as small as 
possible. This length is called feasible length. In other words, 
the issued problem is how to find out the feasible length so 
that it is likely that Pn(x) is the good approximation of f(x). 
Given the feasible length n*, the larger than n* the length n is, 
the better the approximation Pn(x) is.  Hence, the method to 
estimate feasible length is proposed in next section. 

2. Estimating Feasible Length of 

Taylor Polynomial 

Given the n+1th order derivative �(���)(�) is bounded, the 
remainder is also bounded. We have [Rosenberg 2006] 
[Wikipedia 2014a]: 

(�(�) ≤ )
�!� (� − �)����

�� = − )
(���)! *(� − �)��� � ��� �+ =


 (�%��)&,-
(���)!   

It implies that 

|(�(�)| ≤ 
 |� − ��|���
(/ + 1)!  

Using Stirling approximation [Wikipedia 2014b] for 
factorial as below: 

/! ≅ √23/ */4+
�
 

We have: 

|(�(�)| ≤ 
 |� − ��|���
523(/ + 1) */ + 1

4 +��� 

Let g(z) be function defined as below: 

|� − ��|6
√237 *74+

6 

Where, 

7 ≥ 1 

Note that z is real variable and � ≠ �� and it implies that g 
is function of n when n is considered as real variable instead 
of integer number as aforementioned. Now we find out the 
maximum point z0 of g(z). The natural logarithm of g(z) is: 

log=>(7)? = 7 log|� − ��| − �
 log(23) −

�
 log(7) −

7 log(7) + 7 = (log|� − ��| + 1)7 − 7 log(7) − �
 log(7) −�

 log(23)  
The first derivative of log=>(7)? with regard to z is: 

=log=>(7)??� = log|� − ��| − log(7) − 1
27 

That the function g(z) gets maximal is equivalent to that its 
logarithm log=>(7)?  gets maximal and so the maximum 
point z* is found out by setting the first derivative of 
log=>(7)? to be zero. We have: 

log|� − ��| − log(7) − 1
27 = 0 ⇔ log(7) = log|� − ��| − 1

27 

⇒ log|� − ��| − 0.5≤ log(7) ≤ log|� − ��| 
Because the number 

�
 6 is smaller than 0.5 and approaches 

0 when z approaches +∞, we make an approximation of 
log(7) as below: 

log(7) ≈ log|� − ��| 
It implies that 

7∗ ≈ |� − ��| 
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When 7∗ ≈ |� − ��| is the peak of function g(z), there is 
comment that the larger the distance |x – x0| is, the more 
symmetric (more like bell-shape) the curve of function g(z) is. 
Figure 1 depicts curves of function g(z) with |x – x0| = 2.5, 3, 
3.5, 4. 

 

Figure 1. Curves of function g(z) 

The point far by double distance |x – x0| results out 
possibly small value for the function g(z) and moreover, g(z) 
decreases more slowly when z > |x – x0|. Therefore, the 
feasible length n* is approximated as follows: 

/∗ = 2G7∗H ≈ 2G|� − ��|H 
Where G. H denotes integer part which is the integer number 

that is nearest to given number, for example, G1.5H = 2 and 
G1.4H = 1. Figure 2 depicts the curve g(z) and the feasible 
length n* corresponding to distance |x – x0| = 3. 

 

Figure 2. Feasible length of g(z) with |x – x0| = 3 

If x = a or x = b with note that a and b are end points of the 
pre-defined interval [a, b], we have: 

/∗ ≈ 2G|� − ��|H = 2G|� − ��|H = 2 J� − �
2 K ≈ G� − �H 

The above formula can be interpreted that it requires at 
least G� − �H  degrees or length of G� − �H  for Taylor 
polynomial to reach feasibly good approximation of function 

f(x) in given interval [a, b]. In general, we have a conclusion 
that: 

Given pre-defined interval [a, b], the feasible length of 
Taylor polynomial which results out the possibly good 
approximation of function f(x) in interval [a, b] is 
approximated by the distance b–a with attention that the 

Taylor polynomial is constructed at central point �� = L�M
 . 

/∗ ≈ G� − �H 

3. Application to Find the Number of 

Roots of Equation 

The issued problem is to find out the number of roots of 
equation f(x) = 0 in given interval [a, b]. The problem is 
solved by 2-step task: 

1 Constructing Taylor polynomial Pn(x) to approximate 

f(x) at central point �� = L�M
 . Because n will approach 

+∞, we use the feasible length / = G� − �H. 
2 Applying Sturm theorem [Wikipedia 2014c] [Ta 2014] 

into counting the number of roots of equation f(x) = 0 in 
given interval [a, b]. 

