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Abstract

Recently, some generalizations of the generalized Gamma, Beta, Gauss hypergeometric
and confluent hypergeometric functions have been introduced in literature. The main
object of this paper is to express the nth derivative of Zst(a.B )(a, b; c; z) with respect to
the variable z in a closed formula of hypergeometric function itself. Moreover, some new
integral involving of the above-mentioned functions are obtained and many important
results are noted.

1. Introduction

In mathematics, there are several special functions that are of particular significance and
are used in many applications [1, 2,3]. In addition, some of special functions find
applications in such diverse areas as astrophysics, fluid dynamics and quantum physics [2,
3, 4, 5, 6,7]. Examples of such well-known functions are the Gamma, Beta and
hypergeometric functions [1-11]. Next, extensions of Gamma, Beta, Gauss
hypergeometric function (GHF) and confluent hypergeometric function (CHF) have been

14
extensively studied in the recent past by inserting a regularization factor et [5].
The following extension of the gamma function is introduced by Chaudhry and Zubair

[5]:
L,(x) = fooo t* lexp (—t —%) dt,Re(p) > 0. €))

The extension of Euler’s beta function is considered by Chaudhry et al. [8] in the
following form

p
t(1- t)) at,
Re(p) > 0,Re(x) > 0,Re(y) > 0, 2)

Bp(x,y) = fl 11 - t)y_lexp(

0

and they proved that this extension has connections with the Macdonald, error and
Whittaker functions; and as a result

Fo(x) = T'(x) and Bo(x,y) = B(x,y).

Following this, Chaudhry et al. [2] used B,(x,y) to extend the hypergeometric
function, known as the extended Gauss hypergeometric function (EGHF), as follows:
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Bp(b +n,c—b) (2)"
B(b,c—b) n!’

E,(a,b;c;z) = Z (@)n

p = 0,Re(c) > Re(b) > 0, 3)
where (a),, denotes the Pochhammer symbol defined by

_Tla+n)
(@) = T@

_{1,n= 0;a € C/{0}
“laa+1(@+2)..(a+n—-1), neN,a€cC.

In addition, the integral representation of Euler’s type function is

Fp(a,b; C, Z) = mﬁl tb_l(l - t)c_b_l(l - Zt)_a

—p
X exp (t(l - t)) dt,
p = Oand|arg(1 — z)| < & < p; Re(c) > Re(b) > 0. 4

Also, the extended confluent hypergeometric function (ECHF) is defined as

0, (bi ;) = z Bp(b +n,c—b) (z)"'
n=0

B(b,c —b) n!

p = 0,Re(c) > Re(b) > 0. %)

The differentiation properties, the Mellin transforms of F,(a, b;c;z) were also considered in [2]. The transformation
formulas, recurrence relations, summation and asymptotic formulas were obtained for this function. Very recently, some new
representations of these extended functions were reported in terms of finite number of well-known higher transcendental
functions [3,7].

The following generalized Euler’s gamma function (GEGF) is defined in [3] as

L@ () = f

0

Re(a) > 0,Re(B) > 0,Re(p) > 0,Re(x) > 0. 6)

) t* L F (a;ﬁi -t - ?) dt,

While, the generalized Euler’s beta function (GEBF) is given by

! -p
1 -t F (a; B; )dt,

(a,8) _
8, (x,y)—f Teea

Re(p) > 0,Re(x) > 0,Re(y) > 0,Re(a) > 0,Re(B) > 0. (7
It is obvious from (1) and (6), (2) and (7) that,

R0 = T,(0, @ (x) = T(x),

B y) = By(x,y) andfy P (x,y) = Blx,).

