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Abstract 
This study aims to learn an estimation of the Hurst Parameter for unevenly sampled 

fractional Brownian motion. The motions are reproduced by means of Cholesky’s algorithm, 

and the parameter of Hurst is predicted by maximizing likelihoods. These methods are 

proven to be suitable for the use of quantitative data utilised in this paper during simulation. 

Several tables that contain the estimates of the self-similarity measure are presented in this 

study according to various sampling procedures with various sizes of motions. The initiations 

of these tables is stood on a sequence of statistical tests based on Student’s t-test and Fisher’s 

Test that make it possible to analyze and compare the distinctions between the considered 

sampling processes. This paper deals with the simulation of the fractional Brownian motions, 

with their identifications, and with the analysis of the experimental results. This study proves 

that unpredictable sampling gives more inconsistency between the outcomes and those 

expected values for a balance sampling. This inconsistency has a tendency to be decreased if 

there is increase in the size of the signals. Also, this study shows that when there is a 

uniformlyrandom sampling model, outputs from random samplings tend to be similar to 

those outputs that come from a balance deterministic sampling. It confirms that the best 

estimators of Hurst’s parameter are obtained by maximizing the chance. 

1. Introduction 

In this work, we are interesting in providing estimators of Hurst parameter h ( 0< h <1) for a 

fractional Brownian motion along which the sampling time is not balanced. Instead of the 

original process which is the usual techniques of simulation by assuming a balancing time 

sampling, we describes three components that deals with the simulation of the fractional 

Brownian motions, with their identification, and with the analysis of the experimental results. 

For this, we need to enable controled and adapted techniques of simulation. These techniques 

are needed to make sure when the significant estimators of  h parameter could be  obtained. In 

contrary to the usual technique, the resolution of such estimator is fit in the unbalanced 

sampling rather than the balancing one. Then the results are going to be compared with a case 

of balanced sampling.  

The objective of this study is to confirm the theoretical results related to the non bias 

asymptotic character and its convergence. The main objective is to valid the simulation and the 

estimation techniques through general cases. To accomplish this, quantitative results are going 

to be provided to identify the accuracy of estimators for distinct values of Hurst parameter. 
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2. Overview 

The fractional Brownian motion (FBM), issued works of 

Mandelbrot and Van Ness (Mandelbrot & Van Ness, 1968), is 

part of a process generating the Brownian motion. It posseses 

the property of self-similarity, quantified by the parameter of 

Hurst h . The FBM finds many applications in signal models: 

Biology (Mandelbrot, 1983), motion analysis ( Scafetta, Griffin 

& West, 2003 ), economic series ( Carbone, Castelli & Stanley, 

2004), image processing (Lundahl, Ohley, Kay &Siffert, 1986), 

Ethernet network (Vidacs & Virtamo, 2000). Practically, it is 

difficult for a signal to possess self-similarity. Certain tests are 

given to verify the best adequate model (Jennane, Harba & 

Jacquet, 1996); however, these tests are not applicable for the 

case of signals obtained by unbalanced sampling. The 

modeling with an FBM for this data type can then become 

inadequate. Most of identification and estimation methods of h 

for an FBM assume an unbalanced sampling [Coeurjolly, 

(2000); Istas & Lang, (1994); Peltier & Levy-Vehel, (1994)]. 

These methods require, otherwise, a fundamental change in the 

algorithms. 

The unbalanced sampling of time series gave rise to much 

work, especially in spectral analysis of unevenly spaced data 

(Potts, Steidl G. & Tasche, 2000). In this study, we propose an 

experimental step for FBM modeling of an unbalanced signal 

in times. It is on the one hand to compare the results obtained 

with the previous studies done over balanced sampling 

(Jennane, Harba, & Jacquet, 2001), and secondly to determine 

the possible presence for a bias of the estimator. The estimation 

of h is the maximum likelihood [ (Lehmann, (1980); Lundahl, 

Ohley, Kay & Siffert, (1986)] who has previously adopted the 

model proposed by Norros (Norros,1994). 

