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Abstract

It is very necessary to represent arbitrary fumctis a polynomial in many situations
because polynomial has many valuable propertiesuirately, any analytic function can
be approximated by Taylor polynomial. The higher tegree of Taylor polynomial is,
the better the approximation is gained. There @blem that how to achieve optimal
approximation with restriction that the degreeas so high because of computation cost.
This research proposes a method to estimate feadd#igree of Taylor polynomial so that
it is likely that Taylor polynomial with degree Ingi equal to or larger than such feasible
degree is good approximation of a function in giveterval. The feasible degree is
called the feasible length of Taylor polynomial. eTmesearch also introduces an
application that combines Sturm theorem and théhoateto approximate a function by
Taylor polynomial with feasible length in orderdount the number of roots of equation
in given interval.

1. Introduction to Taylor Approximation

Suppose one variable functibwhosen+1" order derivative exists and is bounded on
given interval g, b].

|[f ™D ()| < M, vx € [a,b]

Wheref ™+ (x) denotes the+1" order derivative of(x).
Let

_(a+Db)

2

Xo

Taylor series of functiohatxg is:
FG) = FGo) + [ @t =G + [ /@t = )

Expending the inner integral [Rosenberg 2006] [\Wiklia 2014a], we have:

[LF@de = F@¢ =0y =7 F©d =207 = (o)l — %) +
F o) G = x0)2 43 X F (@) - x)?
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By induction [Rosenberg 2006] [Wikipedia 2014a], we IVI(x—xO)"Jr1
have: (n+1)!

X g / " It implies that

[o F1®©de = f10)(x = x0) +5 (D) = x0)% + - + P

Lrm _ G Dl (n+1) _ o+l lx — xo™**

/(o) (= x0)" + (n+1)'fxofn ()d(t —x)" |R, ()| < M- (n +01)|

Let P,(x) andR,(X) be Taylor polynomial and remainder of

Usi Stirli imati Wikipedia 2014b] f
functionf(x), respectively, we have: sy ring “approximation - [Wikipedia ] for

factorial as below:

B3 = f (o) 11 (o) (x = %0) + %f”(xO)(x —x0)* + n! = V2mn (E)n
2 f G0 (& = xo)" = _
We have:
Ra(8) = (i [ O = =
MY ARCICEDE IRyl < M —— =R

Vant+ 1) (8 z 1)

Let g(2) be function defined as below:

If n approachesot, then
fO) = Bi(x) + Ry (x)

Where n is defined the length of the Taylor polyiabiy,(X) N7
with note than is known as the degree Bf(X). The function 2mz (g)
f(x) is approximated by the Taylor polynomiBj(x) when
R.(X) is truncation error [Burdden 2011 p. 11]. The lgyaf Where,
approximation depends on two following factors:

- The larger (longer) the length &f(x) is, the better the

approximation is. Note thatz is real variable and # x, and it implies thagy

- The smaller the truncation err&(x) is, the better the is function ofn whenn is considered as real variable instead

approximation is. of integer number as aforementioned. Now we find the

Existing methods that improve the quality ofmaximum point, of g(2). The natural logarithm aj(2) is:
approximation focus on minimizing the truncationroer ) )
although lengthenind,(x) also makes the truncation error  108(g9(2)) = zloglx — x| — ~log(27) — - log(2) —

Ry(x) in decrease. Please see the method “least squar@sog(z) + z = (log|x — x,| + 1)z — zlog(z) — —log(z) —
approximation” and other ones inside chapter 8hefliook

“Numerical Analysis” [Burdden 2011 pp. 497-558] fmore ;log(Zn)

details about approximation theory. Additionallgetsquare
error [Callahan 2008 p. 669] between two Taylor
polynomials is minimized so as to enhance the tualf , 1
approximation. By another way, this research fosusehow (log(g(2))) = loglx — xo| —log(z) — >

to determine the length d?,(X) so that it is possible to

achieve good approximation but keep such lengtmnzl as That the functiorg(z) gets maximal is equivalent to that its
possible. This length is callédasible lengthin other words, l0garithm log(g(2)) gets maximal and so the maximum
the issued problem is how to find out the feaslblgth so point z is found out by setting the first derivative of
that it is likely thatPy(x) is the good approximation dfx).  log(g(2)) to be zero. We have:

