International Journal of Mathematical Analysis and Applications

2015; 2(2): 17-26

Published online April 20, 2015 (http://www.aascit.org/journal/ijmaa)

ISSN: 2375-3927

AAS CIT American Association for
) Science and Technology

Intemational Joumal of

Mathematical
Analysis and Applications

Keywords

The Composition Operator,
Hyperbolic Bloch-Type Spaces,
Hyperbolic Spaces,

Lipschitz Continuous

Received: March 17, 2015
Revised: March 31, 2015
Accepted: April 1, 2015

Some Properties of Composition
Operator Acting Between General
Hyperbolic Type Spaces

Alaa Kamal, T. 1. Yassen

Faculty of Science, Department of Mathematics, Port Said University, Port Said, Egypt

Email address
alaa_mohamed1@yahoo.com (A. Kamal), taha_hmour@yahoo.com (T. I. Yassen)

Citation

Alaa Kamal, T. I. Yassen. Some Properties of Composition Operator Acting Between General
Hyperbolic Type Spaces. International Journal of Mathematical Analysis and Applications.
Vol. 2, No. 2, 2015, pp. 17-26.

Abstract

In this paper,we define generalized hyperbolic function classes, we study the composition
operator Cy from Bloch-type B, spaces to Qg spaces and from B, spaces to Qg
spaces. The criteria for these operator to be bounded or compact and Lipschitz continuous
are given. Our study also includes the corresponding hyperbolic spaces.

1. Introduction

Let ¢ be an analytic self-map of the open unit disk D={zOC:|z|<1} inthe complex
plane C. Let H# (D) denote the classes of analytic functions in the unit disc ). The
symbol ¢ induces a linear composition operator C,(f)= fo¢ from H(D) or B(D)

into itself.
The hyperbolic function classes are subsets of the class B(ID) of all analytic functions

Jf in the unit disc ID, such that | £(z)|<1 and the hyperbolic derivative of f [1B(ID)
are defined by f(z)= |f7(Z)|2,
1=[f(2)]
composition f o g satisfies the equality (o) (z)= f" (#(z))|@(z)| which can be
understood as a kind of chain rule. The study of composition operator C o acting on

(cf. [7]). The hyperbolic derivative of the

spaces of analytic functions has engaged many analysts for many years ([2, 3] and others).
The problem of boundedness and compactness of C P has been studied in many

Banach spaces of analytic and hyperbolic functions and the study of such operators has
recently attracted the most attention ( [4, 5, 8, 14, 15] and others). If (X, d) is a metric

space, we denote the open and closed balls with center X and radius 7 >0 by

B(x,r)={y0X :d(y,x)<r} and B(x,r)={y0X :d(x,y)<r}, respectively.

a
A function / HB(D) belongs to & -Bloch space B'.0<a<o i

£ 1Ps, =sup(I=]z )7 | f'(2) < . (1)

z[D

The little @ -Bloch space BB, consisting of all f'[13,, such that
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lim (1= )|/ (2)[F 0 (see[17])

2|17

Definition 1.1 [9] For 0 <a <1, a function f[B(D) is

said to belong to the hyperbolic & -Bloch class 3 Z if
* 2
||f||B* =sup f (z2)(1=]z|")7 < co. @)
a z[D

The little hyperbolic Bloch-type class B ;0 consists of all
£ OB, such that

lim/" (2)(1=| z[")" = 0.

E

Note that when @ =1, 8" is the hyperbolic Bloch class
and B; is the little hyperbolic Bloch class [12]. The
Schwarz-Pick lemma [11] implies BZ = B(D) for all
a =1 with ”f”B’;Sl‘

1/l =SUPJ, 1/ )

If

(I=[z ]

im0 2

la] 17 aOD |

K(g(z,a))dA(z) =0,

then f U QO 40(P,q). where

—-az

=1

1
g(z,a)=log|

zZ—a

og !
FAG

the Green’s function of ) with logarithmic singularity at

a 1.
Also,

$.(2)=

for zOD (see[1]),

a—Zz
1-az’
_(=la)(-]z1)

1-az |

=g (2)F (see[13]),

and the following identity is easily verified:

I£1ly,  =sup [ (£

P+q) aldd

If

. N ED
2)) ————— K(g(z,a))dA(z) =0,
‘J‘?saggi(f()) o]z K(EEONA)

v (=] z])"
@ (1= z|)