Now, and in view of (7), the generalized (Gauss, resp., confluent) hypergeometric functions (GGHF, resp., GCHF) are
defined by,

(a.B) n
(a.) ) — YOO Bp (b+n,c—b) z" 3
Fp' P (a, by ¢;2) = Enno (@ T g — 1 ®)

and
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() (b+n,c—=b) z"

F P (b 2) = S, Fheb) v ©)
and their corresponding integral representations are given by [3]:
F(“'B)(a b;c:z) = L % fl th=1(1 —t)c-b-1 F (a-ﬁ-_—p) (1 —-zt)=%dt
P T Bb,c—b)" ), BT '
Re(p) =0,and |arg(1 —z)| < 7 < p; Re(c) > Re(b) > 0. (10)
In addition,
PP (b ciz) = - f Cpi( - pevtent (e Bro o) e
1 " B(b,c—b)J, R T C Y
p = 0,Re(c) > Re(b) > 0. (11)

It is to be noted here that [2],
Fp(“‘“)(a, b; c;z) = Fy(a, b; c; 2),
F,'“P)(a,b; c; z) = ,F,(a,b;c;z),
further,
1F @9 (py s 2) = (F,P(b;c;2) = @p(b; c; 2),
FLOFO(b; ¢;2) = (Fy(b; ¢; 2).
The generalized hypergeometric function with p numerator and g denominator parameters is defined by [1]

qu(al, az, . ap; bl' bz, ey bq; Z)

aq, ay, ...,ap; ® (a)),(ay), "'(aP)r z"
— qu bl,bz,...,bq Z | = b b b _l'
&4 (b)), (b2);r . (by), T

_ I'(by) ... F(bq) i [(ay +)l(ay, +71) ... F(ap + r)i
I'(ay) ... F(ap) e ['(by + )l (b, + 1) ... F(bq +r)rt

where z € C,p < q, ai,bj € (C,bj *0,-1,-2,..,i=12,...,p,j=12,..,q.
The nth derivative of Zst(a.B ) (a, b; c; z) with respect to the variable z will be derived in the next Section. Further, new

integral representations of (GGHF), (GCHF) with some useful new results, of the above-mentioned functions, are given in
Section 3. Finally, some conclusion remarks are noted in Section 4.

2. The Derivatives of Generalized Gauss Hypergeometric (GGHF) and
Confluent Hypergeometric Function (GCHF)

The generalization of beta function (7) and generalized Gauss hypergeometric function (GGHF) (8) or (10), in addition to
confluent hypergeometric function (GCHF) (9) or (11), will be used to derive the nth derivative of z° Fp(a'ﬁ )(a, b; c; z) with

respect to the variable z. The next theorem summarizes these relationships. Furthermore, some useful results are also considered
in this Section.
Theorem 2.1. For the generalized Gauss hypergeometric function, we have

[ee]

" a s (@n(b)n 1
@{ZSFP( B)(a, b; c; z)} =(-1) Wn)n Z (a+n), a

(C)n = —-—a—w-— Tl)s
@) "
1 Bp (b+w+n—s,c=b) z¥ -
(WH+n+1)_;g B(b+n,c—b) Wi’ [z] <1,n €N, (12)

and in the integral form
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dn
E{ZSFP(“‘ﬁ)(a, b; c; z)}

(@)n(b)r 1

=1 ©, Bb+nc—b)

c 1 1
XZ)(a+n)w(1—a—w—n)s(w+n+1)_5

1 w
-p_\(2)
tb+n—s—1 1—t c—-b-1 F. ( 0B ) d ,
Xfo a-0 11Olﬁt(l—t) w!
|z] < 1,n €N,, (13)
Proof. Direct Substitution of (8) into the left hand side of (12), yields
dn
ﬁ{stp(“'m(a, b; C, Z)}
_dn i @ B, P (b +71,c—b)z"
=i Or = pthc—b)
r=
T B(b,c —b) dz® r!
=0
~ i @ B, P (b +1,c - b)
B " B(c-b)
r+s=n
r+s-n
XT+s)r+s—-1).(r+s—n+1) -
B i @ B P +r,c—b)( (r+s) (27T
h @ B(b,c —b) r+s-n)) r ~°
r+s=n
Writing r + 5 —n = w, gives
dn
ﬁ{stp(“'m(a, b; C, Z)}
o B ¥P) (b+wan-s,c-b) ( (w+n)! | z¥
= Zw:o (a)w+n—s £ ﬁ(b:—;:) N {(W‘Z:—:s)!} % (14)
In view of
(=1D)*(a)n
(@win = @nla+n)y , (@pi = T=a=n),
and
(_1)S(a)n+w
(@ win-s = A—a—w-— ,
w—n)
we get

d‘n.

