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Abstract

In this paper, numericalsolution of fractional partial differential equations is obtained
byfractional differential transform method. The fractional derivatives are described
using Caputo sense; the method provides the solution in the form of a rapidly convergent
series. From the result, it has been seen that the proposed method is very effective.

1. Introduction

Various phenomena in physics, like diffusion in a disordered or fractal medium, or in
image analysis, or in risk management have been modeled by means of fractional partial
differential equations. The fractional partial differential equations appear very frequently
in physical sciences. Literatures (Momani and Odibat, 2007) discuss the linear and
nonlinear partial differential equations of fractional order. Numbers of physical
phenomena are governed by such equations (Podlubny, 1999; Rossikhin and Shitikova,
1997; Mohyud-Din and Noor 2008; Mohy0000ud-Din et al., 2009, 2010). Several
techniques including decomposition, variational iteration, homotopy analysis, variation
of parameters have been applied to solve such problems (Rossikhin and Shitikova, 1997;
Mohyud-Din and Noor, 2008; Mohyud-Din, et al., 2009, 2010). The differential
transform method was first introduced by Zhou (1986) who solved linear and nonlinear
initial value problems in electric circuit analysis. This method constructs an analytical
solution in form of polynomial expressions such as Taylor series expansion. But
procedure is easier than the traditional higher order Taylor series method, which requires
symbolic computation of the necessary derivatives of the data functions. The Taylor
series method is computationally expensive for higher orders. Arikoglu and Ozkol
implement a new analytical technique for the field of fractional calculus, for solving
fractional type differential equations that will be named as Fractional Differential
Transform Method (FDTM).

In this study, we will use FDTM to solve the fractional partial differential equations
(FPDEs) of the form

AD‘;‘u(t, x) + BLu(t, x) + Cu(t, x) = f(t,x),

Whereis a parameter describing the fractionalderivative andt € (0,t,),0 <x< 1 and
x € (=L1) cR, A B,C € R™™", are constant matrices, u, f:[0,t.] X [—[, 1] > R™ we
are interested in cases where at least one of the matricesAorBis singular. The two special
casesA = 0 or B = Olead to ordinary differential equations or FDAEs which are not
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considered here. Therefore in this paper we assume that none
of the matrices 4 or B is the zero matrixes.

2. Basic Definitions

We give some basic definitions and properties of the
fractional calculus theory (Caputo, 1967) which are used
further in this paper.

Definition 1. A real function f(x),x > 0is said to be in
the space C,, ueR if there existsa real number P > u such
that f(x) = xPf;(x) where f;(x)eC[0,). Clearly C, < Cg
ifu<p.

Definition 2. A function f(x),x > 0 is said to be in the
spaceC™, meNU{0} if f™ € Cy-

Definition 3.The Riemann-Liouville fractional integral
operator of order a «> Qof a function, f € C,,,u = —1 is
defined as [31]

(7 f)()——j(x DT DT, x>a (1)

ra)?
(721) ) = £ (). @)

Properties of the operator /* can be found in (Caputo,

1967), we mention only the following:
Forf€C,, u=-1,¢,=0,andY > —1

) (J2IE )0 =(JT7 F) () )

b (2T f) () =(J25f) () )
ey THD .
X e ®)

The  Riemann-Lowville derivative has  certain
disadvantages when trying to model real-world phenomena
with fractional differential equations. Therefore, we shall
introduce a modified fractional differential operator D
proposed by Caputo (1967) inhis work on the theory of
viscoelasticity.

Definition 4. The fractional derivative of f(x) in the
Caputo sense is defined as

(DZf) (x) = (]m;fxpmf) (x) = r(ml—a) f;(x _
O Md (6)

form—1<«x<m,me€N,x >0, feCT;.