The second section is dedicated to describe FBM. A 

simulation method of unbalanced motions is presented in the 

third section. We describe in the fourth section the algorithm 

with maximum likelihood estimator, estimating the parameter h 

and taking into account the unbalancing of sampling. Before 

conclusion, we present in the fifth section the experimental 

results with a set of estimates of h obtained by simulating 

motions with different kinds of unbalanced timing. We 

compare the obtained results and assess the presence of bias in 

the estimation. 

3. Description of the fractional 

Brownian Motion 

A FBM of Hurst parameter h ϵ ] 0 , 1 [, noted ( )[ ] ℜ∈xxY  , is 

a centered real Gaussian process verified by: 

Y(0) = 0 and for every ( x , r ) ϵ 2ℜ , F ( ׀Y(x) – Y(r)2׀ ) = ׀x – 

r 2׀                                           (i) 

We deduced the expression of the covariance function 

defined by: 

For every ( x , r ) ϵ 2ℜ ,  

F[Y(x)Y(r)] = 1/2 ( ׀ x 2׀h + ׀ r2׀h – ׀x – r2׀h )          (ii) 

The process ( )[ ] ℜ∈xxY  is self-similar of order h and its 

motionless mean values: 

For every ( ) ∗+ℜ×ℜ∈kx, , Y(kx)  ̴  kh Y(x)         (iii) 

For every ( ) 2, ℜ∈rx , Y(x) – Y(r) ̴ Y(x – r )          (iv) 

( )[ ] ℜ∈xxY
 
is a unique centered continuous Gaussian process 

self-similar with motionless mean values (Herbin, 2004). In 

particular, for h = 1/2 , we found the classic Brownian motion 

where the mean values are more independents. The spectral 

density f (s) of FBM mean values behaves as ׀s׀
1-2h

 whens 

approaches 0, which is a remarkable characteristic of process 

with long-memory(1/f )(Beran,1994). 

Let λbe the nucleus of fractional integretion of ( )ℜ2τ  

defined by : 

For every ( ) 2, ℜ∈βx ,  

( ) 2

1

2

1

,
−− −−= hh

xxx ββλ                      (v) 

The FBM has a representation called moving average. Each 

variable in the process Y(x) for all x, x is fixed, can be written 

as a sum of Gaussian reduced centered weighted by the 

coefficients of the nucleous λ : 

For every ℜ∈x ,  

( ) ( )( ) ,Y x x dSλ β β= ∫ ̴ ( )( )2

0,N xλ               (vi) 

Where S is a Brownian measure, that is an isometry of 

( )ℜ2τ
 
tends to a Gaussian Space. The process ( )( ) ℜ∈ββdS  

is also called white noise. In case of a discrete processes cases, 

the variables are also Gaussian and each motion is obtained by 

summing a realization of a Gaussian with a particular 

weighting, This will be seen in the next section with the 

Cholesky’s algorithm. 

4. Simulation Method of Unbalanced 

Motions 

There are numerous methods for simulation of fractional 

Brownian motions: Stochastic approaches, multi-scale, spectral, 

and the covariance matrix of the process. Most of these 

methods assume that the sampling period is being constant. We 

chose to simulate the motions through the covariance matrix of 

process using the Cholesky’s method, which takes into account 

the unbalanced of the sampling via equation (ii). The wavelet-
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based methods, those type of Paxon or spectral simulations, 

provide good simulations, may be used. A simple way would be 

to simulate a balanced motion then resampling with a non-

constant step. 

Cholesky’s algorithm is formulated as follows: Let ( x2,…,xN ) 

be the sampling instants of motion with length N-1 and h its 

Hurst parameter. The particularity of FBM is that the 

covariance matrix ofprocess is completely determined by xiand 

h . We calculate the associated covariance matrixvia equation 

(ii): 

δ h ( i,j ) = F (Y(xi) Y(xj)) =

2221
( ) 2 ,

2

hhh

i j i j
x x x x with i j N+ − − ≤ ≤            (vii) 

The matrix δ h is a defined positive symmetric matrix and 

may, therefore, be divided by the method of Cholesky: 

δ h = AA’                                  (viii) 

Where A is the Lower triangular matrix , specifying in the 

decomposition of Cholesky. Ifyis a sample of length N - 1 of a 

Gaussian variable, then the set (0, Ay) is a path of length N 

ofFBM at times(x1, ... , xN) with x1 = 0 and auto- similarityh. 