I {ZSFP(“‘ﬁ) (a,b; c; 2)}

o (@a(a+n), ﬁp(a'ﬁ)(b +w+n—s,¢c—b)
=(-1)°
& 1-a—-w-—n) B(b,c—b)
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Tw+n+1) z%
Tw+n—-s+1)w!

(a+n) B, “P)(b+w+n—s,c—b)
=D (a)"z 1—a-w-n), . B(b,c — b)

Tw+n+1) z%
Tw+n—s+ 1wl

By making use of the formula 8(b,c — b) = EZ))" B(b +n,c —b) [3], we have

dzm {ZSF (aﬁ)(a b;c; Z)}
= (_1)5 (a)n(b)n (a + n)W 1
©n & (-a-w-n);W+n+1)
ﬁp(“'ﬁ)(b+w+n—s,c—b) zv (15)
B(b+n,c—b) w!’

and this completes the proof of the first part of Theorem 2.1.

The second part of Theorem 2.1, can be easily proved in a similar way like that used for proving the first part.

The particular expressions for the derivatives of generalized Gauss hypergeometric function (GGHF) and confluent
hypergeometric function (GCHF) may be obtained as special cases from formulas (12) and (13). These are given in the
following five corollaries:

Corollary 1. Substituting of p = 0 into (12) or (13), yields the nth derivative of the classical (GHF) as.

%{ S,F, (a b' )} =(s—-n+1),z5";F, (Z,,.Sl‘)’j:l-i 1;2)_ (16)

Corollary 2. If we put n =1 and s = 0, into (12) or (13), then we get immediately the first derivative of (GGHF),
{F @B (a, b; cz)}— E,“P(a+1,b+ 1;c+ 1;2). (17)
Corollary 3. Substitution of s = 0, into (12) or (13), yields nth derivative of (GGHF) as,

L {F, @B (a,b; c; 2)} = Culn f,@h (@ +m, b+ e +1;2) (18)

dz™

Corollary 4. One can easily show that, for (GCHF),

ar : R N () : . .
ﬁtpp(“ﬁ)(b.az) —ﬁ(pp(“ﬁ)(b+n,c+n,z), (19)

_ )y
Tt

Corollary 5. Finally, the nth derivative of the generalized hypergeometric function ,F; is given by
dn ay,az -, Ay
- S .
dzm {Z plq (bl, by, ..., by’ Z)}
ay, ay, ..., ap, S + 1
=(—n+ 1D,z X pu1Fqe1| b1, by by, s —n+ 17 ,

F, @D (b ;¢ + 5 2).

z€CGp<=<qa,b€Cb;#0,-1,-2,.;i=12,..,p;j=12,..,q. (20)

It is to be noted here that the two results (17) and (18) are in complete agreement with those given in [3].
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3. Some Integral Formulas of the Generalized Gauss Hypergeometric (GGHF)
and Confluent Hypergeometric Function (GCHF)

Theorem 3.1. For the generalized Gauss hypergeometric function (GGHF), we have the following integral

1
f "1 - X)m_le(a’m(a,b; c; kx)dx
0

- o @rr Bp' P rc-b) k¥ ’1
=B Ereo s T ey 21)

Proof. Making use of relation (8) with relation (21), gives

1 e . o) Bzga.ﬁ)(b_l_r‘c_b) (kx)r
[ - 1;(@ 2

Z‘” B, P (b +r,c—b)k" [
— (a)r _f xn+r—1(1 _ x)m—ldx‘
T B(b,c—b) rt o

P Bp(a,b’)(b+r,c—b)kr
Zo(a)r Bbc—b) nfetnm,

© By P (b +1,c = b) k" [T(n + )T (m)
Z[; (@), B(b,c—b) F[F(m+n+r)]'

B @ B P (b+r,c—b)k"[ T(n+r) T(m+n)
_3(n,m);(a)r B(b,c—b) F[r(n+m+r) rm) [

_ o (@), () By P (b + 7, — b) KT
_ﬁ(n’m); (n+m)r ﬁ(b,C—b) F

This complete the proof of the Theorem.

Special cases of formula (21)are given in the following corollary.

Corollary 6.

(i) The integral of the classical (GHF), which is obtained by taking p = 0, is .

