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Abstract 
In this paper, a certain non-linear Black-Scholes equation which incorporates both 

transaction cost and volatile portfolio risk is obtained. A solution in Sobolev space via 

the Riesz representation theorem is proffered. Existence of the weak solution is 

established. 

1. Introduction 

Price in different markets tends to converge and this is due to the effect of arbitrage. 

The concept of arbitrage on some levels is analogous to the principle of “the invisible 

hand” of the market. Black and Scholes ([1], [2]) derived a singular equation that has 

moved the frontier of financial world to hitherto unimaginable length. In their derivation 

of this equation some basic assumptions were made: one such assumption is that there 

are no transaction costs in hedging. Since then there have been several and successful 

remodeling of the Black –Scholes equation that takes into account transaction costs. 

Accordingly, when transactions cost – directly proportional to trading- is incorporated in 

the Black-Scholes model the resulting hedging portfolio is prohibitively expensive. It is 

therefore acceptable that in the continuous-time model with transaction costs, there is no 

portfolio that can replicate the European call option transaction costs. To precede, the 

condition under which hedging can take place has to be relaxed such that the portfolio 

only dominates rather than replicates the value of the European call option at maturity. 

With this relaxation, there is always the trivial dominating hedging strategy of buying 

and holding one share of the stock on which the call is written. From arbitrage pricing 

theory, the price of an option should not be greater than the smallest initial capital that 

can support a dominating portfolio. Interesting results have evolved from this line of 

approach to pricing option without transaction cost, however, in the presence of 

constraints, in the presence of transaction costs, Soner et al [3] proved that the minimal 

hedging portfolio that dominates a European call option is the trivial one. In essence this 

suggests another way or technique to relaxing perfect hedging in models with transaction 

costs. Leland [4] used a relaxation with the effect that his model allowed transactions 

only at discrete times. By a formal δ - hedging argument, one can obtain a generalized 

option price that is equal to a Black- Scholes price but with an adjusted volatility of the 

form; 

�� � ����1 � �	
��������, 
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where � > 0 is a constant historical volatility, �	 � ��
�

�
���√∆� 

is the Leland number and ∆� is time lag. 

Assuming that inventor’s preferences are characterized by 

an exponential utility function, Barles and Soner[5] derived a 

nonlinear Black- Scholes equation with volatility � �
�����, 
, �� given by 

�� � ���  1 + "�#�	$(%&�)
������' ,� 

where "(() ≈ �3 2, �� -, (. -,  for close to the origin and ��� is 

a constant. 

Market models with transaction cost have been extensively 

dealt with (see for example Amster, et al [6], Avellanda and 

Paras [7]). A solution in Sobolev by stochastic iteration 

method for nonlinear Black-Scholes equation with 

transaction cost and volatile portfolio risk measure in Hilbert 

space had been obtained (see Osu and Olunkwa [8]). In a 

related paper, the solution of a nonlinear Black-Scholes 

equation with the Crank-Nicholson scheme had also been 

obtained (see Mawah [9] and the references therein). The 

objective of this paper is to further incorporate volatile 

portfolio risk and show that solution by 

RieszRepresentationTheorySobolev space subject to some 

boundary conditions is possible. 

2. The Model 

Transaction costs as well as the volatile portfolio risk 

depend on the time–lag between two consecutive transactions. 

Minimizing their sum yields the optimal length of the hedge 

interval –time lag (for numerical example, see references in 

[8]). This leads to a fully nonlinear parabolic PDE. If 

transaction costs are taken into account perfect replication of 

the contingent claim is no longer possible. Modeling the 

short rate  / = /(�) by a solution to a one factor stochastic 

differential equation, 

0
 = 1(2, �)0� + �(2, �)03         (2.1) 

where 1(
, �)0� represent a trend or drift of the process and �(
, �)  represents volatility part of the process, the risk 

adjusted Black-Scholes equation can be viewed as an 

equation with a variable volatility coefficient 

��� + ��(4,�)� 
�  1 − 1(
���)56' �4�� + /2��� − /� = 0,(2.2) 

where ��(2, �)  depends on a solution � = �(2, �)  and 

1 = 3  ��7�� '56
, since 

���(2, �) = ��(1 − 1(
����(
, �))56. 

Incorporating both transaction costs and risk arising from a 

volatile portfolio into equation (2.2) we have the change in 

the value of portfolio to become. 

��� + ���(4,�)� 
��4�� + /
��� − /� = (/%� + /89)
,     (2.3) 

where /%� = �|;|���√�� .√∆�  is the transaction costs measure, /8< = .�=��>
�Γ�Δ�	 is the volatile portfolio risk measure and Γ = �4��. Minimizing the total risk with respect to the time 

lag ∆� yields; 

	min∆�(/%� + /89) = -�  ��7�� '56 ���|
����|E6. 

For simplicity of solution and without loss of generality, 

we choose the minimized risk as  

FGH�∆�(/%� + /89)I6� = J2��4�K,                 (2.4a) 

with 

J = (-�)6�  ��7�� '5� ��-.                             (2.4b) 

They change in the value of the portfolio after minimizing 

the total risk with respect to time lag is given as 

��� + ��(.&L(�MN�O(4,�))56� 
��4�� + /
��� − /� = J2��4�K,(2.5) 

which can also be written as 

���� + ��2 (1` − 1(
�����(
, �))562� ����
� + /
 ���
 − /� = J2� ����
� . 
Equation 2.5 is the Black-Scholes option pricing model 

that incorporates both transaction cost and volatile portfolio 

risk measure. 

