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Abstract 
In this paper, a perturbing nonlinear cubic non-homogeneous Schrodinger equation, 

 is 

studied under limited time interval, complex initial conditions and zero Neumann 

conditions. The perturbation method and Picard approximation together with the 

eigenfunction expansion and variational parameters methods are used to introduce an 

approximate solution for the perturbative nonlinear case for which a power series solution 

is proved to exist. Using Mathematica, the solution algorithm is tested through computing 

the possible orders of approximations. The method of solution is illustrated through case 

studies and figures. Effect of time interval (T) had been studied through cases studies and 

figures. 

1. Introduction 

The nonlinear Schrodinger equation (NLS) is the principal equation to be analysed and 

solved in many fields, see [1-5] for examples. The NLS equation arises in many 

applications [6-8] such as wave propagation in nonlinear media, surface wave in 

sufficiently deep waters and signal propagation in optical fibbers. The NLS equation is one 

of the most important models of mathematical physics arising in a great array of contexts 

[9, 10] as for conductor electronics, optics in nonlinear media, photonics, plasmas, 

fundamentals of quantum mechanics, dynamics of accelerators, mean-field theory of 

Bose-Einstein condensates and bio-molecule dynamics. 

In the last ten decades, there are a lot of NLS problems depending on additive or 

multiplicative noise in the random case [11, 12] or a lot of solution methodologies in the 

deterministic case. Wang M. et al [13] obtained the exact solutions to NLS equation 

using what they called the sub-equation method. They got four kinds of exact solutions 

of the equation for which no sign to the initial or boundary conditions type is made. Xu L. 

and Zhang J.[14] followed the same previous technique in solving the higher order NLS. 

Sweilam N. [15] solved a nonlinear cubic Schrodinger equation which gives rise to 

solitary solutions using variational iteration method. Zhu S. [16] used the extended 

hyperbolic auxiliary equation method in getting the exact explicit solutions to the higher 

order NLS without any conditions. Sun J. et al [17] solved anNLS equation with an 

initial condition using Lie group method. By using coupled amplitude phase formulation, 

Parsezian K. and Kalithasan B. [18] constructed the quartic anharmonic oscillator 

equation from the coupled higher order NLS equation. Two-dimensional grey solitons to  
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the NLS equation were numerically analysed by Sakaguchi H. 

and Higashiuchi T. [19].  

The generalized derivative NLS equation was studied by 

Huang D. et al [20] introducing a new auxiliary equation 

expansion method. 

2. The General Linear Case 

Consider the non homogeneous linear Schrodinger 

equation: 

� ����,���� 	 	� �����,��
���  ����, �� 	 	�����, ��, ��, �� ∈

�0, ��	x	�0,∞�         (1) 

where ���, ��  is a complex valued function which is 

subjected to: 

�. �. :	���, 0�  	����� 		 ������,        (2) 

�����is a real valued function, 

�. �. :	��0, ��  	���, ��  0.          (3) 

Let ���, ��  	 ��, �� 	 	�!��, ��,  , !  are real valued 

functions. The following coupled equations are got as follows: 

�"��,��
��  	� ��#��,��

��� 		$���, ��,          (4) 

�#��,��
��  	� ��"��,��

��� 		$���, ��,		        (5) 

Where  

 and all corresponding other I.C. and B.C. 

are zeros. 

Eliminating one of the variables in equations (4) and (5), 

one can get the following independent equations: 

�%#��,��
��% 	 �

&�
��#��,��
���  �

&� '	���, ��,	        (6) 

�%"��,��
��% 	 �

&�
��"��,��
���  �

&� '	���, ��,	        (7) 

Where  

 '	���, ��  �(���,��
�� ) 	� ��(*��,��

��� ,	         (8) 

 '	���, ��  � ��(���,��
��� 		�(*��,���� ,	          (9) 

Using the eigenfunction expansion technique[24], the 

following solution expressions are obtained: 

 ��, ��  	∑ �,���sin	�,01
2
,34 ��,          (10) 

!��, ��  	∑ 5,���sin	�,01
2
,34 ��,          (11) 

Where�,��� and 5,��� can be got through the applications 

of initial conditions and then solving the resultant second 

order differential equations using the method of variational of 

parameter[17]. The final expressions can be got as the 

following : 