In general, we applied the method of Cholesky to the 

covariance matrix, notedB , of the dirived process at a certain 

resolution, called FGN for Gaussian fractional noise. The 

method of Cholesky applied to B is called exact because the 

calculated covariance matrix in the discrete case coincide with 

the continuous case. 

In addition, to gain time of calculation, an alternative is to 

opt for the Levinson’s algorithm (Peltier,1998 ) which allows 

you to reconstruct the array in the decomposition of 

Choleskythrough the elements of the first row of B . In the case 

of an unbalanced sampling, this algorithm is no longer 

applicable since B is no longer necessarily a matrix of 

Toeplitz.The unbalancing of stimulous samples is obtained by 

controling the time values of the parameter x which constitutes 

the basis of the calculation of the covariance matrix of δ h. 

5. Estimation of the Auto-Similarity 

5.1. Theoretical Model  

The proposed model by Norros(Norros, 1994) is used for the 

study of Ethernet motion,expressing an FBMY with a linear 

tendency for estimating a posteriority which is nottaken into 

account due to the use of the simulation’s method. Without this 

tendency, the model is expressed in the following manner: 

T(x) = a Y(x)                              (ix) 

The process Yis a pure Brownian fractional motion, i.e. a 

process of Gaussian auto-similarityh , of mean zero and of 

covariance matrix δ h. The quantity“a”is the variance of the 

variable T(1). In this case, T is an FBM of auto-similarity h and 

of covariance equals to: 

F(T(xi)T(xj)) = a F(Y(xi)Y(xj)) = a δ h ( i , j )        (x) 

Finally we have two parameters to be considered (a ,h)which 

are estimatedby the maximum likelihoodestimator. 

5.2. Maximum Likelihood Estimator (MLE) 

This estimator was adapted by Dahlhaus (Dahlhaus, 1989) 

for calculating the coefficient of auto-similarity of anFBM.The 

interest of this method is to get benefit of good asymptotic 

properties. In particular, the estimator 
MLEh

∧  converges quite 

certain to the theoretical value h as Nincreases.The choice of 

MLE is motivated by the fact that it does not need to know at 

prioritythe spectral strength density(SSD) of the signal, in 

contrary to the Whittle estimator. Among the estimation 

methods of (SSD), the simplest is the periodogram method.For 

an arbitrary sample rate, Scargle has proposed a general version, 

which has the same statistical properties as the classical 

periodogram. This estinmator is asymptotically non bias but it 

is necessary to run with techniques of local smoothing in order 

to decrease its variance intrinsically high. Cosequently, the SSD 

is estimated whatever the sample rate is, but the approximation 

of Whittle requires to know the periodogram of an ascending 

motion, which is not observed directly in the case of non 

uniformly sampling. 

The estimator of the maximum likelihood is formulated as 

follows: Let t = ( t1,…,tN )’ be a motion ofT at sampling rate 

timex = ( x1,…,xN )’. We look to maximizewith respect to ( a , h) 

a probability of given likelihood by themultinormal density 

function : 

N

N

ahatA ()2(),;( 2
−

= π δ׀ h׀)
2

1
− tt

a
h

e
1

2

1 −′− δ  (xi) 

Where “׀׀” designates the determinant. The logarithm of 

likelihood is given by: 

11 1
log ( ; , ) log (2 ) log ( )

2 2 2

N

h h

N
A t a h a t t

a
π δ δ −′= − − −      (xii) 

11 1
log (2 ) log( ) log ( )

2 2 2 2
h h

N N
a t t

a
π δ δ −′= − − − −  

Maximizing the algorithm of likelihood is to maximize the 

following quantity: 

11
log( ) log ( )

h h
N a t t

a
δ δ −′− − −              (xiii) 

The estimation of 
∧
a  is obtained under the necessary 

condition that the derivation of  equation (xiii) with respect to 

“a” is null. We obtain: 

tt
N

a h

11 −
∧

′= δ                                  (xiv) 

By incorporating the equation (ivx) in (xiii), the problem has 
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at first to estimate h. To near constants, this is resumed to 

relatively maximize for h the following objective function:  

[ ] hh tt
N

N δδ log
1

log 1 −′− −
              (xv) 

To maximize the objective function, we apply the method 

quasi-Newton. Strictly, it should demonstrate the concavity of 

equation (xiii) considered as a function of h. Itis a required 

difficult question and we would limit it to an experimental 

verification. 

