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Abstract 
In this paper it is studied equivalent norms in the Nikolskii-Besov spaces containing 

multiplicative differences of fractional order. 

1. Introduction 

Properties of the Nikolskii-Besov spaces ,
( )l n

p
B Rθ  are presented in details, e.g.  in [1], 

as well as in [2]. Various problems related to application of multiplicative difference 

operators of fractional order, which are invariant with respect to strain [3], as well as 

differences of more general type in the theory of functional spaces  were considered in 

[4]-[9]. 

Let us first give a definition of the Nikolskii-Besov space. Let , 1p θ ≥  be real 

numbers, let , 1l σ ≥  and 0m ≥  be integer numbers such that 

m l mσ + > > .                                              (1.1) 
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In terms of strain h
П  we introduce a magnitude 

( )( ) ( )( )( ) ( ) ( )( ) ( ) ( )
0 0

1 1k

k kk k k

h h h
k k

f x E f x C f x C f x h
σ σ

σσ
σ σ

= =

∆ = − Π = − Π = − ⋅∑ ∑ɶ                               (1.4) 

for 
1,h x R+∈ , where 

kCσ  is a binomial coefficient, E  is unit 

operator, hП  is strain operator defined by 

( ) ( )( ) : .hП f x f x h= ⋅  This magnitude is called final 

difference of order σ  of function ( )f x  with 

"multiplicative" step h . 

Let now σ  be arbitrary positive real number. Consider the 

difference -generally speaking, fractional order - determined 

by 

( )( ) ( )( ) ( ) ( ) ( )
0

1
k k k

h h

k

f x E f x C f x h
σσ

σ

∞

=
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As (1.4) this is the bounded operator, which acts from 

( )1/pL x  to  ( )1/pL x . The series 

( ) : k

k o

C Cσσ
∞

=

= < ∞∑  

converges due to 
1

k C
C

k
σ σ+≤ , which implies that  for any 

bounded function f  the series in (1.5) converges absolutely 

and uniformly for all σ . 

� We note that ( ) 2C σσ = for integer σ   and for non-

integer σ it holds ( ) [ ] 1
2C

σσ += . 

� The difference  (1.5)  we call left-sided if 0 1h< < and 

right-sided if 1h > . 

� Further, we consider the spaces ( ), 1/l

pB xθ  for any 

0σ > , which can be defined as above only replacing 

the multiplicative differences of integer order (1.4) by 

the multiplicative differences of arbitrary order (1.5). 

2. Auxiliary Statements 

Lemma 2.1. Let  0σ > , then  

( )[ ]( )
[ ]

1 1
kk k

k o k o

C C

σ
σ

σ σ

∞
+

= =

= + − ⋅∑ ∑ . 

For the proof of the lemma see, e.g. [9]. 

Corollary 2.2.  If 0 1σ< ≤ , then 

2k

k o

Cσ

∞

=

=∑  

Corollary 2.3. The following estimates 

[ ]
[ ] 1

2 2k

k o

C

σ
σ
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hold for all 0σ > . 

Lemma 2.4. For any , 0α β >  the following equalities 

( )2
,

h h h h h
I

αα β α β α α
δ

+∆ = ∆ ∆ ∆ = Π + ∆ɶ ɶ ɶ ɶ ɶ  

Proof. These equalities follow from the relations 

( ) ( ) ( ) ( ) ( ) ( )2
;E A E A E A E A E A E A

αα β α β α α+− = − − − = + −  

which can be proved by multiplication of the series with 

using the equalities for binomial coefficients, which follow 

from analogous relations 

( ) ( ) ( ) ( ) ( ) ( )21 1 1 ; 1 1 1x x x x x x
αα β α β α α+− = − − − = + −  

for real x . 

Lemma 2.5. Let 1 p≤ ≤ ∞  and 2 1
0σ σ> ≥  then the 

following estimate 

( ) [ ] ( )2 12 1
1

; 1/ 2 ; 1/
h p h p

f L x f L x
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holds for all (1/ ).pf L x∈  

Proof. According to Lemma lemma 2.4 we have 
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from which and Corollary 2.3 we obtain 
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Lemma 2.6. For any 0σ > , 0 1h< <  or  1h >  

1

22h h h hQσ σ σ σ− +∆ = ∆ + ∆ɶ ɶ ɶ                        (2.1) 
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and 
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Proof. Equality (2.1) is operator analogue (after 

substitution of x  by h
П ) of equality 

2 11
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1 2 ( 1) ( )( 1)x p x xσ σ−= + + − , 

in which 

1

0 1

1 2 ( 1) 1 1
( ) 1 1

1 1 2

1 ( 1) ( 1)
1 .

1 2 2

k k
k k

k k
k k

x x
p x

x x

x x
C C

x

σσ σ

σ σ

−

−∞ ∞

= =

 − + − = = − + =  − −    

 − −= − = − −  
∑ ∑

 

In order to obtain (2.1) it is sufficient first of all to check 

that 

1 12 ( )
2

h

h h h h h
E П E Q E Q

σ
σ σ−  ∆

= + + ∆ = + + ∆ 
 

ɶ
ɶ ɶ , 

and then to multiply this equality by ( )h hE Пσ σ∆ = −ɶ and to 

use the Lemma 2.4. 

The proof is complete. 