�,���  6�� 		7����8 sin 9,� 		6�� 		�����8 cos9,�    (12) 

5,���  6�< 		7����8 sin 9,� 		6�= 		�����8 cos9,�   (13) 

Where  

9,  	��,01 �
�                 (14) 

7����  	 �>? @ 
'�, ��	; B� sin�9,�� C�,	        (15) 

�����  	D�>? @ 
'�, ��	; B� sin�9,�� C�,        (16) 

7����  	 �>? @ 
'�, ��	; B� cos�9,�� C�,	       (17) 

�����  	D�>? @ 
'�, ��	; B� cos�9,�� C�,	       (18) 

In which 

 '�,��	; B�  	 �1 @ '� ��	, ��sin	�
,0
1 ��C�,	      (19) 

 '�,��	; B�  	 �1 @ '� ��	, ��sin	�
,0
1 ��C�,      (20) 

The following conditions should also be satisfied: 

�� 	 �1 @ �����1
4 sin E,01 �F C� ) ���0�,      (21) 

�= 	 �1 @ �����1
4 sin E,01 �F C� ) ���0�.	     (22) 

Finally the following solution is obtained: 

���	, ��   ��	, �� 	 	�!��	, ��,          (23) 

Or 

|���	, ��|�   ���	, �� 	 	!���	, ��.      (24) 

3. The Non- Linear Case 

Consider the non-homogeneous cubic non-linear 

Schrodinger equation: 

� ����,���� 	 	� �����,��
��� 	 	H|���, ��|����, �� 		 �I���, �� 

����, �� 	 	�����, ��,			��, �� ∈ �0, ��J�0,∞�   (25) 

Where ���	, ��  is a complex valued function which is 

subjected to the initial and boundary conditions mentioned 

before in equations (2), (3) respectively. 

Lemma [21-23] 

The solution of equation (25) with the constraints (2), (3) is 

a power series in H if exist. 

Proof 

at H  0, the following non-homogenous linear equation is 

got: 

� ��K��,���� 	 	� ���K��,��
��� 	 �I�4��, ��  ����, �� 	 	�����, ��,
��, �� ∈ �0, ��J�0,∞�           (26) 
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�4��	, �� = 	 4��	, �� + 	�!4��	, ��        (27) 

Where, 

 4��	, �� = LDM� ∑ �4,���sin	�
,0

1
2
,34 ��      (28) 

!4��	, �� = LDM� ∑ 54,���sin	�
,0

1
2
,34 ��      (29) 

Where �4,��� and 54,��� can be calculated as the linear 

case equations (12), (13) respectively. 

Following Pickard approximation equation (25) can be 

rewritten as: 

� ��?
��,��

��
+ 	� ���?��,��

���
	+ �I�,��, �� = ����, �� + 	�����, �� −

H|�,D���, ��|��,D���, ��,				B ≥ 1       (30) 

atB = 1, the iterative equation takes the form 

� ��*
��,��

��
+ 	� ���*��,��

���
	+ �I����, �� = ����, �� + 	�����, �� −

H|�4��, ��|��4��, �� = 	HP���	, ��       (31) 

which can be solved as a linear case with zero initial and 

boundary conditions. The following general solution can be 

obtained: 

 ���	, �� = LDM� ∑ ��4,��� + H��,�������sin	�
,0

1
2
,34 ��, (32) 

!���	, �� = LDM� ∑ �54,��� + H5�,�������sin	�
,0

1
2
,34 ��,  (33) 

����	, �� =  ���	, �� + 	�!���	, ��,       (34) 

����	, �� = ���4� + 	H�����,         (35) 

At= 2 , the following equation is obtained: 

� ���
��,��

��
+ 	� ������,��

���
	+ �I����, �� = ����, �� + 	�����, �� −

H|����, ��|�����, �� = 	HP���	, ��      (36) 

Which can be solved as a linear case with zero initial and 

boundary conditions. The following general solution can be 

obtained: 

����	, �� = ���4� + 	H����� +	H������ +	H<���<� +	H=���=�,  (37) 

Continuing like this, one can get: 

�,��	, �� = �,�4� + 	H�,��� +	H��,��� +	H<�,�<� +⋯+
		H�,ST��,�,ST�.        (38) 

As B → ∞ , the solution (if exists) can be reached as 

���	, �� = 	 lim,→2 �,��	, ��. Accordingly the solution is a 

power series in H.
 