In the case of a randomly sampling, Lai( Lai, 2004) proved 

that the estimator 
∧
h  of Hurst parameter of a FBM is a Gaussian 

asymptote, without bias and standard deviation: 

1 ' 2

2
( )

det ( )
MLE

h h

hσ
δ δ

∧

−
=

  
                    (xvi) 

Where 
'

hδ  is the derivative matrix of hδ : 

h

ji
ji h

h ∂
∂

=
),(

),(' δδ                     (xvii) 

6. Experimental Results 

We propose to consider two unbalanced types oftime in the 

sampling. Through the two types, we proceed by a sub-

sampling in a known balanced sample: { }n

iix
1=  with 

11 =− −ii xx . The first sub-sampling denoted by ICSis 

systematic, and it considers alternatively consecutive 

separating instants of two time units, namely: …., xi , xi+1,xi+3, 

xi+4,….. the second sub-sampling denoted by ICU is randomlly 

chosen and it is obtained through a uniformly selection of a 

known sample.  

6.1. Example 

We begin by a simple example proving the diversity of 

outputs according to sampling. Consider two stimulous signals 

of size N = 1024 and with h = 0.6. These signals are itterated 

by Chelosky with respectively a balancesampling rate (xi= i) 

and an unbalanced issued of the uniform law (ICU). These two 

signals were obtained through the same Gaussian sample 

(denoted “y” in the third section). We estimate by the Whittle 

approximation (assumed balanced sampling) and by MCEthe 

auto-similarity coefficients of two signals. The outputs are 

presented in the following table:  

Table 1. Two Signals by Chelosky 

 First Signal (Balanced) Second Signal (ICU) 

Whittle 0.57 0.53 

MLE 0.56 0.57 

We notice through this example that the estimator of Whittle 

underestimates the theoretical value of h. The proposed 

estimator gives a better estimation (tends to 0.6) with a less 

significant difference. Consequently, The unbalance of the 

sampling seems to play an important role, which leads us to 

study its influence in estimating h. This illustrative example 

does not permit to measure the real efficacy of MLE while it is, 

therefore, for a certain length N, to proceed for a performing 

systematic study by repeating the experimental procedures of 

simulation and estimation, in a way to study the sampling 

distribution of the estimator of h, its bias and its precision. 

6.2. Choosing the Parameters, Strategy of 

Tests 

To lead the analysis, we refer to Jennane and Coll article 

(Jennane & Harba, 2001). The process is as follows: Having 

fixed a user sampling, we study signals of different lengths 

(assume N) for different values of the Hurst‘s exponent (h). For 

a user sampling and for fixed N and h, we repeat K times the 

operations of simulation of a FBM (as the preceding constraints) 

and of the estimation of h. We get, then, a sample of sufficient 

length to approach the distribution of the estimator 
∧
h  with 

maximum likelihood. We study then experimentally the bias 

properties and the convergence of the estimator in question. 

The choice of K is based on controlling the risks , the power of 

tests, comparing means and variances, which we would  

achieve. According to the Jennane and Harba, we adopt for the 

calculation of K, the hypothesis along which the variance of the 

estimator would be equal to the bound of Cramer-Rao 

correspondence, whereas their article has given the value. This 

bound depends on h, and it adopts a strategy “pessimistic “by 

choosing the maximum value in all h confounded for a fixed N. 