(I=1z]*
@ (1] z])

then  f 00 ,0(p.9).
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Let 0<a<1. We can find a natural metric on the
hyperbolic (@ -Bloch class BZ by defining

d(f,g;B*a)FdB; (f>8) Il f=eglls, +1/(0)~g(0) ],

_ f(2) _ g(2)
u O S OF e

|(1=12P)". 3)
2. O, Spaces and Hyperbolic Oy,
Spaces

Definition 2.1([6, 10]) Let K :[0,00) — [0,0) be
right-continuous and
0<p<o,-2<g<o

nondecreasing
and for

function,

given reasonable
function @ :(0,1] - (0,0), an analytic function f in

D is said to belong to the space QO ,(p,q) if

K(g(z,a))dA(z) <o,

(-lg (=) _(d-lal)
(=|zP)  [1-azf

g (2) = (see [13]).

For a0, the substitution z=¢@ (W) results in the
Jacobian change in
dA(w) = ¢,(2) [ dA(2).

Remark 1.1 If w=1, we obtain Q. (p,q) type spaces. If
g=p=2, and a(t)=t, we obtain O .
w(it)=t and K(t)=t", we obtain 0,

measure given by

If g=p=2,
If w=1 and
K(t)=¢', then O =F(p,q,s) classes.

Definition 2.2Let K :[0,0) — [0,00) be right-continuous
and nondecreasing function, 0 < p <o, -2 <g <o and for
given reasonable function @:(0,1] - (0,0),
function f in DD

Or o(P>q) if

an analytic

is said to belong to the space

K(g(z,a))dA(z) < . )

For 2<p<o,-2<g<o, and

f,elO Q;w(p, q), define their distance by
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d(f.8:0o(p-9):=d

P9 (Sl s - gHQK,w(p,q) +] f(0)-g(0) ],

K.
where
1
. . K(g’(z,a)) >
. ,2) = (su 2)=g (2)|” (1-| z|)! —=—""2dA(2))". (5)
b O GRS ()17 (127 )
Definition 2.3A composition operator C;,:IS’; _(,jQ’;w(p,q) is W C(p;Ba - Ok o(P.9) is bounded:
said to be bounded, if there is a positive constant such that C ‘B O .(
. Bag — Ok wlP:q) .
C(ofHQ* ( )S C||f||B* DfDBa 2 ¢ a | 2 w 1520unded.
w(Pa
" - _ ) ()sup M(Hzpqwdmzyw
Definition 2.4 A composition operator C¢.B; - O (P.9) % (1= @lz) )* o (1-| z|)

is said to be compact, if it maps any ball in B *a onto a

pre-compact set in Q1*< o(D:9).
Lemma 2.1 [17] Let 0 <@ < o0, then there exist two

holomorphic maps f, g 1B o such that for some constant
C,

(f (2)+g ()(-|z)*=C>0, foreachzOD.

3. Main Results

Theorem 3.1 Let 0< @ <00,0< p <o00,—-2 < g <oo,
Then the following statements are equivalent:

Moreover, if 0 <a <1, then (1)-(3)are equivalent to
@) C,:B, - Ok o(p.q) is bounded;
5) C(]):B;O - Q;w(p,q) is bounded;

Proof: It is easy to see that (1) implies (2) since
B,,0B,.
Now we show that (2) implies (3). Let fDBa and

fi(2)=f(tz) , 0<t<l, then
1/, I, S1f T, - We
”C¢7f||K,a),p,qS||C¢7””f”Ba for all fOB,,. Let

f, g be two functions from Lemma 1.1, we obtain

£, 0 Ba,o and

assume (2) holds, we have

(Cof) (2)+(Cp) (D= @A) )" =C|@(2)[> 0,  for each zD.

Thus
GOP  (-z) »
b ey a2y KEENUE
<C[ (C,1Y @) +(Ce) @) VL ED k(g2 apdacz)
b B (- 2)
<CUC N mra F1Cof o)
<CIIC,I” (112, +lglg ) <. ©

This estimate together with the Fatou’s lemma, implies that

C, is bounded, so (3) is satisfied.