According to the previous lemma, one can assume the 

solution of equation (25) as the following: 

���	, �� = 	∑ H,2
,34 �,��	, ��        (39) 

Let���	, �� = 	 ��	, �� + 	�!��	, ��,  	, !:	 are real valued 

functions. The following coupled equations are got: 

�"��,��

��
= � ��#��,��

���
+ H� � +	!�� − I! − ����	, ��,  (40) 

�#��,��

��
= −	� ��"��,��

���
− H� � +	!��! − I + ����	, ��, (41) 

Where  ��, 0� = �����, !��, 0� = �����,  and all 

corresponding other I.C. and B.C. are zeros. 

as a perturbation solution, one can assume that The prototype 

equations to be solved are: 

�"X��,��

��
= 	� ��#X��,��

���
+	$Y

���, � ≥ 1         (42) 

�#X��,��

��
= 	� ��"X��,��

���
+	$Y

���, � ≥ 1         (43) 

Where  Y��, 0� = ZY,4�����, !Y��, 0� = ZY,4�����,  and all 

other corresponding initial conditions are zeros. 

$Y
���, $Y

���are functions to be computed from previous steps. 

Following the solution algorithm described in the previous 

section for the linear case, the following final results are 

obtained. 

1. The absolute value of zero order approximation is:  

[��4���	, ��[
�
=	 4

� +	!4
�         (44) 

where 

 4��	, �� = LDM� ∑ �4,���sin	�
,0

1
2
,34 ��       (45) 

!4��	, �� = LDM� ∑ 54,���sin	�
,0

1
2
,34 ��      (46) 

$� =	−	LM�����	, ��        (47) 

$� =	LM�����	, ��         (48) 

2. The absolute value of first order approximation is:  

[������	, ��[
�
= [��4���	, ��[

�
+ 2H� 4 � + !4!�� +

	H�6 �
� +	!�

�8            (49) 

where 

 ���	, �� = LDM� ∑ ��,���sin	�
,0

1
2
,34 ��      (50) 

!���	, �� = LDM� ∑ 5�,���sin	�
,0

1
2
,34 ��      (51) 

$� =	LD�M�6 4
< +	 4!4

�8         (52) 

$� =	LD�M�6−	!4
< −	!4 4

�8       (53) 

3. The absolute value of second order approximation is: 

[������	, ��[
�
= [������	, ��[

�
+ 2H�� 4 � + !4!�� +

	2H<� � � + !�!�� + H=6 �
� + !�

�8     (54) 

Where 

 ���	, �� = LDM� ∑ ��,���sin	�
,0

1
2
,34 ��       (55) 

!���	, �� = LDM� ∑ 5�,���sin	�
,0

1
2
,34 ��       (56) 

$� =	LD�M��3 4
� � + 2 4!4!� +		 �!4

��    (57) 

$� =	LD�M�6−3!4
�!� − 2!4 4 � −		!� 4

�8   (58) 
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4. Picard Approximation 

To validate our previous results, in the absence of the exact 

solution, let us follow another approximation technique. The 

Picard approximation is considered in this section. 

Solving equation (25) with the same conditions (2) and (3) 

and following the Picard algorithm, which means that we 

solve the linear case iteratively[24]. This means that equation 

(25) can be rewritten as: 

� ��
��,��
�� 	 	� �����,��

��� 	 �I���, ��  )H|���, ��|����, �� 	
����, �� 	 	�����, ��,				��, �� ∈ �0, ��J�0,∞�     (59) 

Let ���	, ��  	 LDM�� ��	, �� 	 	�!��	, ���,  	, !:	  are real 

valued functions. The following coupled equations are got: 

�"��,��
��  	� ��#��,��

��� 	 	H� � 		!�� ) 	I! ) ����	, �� (60) 

�#��,��
��  )	� ��"��,��

��� ) H� � 		!��! ) 	I! 	 ����	, �� (61) 

Where  ��, 0�  �����, !��, 0�  �����,  and all other 

corresponding initial and boundary conditions are zeros. 

Following the solution algorithm described, the following 

final results are obtained. 

1. The absolute value of Zero order approximation is similar 

to perturbation method. 