We assume that the density of the estimator is to be Gaussian 

and with a significance level of 1 %, we find the following 

table: 

Table 2. signals of different length (assume N) with K times repetition of the 

operations to simulate a FBM 

N 33 65 129 257 513 1025 

K 3054 1493 751 384 188 97 

In the following, we compare the outputs obtained for each 

unbalanced sampling with the classical estimation (balancing) 

and we study the effect of unbalanced time on the bias of 

estimator. The whole process is summarized in Figure 1. 

Before we have validated the observations, we proceed to 

test the comparisons of samples by counting on the precision 

and the eventual appear of bias; this for the two unbalanced 

sampling. In all cases, we consider a risk of significant level α 

equal to 0.01. We apply successively Fisher and Student1 t- test 

(Figure1), in the case of Gaussian, the Fisher’s test for 

comparing variances and then the Student’s t- test for 

comparing means. The null hypothesis H0 of Fisher test is the 

homogeneity of population variances, which has issued the two 

samples; the alternative hypothesis HA is the heterogeneity of 
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variances. Since these have the same length, the statistic of 

Fisher at K – 1 degree of freedom is simply the ratio between 
2

1s and
2

2s , empirical estimators of variances: 

( )
2

1

2

2

1, 1,
s

F K K
s

α− − =  where 
2

1s >
2

2s               (xviii) 

For a given unbalanced sampling , this test is applicable for 

each of the counterparts’ cases of the two tables. In case where 

there is no rejection of H0, we apply the student’s t-  test where 

the null hypothesis is the equality of the two means of X1 and 

X2. The statistics of the test is as follows: 

( )2 2 1 22 2

1 2

1
K

K
T X X

s s
−

−= −
+

                  (xix) 

Where 1X  and 2X  are the sample means of the estimators. 

If the null hypothesis of the two tests is not rejected, we 

conclude that the unbalancing of the sampling has no influence 

on the estimator’s properties. Before taking a decision of 

biasing the estimator, we calculate the confidence interval 

estimate (C.I.) at threshold α Student 2t- test (Figure 1) and 

verifying that it contains the theoretical value h of Hurst 

parameter. An estimation of h being independent of others is 

applying the Central Limit Theorem over X  and deduces that

X follows approximately a Gaussian law. Since the standard 

deviation is unknown, the statistic 
/ 1

X X

s K

−
−

 of sample mean

X  and with sample standard deviation s follow approximately 

a Student’s t- test law TK-1atK-1degree of freedom, which gives 

the following  framework: 

2/2/
1/

αα t
Ks

XX
t <

−
−<−                         (xx) 

Where 2/αt is ( 1 – α ) / 2 percentile of TK – 1 . We deduce the 

confidence interval: 

/2 /2
1 1

s s
X t X X t

K K
α α− < < +

− −
             (xxi) 

In this case, we obtain the C.I. that permits to verify whether 

the chosen theoretical value of the simulation belongs to this 

interval of confidence or not. The calculation of the C.I. is 

equivalent to testing the null hypothesis 

∧

X  = X with the same 

statistic 
/ 1

X X

s K

−
−

. 

 

Fig. 1. Strategic tests for the comparison and the study of bias of the estimator 

of H by MLE. Student 2 : Student’s t- test ( interval of confidence);Fisher & 

Student1 : Fisher test with Student’s t- test ( comparison of samples ) 

6.3. Comparison of Samples (Fisher & Student 

1) 

The set of calculations was done through the statistical 

software PHStat 2. Table 1 includes the means and the standard 

deviations obtained through a balanced sampling and crosses 

the values of h with the length of signals. The values in the 

tables are round to two decimal places but the tests are lead 

through the exact values. We found the usual properties of the 

estimation method: The standard deviation of the estimator 

decreases as N increases, illustrating then the fact that MLE is 

convergent. Globally, the means obtained underestimate the 

values of h. 