To prove that (3) implies (4). Let 0<a <1 and

Irealy, =L eo @)

fDB*a, Then

(I=1z]*

(=) 2)) K(g(z,a))dA(z)
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LG @D Iger LI K eGandae)

sifin [ — 2O Q2D gz apaace),

a0 (1= @z)* )" @ (1= z))

and therefore C,: B, - Q,*(,w(p,q) is bounded if (3) is

. 19 ()" (1-]z])"
satisfied. SupJ‘D (=1ta2) F) &' (=] 2] K(g(z,a))dA(z)

Note that (4) implies (5) since B, , [ B,,. o

To prove that (5) implies (3). Firstlet @ =1. Suppose that <C|f, ||;* < oo, (7
C,:B,o » Ocw(p,q) is bounded and define

It] This with fatou’s lemma yields (3) with a=1. If

J(2):=1z,tUD. Then f ' (2)= m 0<a <1, we use the fact that for each function f B, ,
f DB;O. Since (5)holds, there is a positive constant C the analytic function C(ﬂ(f )00k (P, q) - Then using the

functions of Lemma 1.1

C Al +[| C,f 17+
UCh I o +IChIG

such that
)

= fsup [ [((/;°0)' )" + (09 )] x U)o appanieyy
oD @’ (1=]z|)

> sup 1010 )+ o 9 LoV gz apan(oy

* * — q
> fsup [ [ @)@+ @Y x| g2 P U2 k(o2 anaa)
@ (712
lp@|”  (=|z)’
(I-|@A=2) )" @' (1= | z])
Then, the condition (3) with 0 <@ <1 follows.
We still have to show that (3) implies (1). Assume that (3) is holds, and f [ B:, with || f ”Ba <1, we can see that

> C{sgﬂg) j@ K(g(z,a))dA(z)}. 8)

| Cof 1 i =sup [ (f o @ @) 20K (g(z,a))di(2)

alD w’ (1-]z])
—sup [ (f @) 1)1 DV oz, apaace)
a P w’ (1-]z])
le@"  (-]z]’
< P su K(g(z,a))dA(z) < oo, 9
1115, S0 [, oo o i e a2 K@) ©)
Then (1) holds, and the proof is complete. @ C,: B; R Q;; w(p’ g) is Lipschitz continuous;
Theorem 32 Let 0<a@<,0< p<1,-2<g<oo, v o
Then the following statements are equivalent: 3) supj %(1_ | z])? K(g(z,a)) dA(z) < .
aw (1= @) )T @ (1-]z])

(1) C¢:B; - O¢ (P»q) is bounded;
' Proof:
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Since (1) and (3) are equivalent by Theorem 2.1, it remains  continuous, that is, there exists a positive constant C such
to prove that (2) = (3). that

Assume first that C¢:B:; - Q;,w(p,q) is Lipschitz
d(fo@goP Ok (P @) SCd(f,g:B,), forall f,g0B,.

Taking g = 0, this implies

17o@ly . SCUS N *+Ifls, *1FO)D.  forall £ OB, 1)
The assertion (3) for @ =1, follows by choosing Moreover, from Lemma 1.1, for f,g B, we deduce
f(Z)IZ in (10). that
If0<a<l’ then * * 2\a
(f @)+g (2)(=|z|"))"=2C>0, forall zUID.
.
| f(2) 5] L | ($)|ds+[ fO)| Therefore,
s ds ISl *lgle +1/ls, +1gls, +1./(0)[+]g(0)]
A fls, |, ———+1/©)] P
1-s%)
(2)]” -] z])
Hﬂm o] L AC] S K(g(z,a))dA(z).
<C +| f(0)], ID (I-|@2) )" & (1-| z])
L For which the assertion (3) follows.
this yields Assume now that (3) is satisfied, we have
IS -gls,
| f(#0)) - g(#0)) = CW*’ | £(0)—g(0) ]
WS @go @O PN =dy  (FoRED [ @Bl iy *+] /GO~ (A0

1

g (1=|z] .
<d. (f-8)sup |, Cloo )7 @i |ap K@)

1

g (=]z] ;
+1/ =g s, Gup [, o [ (2] CE A

”f g”B

=g T/O-gO)=cd/, g:B.)-

Thus C,: B, - QI*{ »(P,q) is Lipschitz continuous and the proof is established.
Theorem 3.3 Let 0 <@ <00,0< p <o0,-2 < g <o, Then the following statements are equivalent:
(1) Cw:Bg - O »(P,q) is compact;
@) Cp:By - Ok o(P,q) is compact;
3) lim sup_[ |§0(Z)|2 _ (1-|z )7 Md,q( ) < oo,
rerm a2 (1= @(z) )™ w" (1= z)

Moreover, if 0 <@ <1, then (1)-(3) are equivalent to @ C,:B, - O ,(P,q) is compact.
Proof:
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The equivalence of (1)- (3) is similar to that proved in [17].
Hence it remains to show that these together are equivalent to

).
We first assume that (3) holds. Let B := B(g,d) 0 B,

gOB, and >0, be a closed ball,
(f,);-, O B be any sequence. We show that its image has a

and let

convergent subsequence in Q,*{w( P,q), which proves the
compactness of C,, by definition.