- m-— lbl
Jy x" L =)™ S Fy (e, by ¢ k)dx = Bln,m) 5F, (7)1 k) (22)

This result is in complete agreement with the result given in [9, p.273].
(i) the integral of (GCHF) is given by,

1
f X" (1 - 0)™ 1, @B (b; c; kx)dx
0

(a'ﬁ)(b+r,c—b) 48

) B
= ¥y Bln+7,m) R (23)

(i) Moreover, for the generalized hypergeometric function ,,Fy, we have
1 al,az,...,ap.kx
f x" N1 —x)™LF, (bl, by, ..., bg’ )dx
0

al,az,...,ap,n K
= ﬁ(n, m) p+1Fq+1 (bl' bz, ...,bq,n +m’ ))

xe€Cp<gq;a, b]- € C; b]- #0,-1,-2,.;i=12,...,p;j =12, ..,q. (24)



International Journal of Mathematical Analysis and Applications 2015; 2(3): 47-61 53

The following theorem gives new integral formulas for the generalized Gauss hypergeometric function (GGHF).
Theorem 3.2. For the generalized Gauss hypergeometric function (GGHF), we have the following integral,

f e‘k"xm‘le(“‘ﬁ) (a, b; c;nx)dx
0

(b+71,c—b)

= 50 "2 @), (m), B D (s 25)

Proof. Direct calculations using (10) yield

1 1
(a.B) . — b—1(1 _ +\c—b-1
E,""(a, b; c; nx) Bc— b)fo t’7 (1 -1t)

x (1 —nxt)~® ,F, (a Bi t)) dt. (26)

(a)r

Because, (1 —nxt)™@ = Y72, (nxt)r we have

f e‘k"xm‘le(“‘ﬁ)(a,b; c;nx)dx
0
1 © rl -p
- - b-1 _ c-b-1_,-kx.,m—-1 R
_ﬁ(b,c—b)fo fo -0 e 1Fl(a"8't(1—t)>
XZ ( ?r
=0 ( )
1 i n’ f"" f pira
[ a r— t r— 1 —t C—b—le—kxxm+r—1
ﬁ(b,c—b)rzo() rt )y Jo ( )

x F; (a B; t(lft)> dxdt

T

@ n fw kx,m+r—1 fl
— e fxy “1dx tb+r—1(1 _ t)c—b—l
z B(b,c—Db) ! o

x F, (a B; ﬁ) dt

r

- ﬁ(b—(?i b) rrl—f ek 1dx B (b + 7, — b).
=0 ’ Y

Because,

1% w 1 *©
- —14.,, — - -1
Efo e W(E)m” dw = km”_fo e Ywmtrldw,
then

f e‘k"xm_le(“'ﬁ)(a,b; c;nx)dx
0

(), rm)n"T'(m+71)
ﬁ’(b ¢ — b) km*r ! I'(m)

BEP (b +1,¢ - b),

o Tm) (@,m), BSP b +r,c—b) n
_r=o km 7l B(b,c— b) @
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This complete the proof of the Theorem.
Three important special cases of Theorem 3.2 are noted in the following corollary.
Corollary 7.

@

oo
f e x™m=1 ,F (a,b;c;nx)dx
0

o Tm) @, (m), Bb+1,c—b) n_,
_Z; km ol B(b,c —b) @

_ T\~ @, (), (m),
T km L (c),r! (k) ’

rm) a,b;m.n
=2 F e 'k |,k #0. (27)

Tem 3
(i)
f e x™=1g, (@B (b; c; nx)dx
0

[oe]

3 F(m+r),8p(a’m(b+r,c—b) n
‘Z om B c—b & k0

r=0

This result is in complete agreement with the result given in [9, p. 98].