Table 3. Estimation by MLE with Balancing Sampling 

h \ N 32 64 128 256 512 1024 

0.1 0.11±0.07 0.10±0.05 0.10±0.03 0.10±0.02 0.10±0.02 0.10±0.01 

0.2 0.20±0.09 0.20±0.06 0.20±0.04 0.20±0.03 0.20±0.02 0.20±0.01 

0.3 0.29±0.11 0.30±0.07 0.30±0.05 0.30±0.03 0.30±0.03 0.30±0.02 

0.4 0.39±0.12 0.39±0.08 0.39±0.06 0.40±0.04 0.40±0.03 0.40±0.02 

0.5 0.49±0.12 0.49±0.08 0.50±0.06 0.50±0.04 0.50±0.03 0.50±0.02 

0.6 0.58±0.12 0.59±0.08 0.60±0.06 0.60±0.04 0.60±0.03 0.60±0.02 

0.7 0.68±0.12 0.69±0.08 0.69±0.06 0.69±0.04 0.70±0.03 0.70±0.02 

0.8 0.77±0.11 0.79±0.08 0.80±0.06 0.80±0.04 0.80±0.03 0.80±0.02 

0.9 0.86±0.10 0.88±0.07 0.89±0.05 0.89±0.04 0.90±0.03 0.90±0.02 

 
Table 3 describes the same estimations by taking into 

account the case of ICS. All the standard deviations obtained 

are less than or equal to that of Table 3. The unbalancing ICS 

reduces, then, the standard deviations of the estimator where 

the theoretical values of h are underestimated. We compared 

these results with the results obtained in Table 3through more 

described statistical tests. The shaded entries correspond to a 

non-rejection of H0 for Fisher &Student tests. The non-

rejection H0 are comparable for the two tables through the size 

N= 512. For the maximal size 1024, the results obtained in 
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tables3 and 4 are similar.  

Table 4. Estimations by MLE with ICS, comparison with Table 3. The shaded entries correspond to a non-rejection of H0 for Fisher & Student tests. 

h \ N 32 64 128 256 512 1024 

0.1 0.11±0.07 0.10±0.05 0.10±0.03 0.10±0.02 0.10±0.02 0.10±0.01 

0.2 0.20±0.09 0.20±0.06 0.20±0.04 0.20±0.03 0.20±0.02 0.20±0.01 

0.3 0.29±0.10 0.30±0.06 0.30±0.05 0.30±0.03 0.30±0.03 0.30±0.02 

0.4 0.39±0.10 0.39±0.07 0.39±0.05 0.40±0.03 0.40±0.02 0.40±0.02 

0.5 0.48±0.11 0.49±0.07 0.50±0.05 0.50±0.04 0.50±0.03 0.50±0.02 

0.6 0.59±0.11 0.59±0.07 0.60±0.05 0.60±0.04 0.60±0.03 0.60±0.02 

0.7 0.68±0.11 0.69±0.08 0.69±0.05 0.69±0.04 0.70±0.03 0.70±0.02 

0.8 0.77±0.10 0.79±0.07 0.80±0.05 0.80±0.04 0.80±0.03 0.80±0.02 

0.9 0.86±0.09 0.88±0.06 0.89±0.05 0.89±0.04 0.90±0.03 0.90±0.02 

 

Table 5 includes the estimations with unbalanced ICU. The 

results obtained are clearly better than the previous cases in 

terms of variance. All standard deviations are less than or equal 

to the results obtained in the previous two tables, and that the 

difference is more globally powerful for the values of h (around 

0.5). The non-rejected hypothesis are equivalent in tables 3 and 

4 through a size between 512 and 1024. Only the means and 

the standard deviations for the samples of size 1024 approach 

the results obtained with a balancing sampling. We recognize 

that for a periodical unbalancing ICS, the estimated values are 

nearest to the balancing case, the tests of comparing samples 

are being more rejected in Table 5. In conclusion, the more the 

sampling is unpredictable, the more the convergence of 

estimators is slow and this particularity tends to diminish with 

the size of signals. The sampling does not influence 

significantly the estimations for signals of low length. 