Lemma 1. If -1 <x<m , m€N and feC]', u= -1,
then

m-1 )k

W) (JIDI /) ()= /() Zf() . az0 ()

) (DS F) )= £ () ®)

3. Fractional Two-Dimensional
Differential Transform Method

DTM is an analytic method based on the Taylor series
expansion which constructs an analytical solution in the form
of a polynomial. The traditional high order Taylorseries
method requires symbolic computation. However, the DTM
obtains a polynomial series solution by means of an iterative
procedure. The proposed method is based on the combination
of the classical two dimensional DTM and generalized
Taylor’s Table 1 formula. Consider a function of two
variablesu(x, y)and suppose that it can be represented as a
product of two single-variable functions, that is,u(x,y) =
f(x)g(y) Based on the properties of fractional two-
dimensional differential transform (Jang, 2001; Kangalgil,
2009; Ravi, 2009; Arikoglu, 2007), the functionu(x, y)can be
represented as:

u@y) = ) ElG =5 ) 6o = 7o)
k=0 h=0

= Yk=0Lh=o Uoc,ﬁ(kﬁ h) (x — Xo)ka - YO)hﬁ (9)

Where 0 <o, f < 1, Uy g(k, h) = F(k)Gg(h), is called
the spectrum of u(x, y). The fractional two-dimensional

differential transform of the function u (x, y) is given by

1 ke h
U“‘B (k,h) = I'(ak+1)T(Bh+1) [(D’?O) (Dg") ux, y)](xo Yo) (10)

Where (D))" = D - D& - DZ
N R
In case of x=1 and 8 =k1 the Fractional two dimensional
differential transform (9) reduces to the classical two-
dimensional differential transform. Let Uy g (k, h), w5 (k, h)
and Vi p(k,h) are the differential transformations of the
functions u(x,y),w(x,y) and v(x,y), from Equations (9)

and (10), some basic properties of the two-dimensional
differential transform are introduced in Table 1.

Table 1. The operations for the two-dimensional differential transform method.

Original function

Transformed function

u(x,y)=v(x,y)iw(x,y) (k h)
u(x,y):/]v(x,y) a,/?( >
u(x,y) = v(x, y)w(x,y)

) =4 Va,
Uk, h) =

s k) £ W, 5 (k. h)
5 (k1)

K02t Vo p(r,h — ) Wi g (k — 1, 5)
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Original function Transformed function

1, k=nh=m

u(®,y) = (X — %)™ — yo)™* Usp (k1) = 6k —=)6(h —m) = {0, % = 0 b =5 6

I(atk+1)+1)

u(x,y) = Dy v(x,y) Usp(k,h) = —F @t D Vep(k +1,h)
rh+1)+1
u(x,y) = D v(x,y) Us g, h) = (l;(([f;:—Jr);)r)vx_,;(k, h+1)
U = Fatk+1)+1)r@EGh+1)+1)
u(x,y) = DX DS v(x,y) wplleh) = I'(ak + 1) T'(Bh+ 1)
Vaplk +Lh+1), 0<x,f<1

u(x, y) = v(x, y)w(x, y)q(x,y)

Uil ) = iZi S g 5 P W 07— )
r=0 _

5=0 p=0

Then, the fractional differential transform (10) becomes;

_ 1 ak(nB h
U°<.l3 (k,h) = F'(ak+1)I'(Bh+1) [on (DJ/O) u(x, y)](xo Yo) (b

4. Numerical Example

Here, FDTM will be applied for solving fractional partial

Where
fi = (x* — 1) cos(t) — 6xe™t,
fo = —6xe " —2(x3—x)e”t, (14)

With the exact solution

(u(t, x)) _ ( (x3 —x)et )’ (15)

differential equation. The results reveal that the method is v(t, x) (x* — 1)cost

very effective and simple.