2. The absolute value of First order approximation: 

� ��*��,���� 	 	� ���*��,��
��� 	 �I����, ��  )H|�4��, ��|��4��, �� 	

����, �� 	 	�����, ��, ��, �� ∈ �0, ��J�0,∞�   (62) 

With initial conditions ����, 0�  	����� 	 	������  and 

boundary conditions���0, ��  	����, ��  0. 

[������	, ��[� 	 �� 		!��          (63) 

 ���	, ��  LDM� ∑ ��,���sin	�,01
2
,34 ��      (64) 

!���	, ��  LDM� ∑ 5�,���sin	�,01
2
,34 ��      (65) 

$� 	)	LM�����	, �� 	 LD�M�H� 4< 		 4!4��   (66) 

$� 	LM�����	, �� )	LD�M�H6!4< 		!4 4�8    (67) 

3. The absolute value of Second order approximation: 

� �����,���� 	 	� ������,��
��� 	 �I����, ��  )H|����, ��|�����, �� 	

����, �� 	 	�����, ��, ��, �� ∈ �0, ��J�0,∞�     (68) 

with initial conditions ����, 0�  	����� 		 ������  and 

boundary conditions ���0, ��  	����, ��  0. 

[������	, ��[� 	 �� 		!��           (69) 

 ���	, ��  LDM� ∑ ��,���sin	�,01
2
,34 ��       (70) 

!���	, ��  LDM� ∑ 5�,���sin	�,01
2
,34 ��       (71) 

$� 	)	LM�����	, �� 	 LD�M�H� �< 		 �!���    (72) 

$� 	LM�����	, �� ) LD�M�H6!�< 		!� ��8     (73) 

5. Case Studies 

To examine the proposed solution algorithm, we calculated 

many cases at different conditions of non-homogeneous term 

and initial conditions too.  

5.1. Perturbation Method 

We illustrate here some cases studies (Fig. 1 – Fig. 4) 

Taking the case ����, ��  ]�, ����, ��  0 and ����� 
]�LD�	, �����  	0, the following selective result for the first 

and second order approximations are got: 

 

Figure 1. The first order approximation of [����[  at H  1	, I  1 

and�, ]�, ]�  1,�  10	with considering only one term on the series (M=1) 

Taking the case ����, ��  ]� sin ET01 F �	, ����, ��  0 

and �����  ]�LD�	, �����  	0, the following selective result 

for the first and second order approximations are got: 

 

Figure 2. The first order approximation of [����[ at H  0.2	, I  1 and 

�, ]�, ]�  1,�  10	with considering only one term on the series (M=1) 

Taking the case ����, ��  ]�	, ����, ��  0 and ����� 
]� sin ET01 F �	, �����  	0, the following selective result for 

the first and second order approximations are got: 
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Figure 3. The first order approximation of [����[ at H = 0.2	, I  0 and 

�, ]�, ]�  1,�  10	with considering only one term on the series (M=1) 

 
Figure 4. The second order approximation of [����[ at H  0.2	, I  0 and 

�, ]�, ]�  1,�  10	with considering only ten term on the series (M=10) 

Note: a lot of other case studies had been studied with 

combinations between constant, sinusoidal and exponential 

functions for both non-homogenous and initial conditions.  

5.2. Picard Approximation 

We illustrate here some cases of the case studies (Fig. 5 – 

Fig. 8) 

Taking the case����, ��  ]�	, ����, ��  0and�����  ]�	,
�����  	0, the following selective results for the first and 

second order approximations are got: 

 
Figure 5. The second order approximation of [����[ at H  0.2	, I  0 and 

�, ]�, ]�  1,�  10	with considering only one term on the series (M=10) 

Taking the case ����, ��  ]�LD� , ����, ��  0 and 

�����  ]�	LD�	, �����  	0, the following selective results for 

the first and second order approximations are got: 

 
Figure 6. The first order approximation of [����[  at H  1, I  1  and 

�, ]�, ]�  1,�  10	with considering only one term on the series (M=1) 

Taking the case ����, ��  ]�, ����, ��  0 and ����� 
]�	 sin ET	01 F �	, �����  	0, the following selective results for 

the first and second order approximations are got: 

 
Figure 7. The first order approximation of [����[ at 		H  0.2, I  0 and 

�, ]�, ]�  1,�  10	with considering only one term on the series (M=1) 

Taking the case����, ��  ]�LD� , ����, ��  0 and����� 
]�	 sin ET	01 F �	, �����  0, the following selective results for 

the first and second order approximations are got: 

 
Figure 8. The first order approximation of [����[ at 		H  0.2, I  1 and 

�, ]�, ]�  1,�  10	with considering only ten term on the series (M=1) 
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Note: a lot of other case studies had been studied with 

combinations between constant, sinusoidal and exponential 

functions for both non-homogenous and initial conditions. 