(iii)
o aq, a,, ...,ap
f e xm-1F, (bl, by, ., by ; nx) dx
0
al,az,...,a ,ymmn
r'(m) pr
~Tkm p+1fq (bl'bZ""'bq 'k> dx, k # 0,

x€Cp< q;ai,b]- € (C;b]- *0,-1,-2,..;i=12,...,p;j=12,...,q. (28)

Theorem 3.3. For the generalized Gauss hypergeometric function (GGHF), we have the following integral

f e‘mzxzx”_le(“'ﬁ) (a, b;c; + n2x2> dx
0

= (@p) oy T
=y (@, (2) B ey G (29)

 2mk B(b,c—b) 7l

Proof. In a similar manner, by using (10), we have
f e‘mzxzx”_le(“’ﬁ) (a, b;c; t nzxz) dx
0

2,2

= ﬁ’(bc‘;—b)fwfl ¢h=1(1 — £)e-b-1 (1 _ (i nzxz)t)_a e—mAx? u-1
, o Jo

b
t(1-1t)

x F, (a;ﬁ; )dxdt.

However, (1 — (£n2x?)t)™ % = Y2, % (£n2x2t)", so
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f e‘mzxzx”_le(“'B)(a, b;c; + n?x®)dx
0

~ B0, c_mZ (a)rf f S Gl S

- p
u+2r—-1 R
X x 1F (a, B; a t)) dxdt,

(@)r

(i Z)T
ﬁ(b — b)f —m x2 xht2r= 1dxﬁ (aﬁ)(b_l_r c—b) ]

Using the definition of Gamma function, I'(x) = fooo e~ 't* 1dt, and letting m?x? = w, we have

dw,

© -m?2x? pu+2r—1 — 1 ° -w i p+2r—-1 1
e x dx = e™(—)
0 2m ), m v

1

= m!H‘ZT F(_+ r )

and accordingly,

f e‘mzxzx”_le(“’ﬁ)(a,b;c; +n?x2)dx
0

_1 o (a), 1 u @p) ~ (+ nZ)r
_2r=0 ﬁ(b,c—b)mu+2rr(2+r)ﬁ (b+7c—b)

)’

1 ® - . 2\1
=32 B SpE GG I e

(@p) INESY
1S @y B e Dl

i B(b,c —b) rl
I Sk 1. By P (b +7,c—b) (im—f)r
T 2m# Z(; (a)r(i T B(b,c—b) rl

This completes the proof of the Theorem.

Again, Three important special cases of Theorem 3.3 are given in the following corollary
Corollary 8.

®
f e~mAx% yu—1 ,Fi(a, b; c; +n?x?)dx
0

[ (@, 0)y py &)
Ly (%)

- 2mk ©)r

1

r 1l

(i)

(30)

55
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f e‘mz"zx"‘1<pp(“'5)(b; ;o3 + n?x?)dx
0

By P (b+7,c-b) (+ )T
T T (S +r) 31

Zm” B(b,c—b) r!

(iii)

I+

- a,ay, ..., ay
-m?x? ,pu—1 ;& nPx?
e X E bl’ bz,...,bq dx
r°q
0

u
F(E) A1, Qg e Oy +n_2

=22 F "Tm? |dx
Zmll P+1 1 bl’ bz, ...,bq m ’

x€eCp< q;ai,b]- € (C;b]- *0,-1,-2,..;i=12,...,p;j=12,...,q. (32)

Theorem 3.4. For the generalized Gauss hypergeometric function (GGHF), we have the following integral

1 1—x
fx"‘l(l—x)m_le(“'B)<a,b;c; 5 )dx
0

(b+rc b)( )r (33)
B(b,c—b) =

- Zr 0 (a)rﬁ(n m+r)

Proof- Because,

(1 (1—x)) i(cgr(l—x) o

r=0

and using (10), we obtain

1—x 1 1
(@.p) .o — b-1(1 _ +)c-b-1
E, (a,b, c; > ) Bc— b)fo t’"t(1-1t)

S O e fasig o

r=0

and accordingly,

fol X1 — x)‘m—le(a,B) (a,b; " 1 ; x) i
~ B0, c—b)z (a)rf f n-1(] — x)m1ghtr-1(q — g)e-b-1
X 1F (a;ﬁ;%) (%)dedt,

1 i (@), fl fl -
_ XM= (1 _ x)m+r—1tb+r—1(1 _ t)c—b—l
B(b,c —b) & 2rrt )y Jo

X 1F (aiﬁi

-p
m) dxdt,

= ! (a)r n- m+r— tr— c
_B(b‘c—b)z 2Ty ,f 1(1 x) 1dxj(; tb 1(1—t) bh—1
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X 1F; (a;ﬁ;%) dt.