3. Main Results and Proofs 

Theorem3.1. Let 1 ,p θ≤ ≤ ∞  and 0.l >  At different sets 

of natural numbers σ  and integer number m  satisfying 

(1.1), the spaces , (1/ )
l

pB xθ  coincide, and norms (1.2) are 

equivalent. 

Theorem3.2. Let  1 ,p θ≤ ≤ ∞ and 0.l >  At different sets 

of positive (not obligatory integer) numbers σ and integer 

numbers m  satisfying (1.1), the spaces , (1/ )
l

pB xθ  coincide, 

and norms (1.2) are equivalent. 

Proof of Theorem 3.1. For 1,2k =  we set 

( ) ( ) ( ) ( ) ( ), ,

, ,; 1 / ; 1/ ; 1/ ,
k k k km m

l l

p p pf B x f L x f b x
σ σ
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1 2
,σ σ  are positive numbers and 1 2

,m m  are non-negative 

integer  numbers such that 

1 1 1
0.m l mσ + > > ≥ ,  2 2 2

0.m l mσ + > > ≥  

Let us suppose 2 1
.σ σ>
 

1.First of all we consider the case 1 2
0m m= = and we use 

( )kf
σ

 instead of 
( ),0kf
σ

. The following estimate 

( ) ( ) ( ) ( )2 1

, 1 ,; 1 / ; 1/
l l

p pf b x c f b x
σ σ

θ θ≤         (3.1) 

with [ ]2 1 1

1 2c
σ σ− += follows from the lemma 2.5. 

Let (1/ ).pf L x∈  We will prove the inequality 

( ) ( ) ( ) ( )1 2

, 2 ,; 1 / ; 1/ .
l l

p pf b x c f b x
σ σ
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For this purpose it is sufficient to prove that 

( ) ( ) ( ) ( )1 1 1

, 3 ,; 1 / ; 1/
l l

p pf b x c f b x
σ σ

θ θ
+
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for any 1
lσ > . 

Indeed, let natural number s  be chosen such that 

1 2 1
1 .s sσ σ σ+ − < ≤ +  Then, by using inequality (3.3) 

consequently  s  times, and using (3.1) with 1
sσ +  instead of 

2
σ  and 2

σ  instead of 1
σ  we have (3.2). 

According to Lemma 2.6, for (1/ ).pf L x∈  

1 1 1 1 1

22h h h hf f Q f
σ σ σ σ− +∆ = ∆ + ∆ɶ ɶ ɶ  

from which, taking into account (2.3) and Corollary 2.3, 

follows that 

1 1 1 1 1[ ] 1
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1 1 1 1 1
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By multiplying (3.4) by (1 ) lh −− and (3.5) by ( 1) lh −− , and 

then by summing up these inequalities and applying the norm 

(1.3) we have 

1 1
1

11
1

1

1 1
1

1

1

1

0 1

1

1
2 (2 )

0 1

1 1

[ ]

; (1/ ) ; (1 / )

1 11 1

; (1/ ); (1 / )
2

1 11 1

; (1/ )
2

11

h p ph

l l

ph p h

l l

h p h

l

f L x f L xdh dh

h hh h

f L xf L x dh dh

h hh h

f L x fdh

hh

θ θ θσ σε

η

θ θθ σσε
σ

η

θσ σ
σ

−

−

−

− ∞

+

− ∞
−

+

+ +

 ∆ ∆ + ≤
 − −− − 
 

 ∆∆ ≤ + + − −− − 
 

∆ ∆
+ +

−−

∫ ∫

∫ ∫

ɶ ɶ

ɶɶ

ɶ ɶ

1

1

0 1

; (1 / )
,

11

p

l

L x dh

hh

θ θε

η

− ∞

+

 
 
 −− 
 
∫ ∫

                                            (3.6) 

where 0, 0.ε η> >  

Let us denote 
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We note that 
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pl f L x
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− − −≤ − +    (3.7) 

After changing 2h  by h in first member on the right side 

of (3.7) under the integral we will have it equal to 

( )12 2 ,2 .
l σ φ ε η−

 That is why from (3.6) follows that 
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Since (1 / ),pf L x∈  by transition to limit m → ∞ and 

taking into account (3.7) we have that 

( ); ,
1

M

c
φ ε η ≤

−
                                   (3.9) 

and by transition here to limit 
0, 0ε η→ →

we have that 
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(1 / ),pf L x∈ that we were needed to prove. 

2. Let now 1
0m >  or 2

0m > . We prove that the spaces 

, (1/ )l

pB xθ with parameters k
σ  and , 1, 2

k
m k =  satisfying to 

(1.1), and with parameters [ ] 1kσ +  and k
m  are coincident 

and 
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σ σ
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Indeed, if , (1/ )l

pf B xθ∈  with parameters  k
σ  and 

, 1, 2
k
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and inequality 
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follows from (3.1). That means that , (1/ )l

pf B xθ∈ with 

parameters [ ] 1kσ + , k
m . 

If , (1/ )l

pf B xθ∈ with parameters [ ] 1kσ + , k
m , then (since 

the difference order is integer) according to well - known 

properties of spaces , (1/ )l

pB xθ  the generalized derivative 

(1/ )m

pD f L x∈  (see. [1], [2]). That is why, according to 

(3.2) 
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This and (3.12) and (3.13) imply  (3.11), which completes 

the proof of Theorem 3.1. 
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Proof of Theorem 3.2. The proof of the theorem 

immediately follows from (3.11) and Theorem 3.1. 
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