Example. Consider the fractional partial differential Equivalently, Equation (12) can be written as
equation (FPDE) Dfu—uy,+utv=Ff,
1 0\/(Diu =1 0\ (Uxx 1 1y _(f o _
(1 0) (D:‘v)+(—1 0) (Uxx)+(—1 0) () = (fz)’(lz) Dt = Uy —u = fo. (16)
xe[-11], t € [0, ), 'By using the basic deﬁnlitlon of the two—d1mens1opal
differential transform and taking the transform of Equation
With initial values (16) can obtain that
u(0,x) =x3—x, v(0,x)=x*—-1. (13)

D Ua (e + 11) = (h+ Dk + 2V (k h+2) + Uy (k, ) + Viey U, ) = Fy(k, ),

KU (e + 1,1 = (4 Dk + DUy (b h+2) = Ua (k) = By, ), (17)

The Taylor series of functions f; and f, about x = 0,t = 0 are

1 1 1 1 1
=—1—-6x+-t?+6tx —3xt? +xt3 — —t* +x* ——xt* + —t° — - x*t? + —xt°
f Ty X T XL Tyt T T Tt T2 20"

Lortot e
120" T840”

1
t8 + —x*tt — xt® 4+ -,

40320 ' 24 6720
2 1 1 1 1 1 (15
— _ _ 2 __ 3 _ 3 3¢ _ 4 __ 342 5 4343 6 __ 3+4
1z 4x + 4xt — 2xt° — 2x +3xt +2x°t 6xt x>t +3Oxt +3x t 180xt 12x t

1 1 1
t7 _ 3t4 _ t8 — 3t6
260" Te0”* 10080°° 3607 0

From the initial condition given by Equation (13), we obtained:

1, h=3
Um(O,h)=5(0,h—3)—6(0,h—1)=y—1, h=1 ,
0, h+#1,3

19
1, h=4 (19

Veer(0,h) = 85(0,h — 4) — 5(0,h) = {—1, h=0
0, h % 0,4
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For each k, A, substituting equations (19) into equation (17) and by recursive method, the values U(k,%) and V(k, h) can

be evaluated as
U,h) =0 forh #1,3,

U1 =-1, U@0O3)=1  V00)=-1 V(04 =1,
U(1,2) =0,

VOR =0 forh£04,  UA0D=0, UAD =5,

-1
U(1,3) = @D U(1,4) =0, U(1,5)=0, U(L6)=0, U(L7) =0, U(L8) =0,
U(1,13) =0, V(1,0) =0,

U(1,9) =0,U(1,10)=0, U(1,11) =0, U(1,12)=0,
-2+ 2lN(a+1) —5+4T(a+ 1)

U(Z,O) = 0, V(l,l) = W )

U2,2) =0, U(2,3)=#€f51), V(1,3) =

2-2IM(a+1)
W, U(2,4) = 0,

U(2,6) =0, V(1,6) =0, U(2,7) =0,

U@,5) =0 V(5 =0,
V(1,9 =0, U(210) =0,

V(1,4) =0,
V(1,7) =0,

U8 =0 V(18 =0 U209 =0,

U211 =0, V(11)=0, UGB =0 V(20 = % V(1) =0,
_2—4F(a+1)+F(2a+1)

V(23) = rQa+1)

U(3.3) = —TI'(2a +1}23—a:_+1)21"(a + 1)'U(3’4) —o,

V(1,10) = 0,

V(2,4) = -

)

V(2,2)=0, U@32) =0,

UG = —11+16I' (e + 1) — 2I'2a + 1)
T rGa+1)

’

U@B5) =0, V(2,6) =0, U(3,6) =0,

v(z4) = > UuB4) =0 V(25 =0,

V(28)=0, U@B38) =0 V(29=0  UGB9 =0,

1) = 2I(3a + 1) — 24T(2a + 1) — 51 + 84T (a + 1)
T 3r(4a + 1) ’

V(2,7) =0, UB,7)=0,

U(4,0) =0, V(3,0) =0,

T(3a+ 1) + 12I'(2a + 1) — 96T (a + 1) + 66
( ) ( ) @+1) U(4,2) =0 V(32) =0,

e = 3r(Ba+ 1) ’
U(43) = rGa+1)— 31”3(1%?4:(- i)l-l)- 6I'(a+1) — 3, U4 =0, V3.4 =0,
V3 - —IGBa+1)+ 62(1%:?1; 12M(a + 1) + 6 s -0 VGS) 0