Table 5. Estimations by MLE with ICU, Comparison with Table 3. 

h \ N 32 64 128 256 512 1024 

0.1 0.11±0.06 0.10±0.04 0.09±0.02 0.09±0.01 0.09±0.02 0.10±0.01 

0.2 0.20±0.08 0.20±0.05 0.10±0.03 0.10±0.02 0.10±0.02 0.20±0.01 

0.3 0.30±0.09 0.30±0.06 0.30±0.03 0.20±0.02 0.20±0.02 0.30±0.02 

0.4 0.40±0.08 0.40±0.06 0.40±0.04 0.40±0.03 0.40±0.03 0.40±0.02 

0.5 0.50±0.09 0.50±0.06 0.50±0.04 0.50±0.03 0.50±0.03 0.50±0.02 

0.6 0.60±0.10 0.59±0.06 0.60±0.04 0.60±0.03 0.50±0.03 0.60±0.02 

0.7 0.69±0.10 0.70±0.06 0.70±0.05 0.70±0.03 0.79±0.03 0.70±0.02 

0.8 0.78±0.09 0.79±0.06 0.80±0.05 0.80±0.03 0.80±0.03 0.80±0.02 

0.9 0.89±0.08 0.89±0.05 0.90±0.05 0.90±0.03 0.90±0.03 0.90±0.02 

 
6.4. Influence of Unbalanced Sampling over 

the Bias of the Estimator (Student 2) 

In this section, we study the importance of the bias of the 

estimator in terms of the selection of an unbalancing sampling. 

For this and in complementarities with the calculation of C.I., 

we apply a Student’s t- test of the expected value of the 

estimator with the theoretical value:H0: hhE =
∧

)( . The tables 6, 

7and 8 describe the set of p-values test for each type of 

sampling. Since the test is symmetrically two-sided, we should 

compare the results obtained with the half of the level of 

significance initially chosen (α / 2 = 0.005). The student’s t- 

test is equivalent to determine if the theoretical value belongs 

to the C.I. but at the advantage of specifying the intermediate 

analysis of p-values. For the three tables, the non-rejection of 

the test corresponds globally to signals with large length. The 

more the length of signals is large, the more the theoretical 

value belongs to the C.I. whereas the estimator is anon-bias 

asymptotic. There are35non-rejections for the balance of 

sampling, 30 for ICS, 42 for ICU and we obtain then from this 

point of view the best results with ICU. The mean of p-values 

of non-rejections is of 0.22 for the balanced sampling, 0.13 for 

ICS and 0.17 for ICU. The balanced sampling accepts fewer 

tests as ICU, but the p-values are globally higher. In a fixed 

interval, the more the number of observations is high, the more 

the sampling ICU tends to a balanced sampling. This explains 

that the results of ICU approach the results of balanced 

sampling in terms of the p-values as N increases. 

Table 6. Student’s t- test H0: ( )E h h
∧

= . Set of p-values for the balanced case. The shaded entries correspond to non-rejection of the test (p-values> α / 2). 

h \ N 32 64 128 256 512 1024 

0.1 <0.1×10-15 0.43 0.11 0.23 0.07 0.08 

0.2 0.17 0.24 0.41 0.25 0.27 0.10 

0.3 0.24×10-5 0.005 0.11 0.25 0.08 0.14 

0.4 0.52×10-11 0.33×10-5 0.003 0.07 0.38 0.35 

0.5 0.16×10-12 0.001 0.09 0.39 0.18 0.23 

0.6 < 0.1×10-15 0.52×10-4 0.05 0.40 0.36 0.25 

0.7 < 0.1×10-15 0.55×10-12 0.33×10-5 0.002 0.32 0.26 

0.8 < 0.1×10-15 0.44×10-8 0.006 0.22 0.41 0.12 

0.9 < 0.1×10-15 < 0.1×10-15 0.26×10-12 0.86×10-5 0.28 0.43 
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Table 7. Student’s t- test H0: ( )E h h
∧

= . Set of p-values for the ICS case. 