Given the feasible lengih, the larger than” the lengtm is, 1 .
the better the approximatid®y(x) is. Hence, the method to  log|x — x| —log(z) — 2= 0 & log(z) = log|x — x| ~5
estimate feasible length is proposed in next sectio

|x = xo[*

z>1

The first derivative ofog(g(z)) with regard tazis:

= log|x — xy| — 0.5 < log(z) < log|x — x,|

2. Estimating Feasible Length of Because the numbg:‘l; is smaller than 0.5 and approaches
Taylor Polynomial 0 when z approaches o, we make an approximation of

. th Lo 1 . log(z) as below:
Given then+1" order derivativef ™V (x) is bounded, the

remainder is also bounded. We have [Rosenberg 2006] log(z) = log|x — x|
[Wikipedia 2014a]: o
It implies that

M _ n+1 | X) —
(n+1)! ((x t) Xo z" = |x — Xo

Rn(x) < 2 [ (x — )"dt = —
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Whenz* ~ |x — x,| is the peak of functiog(2), there is
comment that the larger the distanige— x| is, the more
symmetric (more like bell-shape) the curve of finreg(2) is.
Figure 1 depicts curves of functigiz) with |[x — »| = 2.5, 3,
3.5, 4.

2 3 4 3

—_]
=
-
o]

20 = Pexo/ (sqt2az)zie)) “
Figure 1. Curves of function g(z)
The point far by double distancds — x| results out
possibly small value for the functi@{z) and moreovery(2)

decreases more slowly when> |[x — x|. Therefore, the
feasible lengtm’” is approximated as follows:

n" = 2[z"] = 2[[|x — %]
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f(x) in given interval §, b]. In general, we have a conclusion
that:

Given pre-defined intervala, b, the feasible length of
Taylor polynomial which results out the possiblyodo
approximation of function (X) in interval [a, b is

approximated by the distance b—a with attentiont ttie

Taylor polynomial is constructed at central paigt= aT“’.

n* = [b —a]

3. Application to Find the Number of
Roots of Equation

The issued problem is to find out the number oftgonf
equationf(x) = 0 in given interval 4, b]. The problem is
solved by 2-step task:

1 Constructing Taylor polynomiaP,(x) to approximate

f(x) at central poink, = az;b. Becausen will approach

+o0, we use the feasible length= [b — a].

2 Applying Sturm theorem [Wikipedia 2014c] [Ta 2014]
into counting the number of roots of equatfr) = 0 in
given interval §, b].

Suppose the feasible length= [[b —a], the optimal

Taylor polynomialP(X) is:

1
PC) = f(x0) + £ (x0) (x = x0) +5 £ (x0) (x = x)° + -~

1 m) n
+ mf (x0) (x — x0)

Where,

Where[. ] denotes integer part which is the integer number

that is nearest to given number, for example5] = 2 and
[1.4] = 1. Figure 2 depicts the cungz) and the feasible
lengthn” corresponding to distange— »| = 3.

gl

|% - xa| =3

pr = f = 2x-xg|

iz*:B = |x-x0] .
Il Il Il
- | 1 1 1

L L
1 3 3 4 3 6

Figure 2. Feasible length of g(z) with |X o/ x 3

If x=a orx =b with note thatn andb are end points of the
pre-defined intervald, b], we have:

—-a
2

b

n = 2lla = xpl] = 20lb - xol) = 2[5~ ~ [ - al
The above formula can be interpreted that it rexpuiat
least [b — a] degrees or length ofb —a] for Taylor
polynomial to reach feasibly good approximatiorfuoiction

a+b
x0= 2

In step 2, we construct Sturm sequence [Wikipe@i42]
[Ta 2014] as follows:

Po(X) =P(x)