Making use of (7), enables one to get

p _p @p _
t(l_t))dt B, B (b +1,c—b),

1
f P (1 - )P R (a;ﬁ;
0

which immediately yields

1 1—x
f x™(1 - x)m‘le(“‘ﬁ) (a, b; c; 5 )dx
0

! y a 11 .
m; @, B, m+71)B, P (b +7,c— b~

Special cases from formula (33) are obtained for the particular expressions of the generalized Gauss hypergeometric function
(GGHF) and confluent hypergeometric function (GCHF), as given in the following corollary

Corollary 9.
0]
1 1—x
f 11 —x)™ 1 ,F, (a, b;c; —) dx
o 2
[e9) 1
_ pamy S @0
Lo, mrm,
. ab,m 1
= pm)sF (7)1 33) (34)
@)
1 1—x
fo X1 - x)" g, @R (b; ¢— )dx
o0 Bp B wr.c-b) G
= ZT=0 B(n'm+r)pﬁ(bT;)ci_!' (35)
(iii)
1 ay,Qy s 8y 1 —x
101 _ -1 .
fo XA =) R, (bpbz; by T2 )dx
ai, az, ..., ap, M 1
= B(n,m) p+1Fq+1 (bl,bz,...,bq,n+m:§>. (36)
where z € G;p < q;ai,b]- e G b]- *0,-1,-2,..;i=12,..,p;j =12, ...,q.
Theorem 3.5. For the generalized Gauss hypergeometric function (GGHF) we have the following integral
L 1—x
f 1- xz)m_le(“'ﬁ) (a, b; c; ) dx
o 2
(a.8) _
= Y©  22MHT28(m 4+ 1 m) Pp " (brc=b) (@) A, (37)

B(b,c—b) ro2

Proof. Making use of (10), yields

1—x 1 1
(a.p) .o — b-1(1 _ +)c-b-1
E, (a,b,c, 5 ) o b)fo t’71(1-1t)
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— i r 1_
P ) @ =X gy,

T 2

r=0

X1 Fy (a;,[)’

and this gives

1 1—x
f(l—xz)m‘le(“'B)(a,b;c; 5 )dx
0

_ —3@’3_ 5 fol fol (1 —eyieria - 0 (o i)

o) . 1— r
x Z ﬂ(—x) t7 dtdx.
- r! 2

Let x = cosf,1 — x = 2sin? (g), and (1 + x) = 2cos? (g) Then, in this case, the integration takes the form

1 1—x
f (1 - x2ym-1E, @8) (a, biei— )dx
0

m-1

i e [ [ (2o Q) (s G2 () v

b+r—174 _ +\c—b—1 .p._ P )
X th+T1(1 — £)eb-1 R, (a, B o) dodt
— 1 i fgfl 22m+r—1sin2m+2r—1 (9) COSZm—l (9)
ﬂ(b’c_b)rzo o Jo 2 2
b+r—-174 _ #\c—b—-1 .p._ P ) (@), g
Xt 1-1 1ﬂ<mﬁ%ﬂ_w Tﬂd%Ma

using (2) and (7), gives

1 1—x
f(l—xz)m‘le(“‘ﬁ)(a,b;c; 5 )dx
0

ﬁp(a.ﬁ) (b +1,¢c—b)(a), (l)r

= Z 2T ) Ty 2

Corollary 10.
(i) Substituting p = 0 into (37) gives the integral

1 1—x
f (1—x)m"1,F (a, b;c; )dx
0 2

1,1 a,b;m_l
=E'B(§’m) sF, (c;Zm’ )

Proof. Setting p = 0 in (37) and using (7), along with the properties of the Gamma function, yields

1 1—x
f (1—-x»)m1,F (a, b;c; —) dx
0 2

N Jamar—a P A DT (b + 1) T(C) (@) (1Y
‘Z; TCm+1) T(c+r)TD) 7! (E)

(3%)
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22m+r—2

(@), (), T(m +7r)T(m) 1 (1\"
(©), T@m+1) E(E) ’

I
NgE

<
I
=}

amar—z (@r(B)r (M), 11y
2 ©), (Zm)rﬁ(m'm) !(2) '