Again, (f,);_, O B(ID), hence, there is a subsequence
( fn/ )j’:l which converges uniformly on the compact subsets

of ID to an analytic function f. By Cauchy formula for the
derivative of an analytic function, also the sequence

( fn ‘ )‘;’:1 converges uniformly on the compact subsets of 1)
i
to f . It follows that also the sequences ( fnj °@)’., and

( fn’/ o (0);’:1 converge uniformly on the compact subsets of

D to fog

respectively. Moreover,

gV

and f’0(0,

Some Properties of Composition Operator Acting Between General Hyperbolic Type Spaces

fDBDB:; since for any fixed R,0<R<I1, the

uniform convergence yield

() g'(2)
—_ 1_
T Gr e

+sup| f'(2)=g'(2) [ (1=]z[)7+| f(0)~g(0) |

|z|<R

Elpi

f"(Z)
= limsup |

g'(2) (1-
eepsr 1= f, (2)[

EEPEEAE

*lim(sup f, (2)=g' (D (A=|z[)7+ £, (0)=gO) ) <0.

Jj=® |zZ<R

Hence, d(f,g;B,)<0.

Let &£>0. Since (3) is
7,0 <r <1, such that

satisfied, we may fix

UZ12D" g (g(z.apdaiz) <e.

P

The condition (3) is known to imply the compactness of C 0" B a

subsequence and adjusting the notations, we may assume that

||fnj o¢_fo¢”QK’w(p,q)S£7 forall j=zN,; N,UON

Since (f, )7 U B and f OB, it follows that
i

w2 (1= @l2) ) @’ (1= 2))
By the uniform convergence, we may fix NN, LN such that

Sy, 290~ [o@O) <&,

forall j=N,. (11)

- Ok »(P,q), hence possibly to passing once more to a

(12)

[, o' @~z @ @ -4V K(g(z.a) daz)

phe g B (=2 )
=1z’
= Saml; e )\>VL(f”j’g’ @a)”(l——lzDK(g(Z’a)) dA(z)

|9 (2)|"

(1=]z])*

K(g(z,a)) dA(z),

<d,. (/,-Q)sup|

oD YD ( 1-

where

(,, > 9D

@) ) @’ (1=]z))

L(/, .89 =

hence,

=1(f, > PP

__ (9@ L
I=[(g°@@)
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aD]D) lp(z)>r

[, o9 ()~ (go0 @ 42 K(g(z.)) da(z) < Ce

(13)
@’ (1-[z])

On the other hand, by the uniform convergence on the compact disc ), we can findan N. 3 LN such that for all j2N 3

£ @)

g, (¢(2))

L, &9

Forall z with [¢(2) s Hence, for such Js

aD]DJ l(2)l=r

<su
aml; lo(2)lsr

gV

=I(, oo

(I=|zD*

1I=1(gop)(2)

[/, 20 @ ~(go 0 P -9V k(g apaacz)

@' (1-]z])

L, &Pl POF oV K (a0 die)

1

K(g(z,a))dA(z))” <Cé,

= e(sup IW)|<,(1_|¢,( ) @ (1= )

where C is bounded which is obtained from Theorem 2.1.
Combining (12), (13), (14) and (15) we deduce that

f;’lj - f in Q;w(paq)

1
For the converse direction, let f,(z):=—n""'z" for all
nON, n=2.
Il =sup— b2y
By am 1-27"0n20 | 2>

<3supn?|z|"”" (1-|z[)".

(14)

subsequence (7 j)‘;):l such that the image subsequence

(C, fnj ), converges with respect to the norm. Since, both

(/)= and (C, fn/ )., converge to the zero function

uniformly on compact subsets of ID, the limit of the latter
sequence must be 0. Hence,

— n.
lim |7 @ |

jooo

O op-t) (5)

1
Now let v =1-—.
J

For all numbers a, r, <a<lI,

ol we have the estimate
Then the sequence (f,),., belongs to the ball nia" 1
= . . > see 9). (16)
B(0;3)0 Ba_(see [9]). We are assuming that C(p maps the 1=a" e(1-a)® ( )
closed ball B(0;3)0B, into a compact subset of Using (16) we deduce
O »(P»q), hence, there exists an unbounded increasing
n .-l '
nf(@2)” 9@, (1-]|z)*
Inf"@ Ml zsupf | - p UZLED po(z,a)) da(2)
kotrn = S oo | T T e - 2)
) P - q
4e aD]D) A2 (1_|ﬂ2)| ) w’(1-| z))

From (16) and (17), the condition (3) follows. The proof is
therefore completed.