6. Comparison Between Perturbation 

Method &Picard Approximation 

We are here giving both perturbation and Picard results in 

same graph for some selected cases to compare between two 

methods, (Fig. 9 – Fig. 11) 

Taking the case ����, ��  ]�, ����, ��  0 and ����� 
]�, �����  	0. 

 
Figure 9. Comparison between Picard approximation and Perturbation 

method for first order at H  0.2, I  0 and �, ]�, ]�  1,�  10, �  3 

Taking the case ����, ��  ]�LD� , ����, ��  0  and 

�����  ]�LD� , �����  	0 

 
Figure 10. Comparison between Picard approximation and Perturbation 

method for first order at H  0.2, I  1 and �, ]�, ]�  1,�  10, �  5 

 

Figure 11. Comparison between Picard approximation and Perturbation 

method for first order at H  0.2, I  1 and �, ]�, ]�  1,�  10, �  3 

7. T Study 

We are here examining the behavior of Perturbation method 

and Picard Approximation against different values of T 

through case studies on the same graph. 

7.1. Perturbation Method 

We are here illustrating the effect of the change of the time 

interval T on the solution and showing that through many case 

studies, which we summarize some of them through (Fig. 12 – 

Fig. 14) 

Taking the case ����, ��  ]�, ����, ��  0, ����� 
]�, �����  	0, the following selective results for the first and 

second order approximations are got: 

 
Figure 12. The first order approximation of [����[ atH  0.2 ,	I  0and 

�, ]�, ]�  1,_  10, �  4	 for different values of T =10, 20 and 60 

respectively 

 
Figure 13. The second order approximation of [����[  at H  0.2  , 	I 
0and�, ]�, ]�  1,_  10, �  4	for different values of T =10, 20 and 60 

respectively 

Taking the case ����, ��  ]�LD� , ����, ��  0	, ����� 
]�	 sin ET01 �F , �����  	0 , the following selective result for 

the first and approximation are got: 

 
Figure 14. The first order approximation of [����[ at 	H  0.2 ,	I  1and 

�, ]�, ]�  1,_  1, �  6	 for different values of T =10, 20 and 60 

respectively 
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It is clear from case studies that as T increase from 

� = 10, �  20, �  	60 the magnitude of ���, �� decrease 

accordingly. 

7.2. Picard Approximation 

We are here do study the effect of change of the time 

interval T on the solution through many case studies. Some of 

them are illustrated (Fig. 15 – Fig. 16) 

Taking the case ����, ��  ]�, ����, ��  0	, ����� 
]�, �����  	0  and following the algorithm, the following 

selective result for the first and second order approximations 

are got: 

 

Figure 15. The second order approximation of [����[ at 	H  0.002 ,	I 
0and �, ]�, ]�  1,_  10, �  4	for different values of T =10, 20 and 60 

respectively 

Taking the case ����, ��  ]� sin ET	01 �F , ����, ��  0	,	 
�����  ]�LD� , �����  	0  and following the algorithm, the 

following selective result for the first approximation are got: 

 
Figure 16. The first order approximation of [����[ at 	H  0.2 ,	I  1and 

�, ]�, ]�  1,_  1, �  6	 for different values of T =10, 20 and 60 

respectively 

It is clear from case studies that as T increase from 

�  10, �  20, �  	60 the magnitude of ���, �� decrease 

accordingly. 

8. Conclusions 

The stability of the solution of the nonlinear cubic 

non-homogeneous Schrodinger equation is highly affected in 

the absence of gamma (I). The perturbation method as well as 

the Picard approximation introduce approximate solutions for 

such problems where second or third order of approximations 

can be obtained from which some parametric studies can be 

achieved to illustrate the solution behaviour under the change 

of the problem physical parameters. The use of Mathematica, 

or any other symbolic code, makes the use of the solution 

algorithm possible and can develop a solution procedure 

which can help in getting some knowledge about the solution. 
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