h \ N 32 64 128 256 512 1024 

0.1 <0.1 ×10-15 0.004 0.06 0.05 0.02 0.05 

0.2 0.02 0.48×10-3 0.004 0.02 0.03 0.05 

0.3 0.70×10-4 0.01 0.20 0.44 0.46 0.43 

0.4 0.23×10-6 0.001 0.06 0.08 0.14 0.14 

0.5 0.11×10-15 0.28×10-6 0.10×10-3 0.003 0.01 0.05 

0.6 0.94×10-12 0.54×10-4 0.10 0.36 0.32 0.13 

0.7 < 0.1 ×10-15 0.88×10-6 0.39×10-3 0.001 0.12 0.08 

0.8 < 0.1 ×10-15 0.11×10-12 0.28×10-3 0.07 0.24 0.08 

0.9 < 0.1 ×10-15 < 0.1 ×10-15 0.12×10-10 0.004 0.10 0.07 

Table 8. Student’s t-test H0 : ( )E h h
∧

= . Set of p-values for the ICU case. 

h \ N 32 64 128 256 512 1024 

0.1 0.44 ×10-15 0.26 0.23 0.11 0.15 0.13 

0.2 0.003 0.05 0.05 0.06 0.12 0.15 

0.3 0.43 0.44 0.49 0.08 0.44 0.17 

0.4 0.005 0.09 0.03 0.16 0.04 0.18 

0.5 0.002 0.01 0.07 0.38 0.27 0.19 

0.6 0.44×10-10 0.67×10-4 0.01 0.23 0.13 0.20 

0.7 0.21 ×10-5 0.10 0.003 0.32 0.06 0.21 

0.8 < 0.1 ×10-15 0.27×10-8 0.02 0.27 0.08 0.22 

0.9 < 0.1 ×10-15 < 0.1 ×10-15 0.02 0.11 0.03 0.25 

 
6.5. Analysis of p-Values 

Analyzing the maximum of p-values by column, we observe 

a certain structure in each of the above tables. For the balanced 

sampling, the maximum is attained forh = 0.1, for signals of 

low lengths, untillh = 0.9 for long signals. For ICS, the 

maximum is attained for h = 0.3 whatever N,and for ICUthe 

dynamics is more randomly but also concerns for most cases 

ofh = 0.3. Then theunbalanced sampling has less influence for 

all h in the neighberhood of 0.1 because the variations of 

signals are more high. Consequently, the unbalanced 

ICSglobally added a bias. For ICU, the values obtained through 

uniformly unbalancing are closely to the theoretical model: The 

Student ‘s t - test for C.I. accepts 42 values against 30 for ICS 

and 35 for balanced sampling. 

So we conclude a reduced bias for a balanced sampling as it 

is also for ICU. The unbalancing” determinist”ICS gives 

significantly poorer results, which is coincided with the results 

of the C.I., involving a bias more pronounced. 

7. Conclusion 

We fixed the objective to conduct an experimental study over 

the estimation of Hurst parameter for fractional Brownian 

motions along which the sampling time is not balanced. Our 

study then describes three components. The first component 

deals with the simulation of the fractional Brownian motions, 

the second component deals with their identifications, and the 

third deals with the analysis of the experimental results. The 

usual techniques of simulation assume a balancing time 

sampling, which are added to used matrices in the calculation 

of particular forms that are not setting to unbalanced sampling. 

The techniques of simulation were able to be controled and 

adapted. The best estimators for h parameter are obtained by 

maximizing the chance. In the scientific litterature of the 

subject, the resolution and the calculation of such estimators 

assume once again a balanced sampling. We fit the classical 

techniques in the unbalanced case while we limit the 

combination. We have intentionally taken the experimental 

protocols in the case of balanced sampling, proposed by Vidacs 

& Verdamo (2000) and Jennane, Harba & Jacquet (2001), so 

that our results are directly comparable with them without any 

methodological bias. 

In general, we naturally confirmed the theoretical results 

related to maximum likelihood estimator, in particular, the non 

bias asymptotic character and its convergence. The major 

interest of our work is to allow the validation of the simulation 

and the estimation techniques in the general cases. We provide 

quantitative results in the form of confidence intervals, which 

allow to identify the precision of estimators for different size of 

signals and different values of Hurst parameter. We have also 

considered several types of unbalanced sampling, one 

systematic with a periodical sampling, the other is randomly 

chosen with uniformly random sampling. This final analysis 

confirms in particularthe greatest sensitivity (higher bias) of the 

maximum likelihood estimation in the symmetrical case with 

respect to the random method. 
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