Suppose the feasible length / = G� − �H , the optimal 
Taylor polynomial P(x) is: 

'(�) = �(��) + ��(��)(� − ��) + 1
2 ���(��)(� − ��) +⋯

+ 1
/! �

(�)(��)(� − ��)� 

Where, 

�� = � + �
2  

In step 2, we construct Sturm sequence [Wikipedia 2014c] 
[Ta 2014] as follows: 

P0(x) = P(x) 

P1(x) = P’(x) (P1(x) is derivative of P(x)) 

P2(x) = P1(x)Q0(x) – P0(x) 

P3(x) = P2(x)Q1(x) – P1(x) 

… 

Pm(x) = Pm–1 (x)Qm–2(x) – Pm–2(x) 

0 = Pm(x)Qm–1(x) – Pm–1(x)  

It is easy to infer that Pm(x) is the opposite of the 
remainder of polynomial division of Pm–2(x) by Pm–1(x). 
Substituting the end point a into Sturm sequence and 
evaluating signs of such sequence (P0(a), P1(a),…, Pm(a)), 
we get a sign sequence and count the number of sign changes 
of this sign sequence. We denote W(a) as this number of sign 
changes at point a. Similarly, let W(b) the number of sign 
changes at point b. According to Sturm theorem, the number 
of roots of equation f(x) = 0 in the half-open interval (a, b] is 
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W(a) – W(b). For example, we count the number of roots of 
following equation in interval [1, 3]. 

�(�) = log(�) + 1
2� − log(2) = 0 

When the feasible length is / = G3 − 1H = 2  and the 

optimal Taylor polynomial of f(x) at central point 
"��
 = 2 as 

follows: 

'(�) = �(2) + ��(2)(� − 2) + �
 ���(2)(� − 2) =

− �
�! � +

O
P � −

"
Q  

The Sturm sequence is determined as follows: 

'�(�) = − 1
16 � +

5
8� −

3
4 

'�(�) = −1
8 � +

5
8 

' (�) = 1
2 � −

5
2 

'"(�) = 13
16 

The Sturm sequence evaluated at end point x = 1 is P0(1) = 
–3/16, P1(1) = 1/2, P2(1) = –2, P3(1) = 13/16 and so there are 
3 sign changes, we have W(1) = 3. The Sturm sequence 
evaluated at end point x = 3 is P0(3) = 9/16, P1(3) = 1/4, P2(3) 
= –1, P3(3) = 13/16 and so there are 2 sign changes, we have 
W(3) = 2. Absolutely, the number of roots in half-open 
interval (1, 3] is 1 = W(1) – W(3). Figure 3 depicts 
approximated Taylor polynomial in this example: 

 

Figure 3. Approximated Taylor polynomial 

Note that Taylor polynomial curve is drawn as dash line, 
which is the good approximation to the equation log(�) +
�
 � − log(2) = 0 at point x = 2. It is easy to see in figure 3 

that there is only one root in half-open interval (1, 3] for both 

the equation log(�) + �
 � − log(2)  and approximated 

polynomial − �
�! � +

O
P � −

"
Q = 0. 

 

4. Conclusion 

The feasible length is essentially the possible lower bound 
of degree of Taylor polynomial when the best degree is infinite 
and so “feasible length” is a heuristic concept. It is likely that 
Taylor polynomial with degree being equal to or larger than 
feasible length is good approximation of a function in given 
interval and otherwise. The wider the interval is, the longer 
(larger) the feasible length is. But given a central point where 
Taylor polynomial is expended, there is situation that a point 
far from central point requires smaller feasible length to 
achieve good approximation than another point near to central 
point does. The reason is that the remainder is dependent on 
both the degree of polynomial and high order derivatives; 
hence, that high order derivatives may get small values at such 
far point results out small remainder. But the proposed method 
is based on assumption that the n+1th order derivative is 
bounded with the bound which is fixed in the formula to 
estimate the feasible length. In other words, high order 
derivatives are not accounted in the formula to estimate the 
feasible length. It means that feasible length is the estimated 
value and you can specify any degree larger than it. However it 
is very useful to apply feasible length into Sturm theorem so as 
to find out the number of roots in given equation f(x) = 0 
because the given function f(x) does not vary so much usually 
in relatively small interval and it is possible to gains optimal 
approximation of f(x) in such interval; although Taylor 
polynomial can produce or eliminate roots unpredictably 
outside the interval, the number of roots inside relatively small 
interval is always counted exactly. 
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