Theorem 3.4 Let 0<q <00,0< p <o00,—2<g <00,

Then the following statements are equivalent:

1) qu:Ba - QK,w,o(p,Q) is bounded;
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in [17]. It remains to prove the necessity and the sufficiency of

2 C¢:Ba - QK,w,o(p,q) is compact; )

@(2)[ K(g(z,a)) ; *

lim [ — o (1-| 2|} =222 dA(z) = 0. The necessity of (4). Let 0 <a <1 and fUB,, from
jal~ 1'[m’(l |@2) ) @’ (1-]z])

Moreover, if 0 <@ <1, then (1)-(3)are equivalent to

4) C(”:B; - Q;wﬁo(p,q) is bounded;

Proof: The equivalence of (1)- (3) is similar to that proved

tim [ (202"~ K gz ()

(1) and Theorem 2.1 we have C¢:B:; - Q;,w(p,q) is
bounded. Furthermore, (3) implies that

@ (1= )
~tim [, (@Y 186G K (g(z,anaace)
al - (1= z|) ’
U tim | 2L LD oz apaacz) = o, 19)

% 10 (1= @2)* )" @’ (1= z])

That is, C¢:B:; - Q;,w,o(p’Q) is bounded.
The sufficincy of (4). Let C(ﬂ : B; - Ql*<,w,0 (p,q) is bounded. Then using the functions of Lemma 1.1 as the proof of

Theorem 2.1, we obtains

oGP (-lz) »
lim [ 2 o)y a1 K€ DA

(1=[z])

~lim f (Cof)) (@) +((Cpfy) () — ATMED K(g(z,a))dA(2)
o ; e d=12D°
_L}IEJD(;((CJ") (2)) AT DK(g(Z ,a)))dA(z) = 0. (19)

Then, the condition (3) with 0 <@ <1 follows, and the 3) C,: B;,o 5 Q1*<,w,0 (p,q) is bounded.

proofiis complete. 0<g<o0. 0<p<o0-2<g< Proof: The proof of (1) and (2) are equivalent is very similar
Theorem 3.5 Let a=,0=sp=<o, 9= o the proof in [17], it remains to prove the necessity and the

Then théf olll(;wing stathmenti are e)quivalent: sufficiency of (3). For every B, z» and €>0 there exists
1 : — , is bounded;
() %o 0 K.wo\P>q B 0 <r <1 such that

(2) C¢DQK,w,0(p,q) and ) o
I (e(z.a) S @A=-]z[)" <e.
p(z K(g(z,a
pj b (1= | @(z) [P ) =1z @ (- |z |)dA( z) < e, For this fixed 7, and when | z|< 7, we have

Moreover, if 0 < <1, then (1)-(2)are equivalent to

(I-1z]*
SUP | e (fod) (z ))w”(l P l)K(g(z ,a))dA(z)

(I=1zD*
(O 9 (2) (| z DK(g(Z ,a))dA(z)
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9 ()]

(I=1z]?

S |
SN [

S W
e Ty

A

<&M +sup

(1= @A2)* D" @’ (1= z])

K(g(z,a))dA(z)

161 D ko apdac)

@ (1=]z])

161 9D ke andac).

@ (1= z])

By (2), the right hand side tends to zero as |z|— 1. Hence Cw(f)DQ;w’O(p,q), for every fDB;O. The

Sufficiency of (3). We show that (3) implies (2). From the condition (3), we have C,: B;O - Q,*( »(P>q) is bounded, by

Theorem 2.1
) p - q
sup [ (APEL WD o appaa(a)) < oo 20
am P (1= @z)” )™ @’ (1=] z])
Also, where the function f(z)= % uB Z/,oa we have
. : (=[z]*
2)|P —————K(g(z,a))dA(z
Jllflarjm|¢( W s o K& E@de)
<2 tim | (fo9 ()" -9V (o(zanda(z) =0. e
a1~ P w’ (1-|z])
Then (2) is satisfied. The proof is complete. 03(15)(2013), 19 - 3.
[6] A. El-Sayed Ahmed, A. Kamal and T. I. Yassen,

4. Conclusions

Necessary and sufficient conditions are given for the

composition operator Cw

to be Lipschitz continuous,

bounded and compact composition operator from Bloch-type

* %
B, spaces to Oy, spaces, from B, spaces to QK’w

spaces.
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