I
NgE

<
I
=}

By using the Legendre duplication formulae

F(2m) = —— 2231 (m)T (m + 1),

\V2m 2
then,
1 —x
(st e o
o 2
N 1@, 0 (1Y
~2 (, @m), 27 r’
1 41 @,b;m, 4
= El?(éﬁrn) SFE (C;an ’ >'
)
1 1—x
f (1 —x?)™ tg,@h (b;C; )dx
o 2
(a,8) r
_ \'o0 2m+r-2 wi 1
=270 2 B(m +r,m) B(bc=b) 1! (2) ’ ©9)
(iii)

1 al,az,...,ap 1—x
f (1 —x>)"1 LK, (bl. by, ...,bg’ 2 >dx
0
ay, Az, e, Ay, M .
1 ;
= B(E'm) p+1Fq+1 <b1' by, ..., bq' 2m ) (40)

where x € C;p < q;ai,b]- e G b]- *0,-1,-2,..;i=12,...,p;,j=12,...,q.

The next theorem considers the behaviour of the generalized Gauss hypergeometric function (GGHF) using the gamma
function.

Theorem 3.6.

lim (F(y))‘le(“'B)(a, b;v;x)
y>-n

xn+1

o (a+n+s)! (a.,B) L s
Yoo r(a)(n+s+1)!’8P b+n+s+1,-b—n)x 41

T Twr(-b-n)

Proof. Making use of (8), gives

@B (p + r,y —b)x"
Bb,y—b) TV

NP
@by =) (@),
=0

and accordingly,

lim (F(y))‘le(“‘ﬁ)(a,b; Y5 %)
y--n
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1 - B,“P (b +r1y—b)x"
= lim =" (a), i
r=-nl(y) & B(b,y — b) r!
< B(“B)(b+ry b)x ; 1
= (a)r

b,y —b) Ly nF(V)

and using (7), we obtain

— T

i (@), f L - ot (a;ﬂ;ﬁ)%dt

_ 1
X BTy = by

r

N @ [ e TP \X
_Zzoﬁotb 1(1_t)b11F1(a’ﬁ't(1—t))F

(1-8t)yY
Xylimnmdt
— N @ [ i -b-1 p_ P \X
_;motb (1_t)b lFl(a’ﬁ’t(l—t))F
1-6™"
XF(T_b)dt.

Now the substitution ¥ =n + s + 1, yields

(a)n+s+1 1 tb+n+s(1 _ t)_b_l F (aﬁ _p ) xn+s+1 x (1 - t)_n dt
4 T J, Pt -0/ (m+s+ D) T(=n—b)
LZ (@) f tb+n+s(1 )—b—n—l F (a,b’l) % xS dr 42)
[(b)[(-n—b) &~5=0 nts+l I\ Prea-0) 7 mts+)t

Again, using (7), we obtain

= x ' @nisnr B, “P(b+n+s+1,-b—n)xs
[(b)L(—n — b) — n+s+1D'°? ’ ’

X"t > (@ +n+s)!
= @B 1 b xS
@I BIN(n -5 Ls v s+ DI/ (b+n+s+1,-b—n)x
s=

The particular expressions for the generalized Gauss hypergeometric function (GGHF) and confluent hypergeometric function
(GCHF) may be obtained as special cases of formula (41). This is given in the following corollary
Corollary 11.

@
Jim (C()™" 2 Fi(a, bivix)
_ ont+1 @n+1(0)nt1 a+n+1L,b+n+ 1
=X (1) 2F1 (n +2 )' (43)
Xt w (a+n+s)/(b+n+s)! x5
N 1“(11)F(b)25=0 (n+s+1)! St (44)
()

lim (T(¥) ", B (b;¥; %)
y->-n
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xn+1

1 ,Bp(a‘ﬁ)(b+n+s+1,—b—n)x_5

61

T YsZo [(n+s+2)

4. Concluding Remarks

In this paper, we have expressed explicitly the nth derivative

of Gauss hypergeometric and confluent hypergeometric
functions in terms of the hypergeometric functions themselves.
Some new integrals involving such functions are obtained.
Many important results are also given. We hope to extend our
results for special functions in the near future.
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