P.(¥) = P'(X) (P1(X) is derivative oP(x))
P2(X) = P1(X)Qo(X) —Po(X)

P3(X) = P2(X)Q1(X) —P1(X)

Pr(®) = Pt (0 Qm-2(X) — Prno(X)
0= Pm(X)Qm—l(X) - Pm—l(x)

It is easy to infer thatP,(x) is the opposite of the
remainder of polynomial division oP, ,X) by P.,.(X).
Substituting the end poina into Sturm sequence and
evaluating signs of such sequené®(d), Pi(a),..., P(a)),
we get a sign sequence and count the number othigmges
of this sign sequence. We den@¥a) as this number of sign
changes at poind. Similarly, letW(b) the number of sign
changes at poirti. According to Sturm theorem, the number
of roots of equatio(x) = 0 in the half-open intervah(b] is
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W(@) — W(b). For example, we count the number of roots o4. Conclusion

following equation in interval [1, 3].

f(x) =log(x) + % —log(2) =0

When the feasible length is =[3 — 1] =2 and the
optimal Taylor polynomial of(x) at central poinf:—1 =2as
follows:

P()=f(2)+f'@)(x —2) +5f"(@2)(x - 2)% =

5
Pi(x) = ——x+§
1 5
PZ(X) ZEX—E
13
P3(x) BETA

The Sturm sequence evaluated at end poinfl isPy(1) =

The feasible length is essentially the possibleetolaound
of degree of Taylor polynomial when the best degseefinite
and so “feasible length” is a heuristic concepts likely that
Taylor polynomial with degree being equal to og&rthan
feasible length is good approximation of a functiongiven
interval and otherwise. The wider the intervaltie®e longer
(larger) the feasible length is. But given a cdmi@nt where
Taylor polynomial is expended, there is situatibatta point
far from central point requires smaller feasiblegkh to
achieve good approximation than another point teeaentral
point does. The reason is that the remainder isrigmt on
both the degree of polynomial and high order dédiies;
hence, that high order derivatives may get sméallesaat such
far point results out small remainder. But the gzl method
is based on assumption that the1™ order derivative is
bounded with the bound which is fixed in the forenub
estimate the feasible length. In other words, hayker
derivatives are not accounted in the formula timege the
feasible length. It means that feasible lengthhés éstimated
value and you can specify any degree larger th&foivever it
is very useful to apply feasible length into Stuheorem so as
to find out the number of roots in given equatigg = 0
because the given functid¢x) does not vary so much usually
in relatively small interval and it is possible gains optimal

—3/16,Py(1) = 1/2,P,(1) = —2,Py(1) = 13/16 and so there are gpproximation of f(x) in such interval; although Taylor
3 sign changes, we haw&(1) = 3. The Sturm sequence polynomial can produce or eliminate roots unpreditst

evaluated at end poirt= 3 isPy(3) = 9/16,P,(3) = 1/4,P,(3)

outside the interval, the number of roots insidatinely small

= —1,P4(3) = 13/16 and so there are 2 sign changes, we ha1Y1tervaI is always counted exactly.

W(3) = 2. Absolutely, the number of roots in halfeop
interval (1, 3] is 1 =W(1) — W3). Figure 3 depicts

approximated Taylor polynomial in this example:
fix) 1+ Equation: log(x) + 1/{2x) - log(2)=0
wit
x
Il Il | & 1 Il Il
I I | 1 r I I
0.5 0.5 1.5 4 5 3 35
N5+ ",f'
,"-' Taylor polynomial at x =2:-2%/16 + Sx/8 - 3/4
f“"-l__
- Approzimation area [1, 3]

Figure 3. Approximated Taylor polynomial

Note that Taylor polynomial curve is drawn as dhsh,
which is the good approximation to the equalieg(x) +

2x
that there is only one root in half-open intervgl §] for both

the equation log(x) +%— log(2) and approximated

. 1 5 3
polynomial— =x2 +2x —= = 0.
16 8 4

i—log(Z) =0 at pointx = 2. It is easy to see in figure 3
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