U46)=0, V@6)=0, U@®7) =0, V@3B7)=0  U®50) =0, V(4,0)=;—4,

—T'(4a + 1) + 16I'(3a + 1) — 84T (2ar + 1) + 240 ( + 1) — 138
( ) ( ) ( ) (a+1) UG =0,

ve.L = 6I'(5a + 1)
—T(4a+1) — 16T Ba + 1) + 192T'(2a + 1) — 672I(a + 1) + 408
—T(4a +1) + 4T Ba + 1) — 12T'2a + 1) + 24T (a + 1) — 12

T(4a+1)—8TBa + 1) + 24T(2a + 1) — 48T (a + 1) + 24 1
V3 = 12l (da + 1) , V@Y =2
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UGS =0, V(@45 =0 U®O=0 VG50)=0 U622 =0 V(52 =0
[(5a + 1) — 20T (4a + 1) + 140T(3a + 1) — 600T(2a + 1) + 1560T(a + 1) — 870

v = 307 (6a + 1) ’
V(5.1 = F(5a + 1) 4+ 20T (4a + 1) — 320T(3a + 1) + 1680I'(2a + 1) — 4800 (a + 1) + 2760
T 60r(5a + 1) ’

12T(5a + 1) — 60T'(4a + 1) + 240T(3a + 1) — 720T'(2a + 1) + 1440T(a + 1) — 720
7207 (6a + 1) ’

—12T'(5a + 1) + 120T(4a + 1) — 480T(3a + 1) + 1440T(2a + 1) — 2880T(a + 1) + 1440

U(6,3) =

V(53) =

Substituting all U(k, h) and V (k, h) into Equation (9), the series solution form will be obtained:

1 —5+4r(a+1) —11+ 16 (e + 1) — 2I'Qa + 1)
u(t,x) = (-1+ t* + 2
ra+1) ra+1) rGa+1)
2F(3a +1)—24rQa +1) — 51 + 84T (a + 1)
3r(4a + 1)
N —I(4a+1)+16I'Ga+1) —84I'Qa + 1) + 240I (a + 1) — 138 50
6I'(5a + 1)
F(Sa +1) — 20 (4a + 1) + 140r (3a + 1) — 600 2a + 1) + 1560I ( + 1) — 870 P
307 (6a + 1) X
1 —14+2IMN(a+1 —TI'2a+1)—1+4+2IN(a+1
(- - ( ) o ( ) ( )t3“
r(a+1) rCa+1) rGa+1)
F(3a+1)—3F(2a+1)+6F(a+1)—3 p4a
3ar(4a +1)
N —I(4a+1)+4rGa+1)—12rQa+1) + 24r'(a +1) — 12 5
12r(5a + 1)

| 12M(a+1) = 607 (4a +1) +2407 B +1) — 7207 (2 + 1) + 14407 (a + 1) — 720
7207 (6a + 1)

—2+20@+1) , TGa+1)+12MQa+1) — 96 +1) +66

1 1
v(t,x) = =14+ t%% — —t** + (

2 24 r@+1) 3r(Ba+ 1)
o ~T(a+1) 167 Ga +1) + 1927 2a +1) — 6720 (a +1) +408 ,
12 (4a + 1)
| T(5a+1) + 207 (4a +1) — 3207 Ba + 1) + 16807 (2 + 1) — 48007 (a +1) +2760 )
60I (5a + 1) x
2-20(@+1) , 2-4M@+D+TQa+1) ,, —TGa+1)+6MQa+1)—12M(a+1)+6
I(a+1) rCa+1) 3r(3a + 1)
F(4a +1)—-8Ba+1)+24rRa+1) — 48 (a + 1) + 24 p4a
12l (4a + 1)

. —12T(5a + 1) + 120T(4a + 1) — 4807 (3a + 1) + 1440T(2a + 1) — 2880T'(a + 1) + 1440
7207 (5a + 1)

505

1 1
)3 1 — =20 4 — 42 4 )t 4.
e )x® + ( Sttt )x* +

For special casex= 1,the solution will be as follows:

6a+.__)x3 ,

720T (5a + 1) e

3a

3a

31
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u(t,x)=(-1+4+t+

+(1-t+

2

_ 3N __12
=(x—x%)( 1+t+2t

v(t,x) =(—1+

1 1
=|-1+-t?——t* ) (
( * 24t T

=(x4—1)(

2 24

1 1
1—ct?+—t*+-

2 24

This is exact solution.
u(t, x) and v(t, x) are calculated for different values of «« Numerical comparisons are given in Table 2 and Table 3.

ltz _it‘}

b

1 -1 1 -1 1
T2 4 T34 T ph g T 454 T 464 )3
Sttt + +oe)x

720

1, -1 1 -1
ot bttt ot

24 120

2 24

1 1
1—ct?+ —t* 4 -

24

) = (x* — 1)cost .

1 1
1—ct? 4+ —t*+ -

-1 1 -1 1 -1
— 23—t — 5 — b 4
+ + 7 + 70 + +..)x

+) =3 —x)e ™,

Table 2. Numerical solution of u(t, x).

«=0.5 «=0.75
x t
Urprm Urprm Urprm Ugxact
0.01 0.01 —0.009006957831 —0.009664785809 —0.009899508287 —0.009899508287
0.02 0.02 —0.01733003467 —0.01889021902 —0.01959613188 —0.01959613188
0.03 0.03 —0.02527362310 —0.02777269783 —0.02908716398 —0.02908716398
0.04 0.04 —0.03293599892 —0.03635611297 —0.03837008704 —0.03837008704
0.05 0.05 —0.04036801891 —0.04466865941 —0.04744256754 —0.04744256754
0.06 0.06 —0.04759969185 —0.05273070525 —0.05630245088 —0.05630245088
0.07 0.07 —0.05464965291 —0.06055793814 —0.06494775631 —0.06494775631
0.08 0.08 —0.06152952538 —0.06816294476 —0.07337667215 —0.07337667215
0.09 0.09 —0.06824624532 —0.07555611495 —0.08158755085 —0.08158755085
0.1 0.1 —0.07480342684 —0.08274620662 —0.08957890439 —0.08957890439
Table 3. Numerical solution of v(t, x).
«= 0.5 «=0.75
X t
VrpTM VrprmM VrprmM VExact
0.01 0.01 —0.9952761913 —0.9995558781 —0.9999499904 —0.9999499904
0.02 0.02 —0.9908314500 —0.9987747038 —0.9997998467 —0.9997998467
0.03 0.03 —0.9866205581 —0.9977883191 —0.9995492242 —0.9995492242
0.04 0.04 —0.9826403488 —0.9966434019 —0.9991975487 —0.9991975487
0.05 0.05 —0.9788962184 —0.9953670138 —0.9987440182 —0.9987440182
0.06 0.06 —0.9753969431 —0.9939774958 —0.9981876033 —0.9981876033
0.07 0.07 —0.9721529476 —0.9924883569 —0.9975270492 —0.9975270492
0.08 0.08 —0.9691755603 —0.9909100699 —0.9967608777 —0.9967608777
0.09 0.09 —0.9664766420 —0.9892510351 —0.9958873893 —0.9958873893
0.1 0.1 —0.9640683877 —0.9875181495 —0.9949046663 —0.9949046663
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0.01

Figure 4. For x= 1, values of v(t, x) by FDTM.
Figure 1. Values of exact solution u(t, x).

Figure 2. For x= 1, values of u(t, x) by FDTM. Figure 5. For x= 0.5, values of u(t,x) by FDTM.

0.01

Figure 3. Values of exact solution v(t, x). Figure 6. For = 0.5, values of v(t, x) by FDTM.
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0.01

Figure 7. For x= 0.75, values of u(t,x) by FDTM.

Figure 8. For x= 0.75, values of v(t, x) by FDTM.

5. Conclusion

In this study, application of FDTM to fractional partial
differential equation has been presented successfully. The
results show thatFDTM is a powerful and efficient technique
for finding analytic solutions for partial differential equations
of fractional order. The obtained results reinforce the
conclusions made by many researchers about the efficiency
of FDTM.
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