The left hand of equation (2.5) is the usually Black-Sholes 

formula. Setting 


 = 	R, �(S, T) = U(	R, �)#�0ℎ(	R) = �(S) 
we have equation (2.5) becoming; 

MWM� + ��
� (1` − 1(
����X(
, �))562� M�WMR� + / MWMR − /U = J  M�WMR� − MWMR',  

which implies; 

MWM� + ��
� (1` − 1(
����U(	R, S))56(M�WMR� − MWMR) + / MWMR − /U = J(M�WMR� − MWMR).                                  (2.6) 

Let Y = ��
� (1` − 1(
����U(	R, S))56 , then equation(2.6) 

reduces to 

MWM� + Y(M�WMR� − MWMR) + / MWMR − /U = J(M�WMR� − MWMR),       (2.7) 

or 

MZM� + Y M�ZMR� + (/ − Y) MZMR − /X = J [M�ZMR� − MZMR[,      (2.8) 

which is equivalent to that in (Mariamaetal[11]). 
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We further assume that there is no accumulated interest on 

the portfolio. Hence / = 0 and the new portfolio becomes 

−�U�� − Y ��U�S� + Y �U�S = −J \��U�S� − �U�S\ 
or 

− MWM� − Y M�WMR� + Y MWMR = J̅ [M�WMR� − MWMR[             (2.9) 

with the initial condition 

X(S, 0) = max	(1 − 	&R , 0) 
−J = J̅. 

Our interest in this paper is to show that a solution of the 

equation  

− MWM� − Y M�WMR� + Y MWMR = J̅`  MWMR , M�WMR�'a × (0, c)   (2.10) 

U(S, 0) = Ud(S)e�S ∈ a                   (2.11) 

Is possible using the RieszRepresentation theorem of 

Sobolev space.	
3. The Sobolev Space 

We are considering functions for which all the derivatives, 

in distribution sense belongs to ��. Let Ω ⊂ ℝj and let U be a 

function of �� .It can be identified  to a distribution on a as a 

function of �klm. (	a), also denoted as	U	and we can define its 

derivative �U as distribution on 	a, since equation (2.10) is  

not an element of ��(	a). Hence, we introduce the Sobolev 

space.the easiest way to determine a function is in a Sobolev 

space is to explicitly compute the function's weak derivative. 

The study of Sobolev Spaces revolves around the concept of 

the weak derivative. Hence, we begin by setting up notation 

for this derivative and motivating its definition. 

Definition 3.1: A multi-index n  is an n-tuple n =(n., … , np), used to concisely denote the partial differential 

operator 

qr(U) = 0r
0S.r5 …0Sprs (U). 

We define |n| = n. +⋯+ np to be the degree of n. 
Definition 3.2: For two multi-indices, n, uwe define the 

following : 

1) n ≤ uHwnx ≤ ux , we/#yy	1 ≤ H ≤ � 

2) If n ≤ u ,we define n − u = z,3ℎ	/	z = (nx −ux , … , np − up) 
3) n! = n.! n�! …np! 
Let Ω  be a bounded open subset of ℝp . The weak 

derivative for some function U ∈ |.(Ω)  is defined by 

integrating against an arbitrary ∅ ∈ |m~(Ω).  Because our 

function u has continuous derivatives, we can integrate by 

parts to obtain the following: 

� U
�

�∅�Sx 0S = U∅ΙM� − � �U�Sx ∅0S�
= −� �U�Sx ∅0S�

 

(�	�#U2		∅	K#�H2ℎ	2e�	�ℎ		�eU�0 ary) 

We see immediately that by repeated integration by parts 

we can generalize this result to a partial differential operator n  of arbitrary degree, so long as we take U ∈ ||r|(Ω)  and 

account for the parity dependence of the minus sign: 

� Uqr∅0S = (−1)|r|� � qrU∅0S.�        (3.1) 

If U ∈ ||r|(Ω) , the above formula is valid for every ∅ ∈ |m~(Ω). The notion of the weak derivative asks if this 

formula is valid when U is not in ||r|(Ω). We insists that u be 

locally integrable function (that is, it be integrable on 

compact sets), because otherwise the left hand side of the 

above equality is meaningless. The right hand side of the 

equality poses an even bigger problem .How can we define qrU  if U  is not in ||r|(Ω) ? We can no longer  use the 

traditional analytic tools to derive the correct solution to this 

equation ,so instead we use this apparent ambiguity to define 

the weak derivative .In the definition ,qrU  is replaced by K ∈ �<(Ω)  and we say K	 satisfying the equality for every ∅ ∈ |m~(Ω) is the weak derivative of U. 

Definition3.3: Let 1 ≤ � ≤ ∞  and k be a nonnegative 

integer.The sobolev Space ��,<(Ω) consists of all function U: Ω → ℝ, u ∈ L���� (Ω) such that each weak derivative  qrU 

with |n| ≤ Y exists and belong to �< .That is, 

��,<(Ω) = �u ∈ L���� (Ω)�‖qrU‖��(�) < ∞,∀	|n| ≤ Y� (3.2) 

Similarly, the space W����,�(Ω) consists of the function u as 

above for which qrU  with |n| ≤ Y  exists and belong to L���� (V), where � is an arbitrary compact subset of Ω. 
Lemma 3.1: Given U ∈ ��,<(Ω) and ∈ |m~(Ω)  , UK ∈��,<(Ω) . 
Proof: Unfortunately, the easiest way to determine a 

function is in Sobolev space is to explicitly compute the 

function’s weak derivative. To this end, we guess that the 

derivative will have the following form as a basis for 

induction on |n|: 
qr(UK) = ��nu�q�Kqr&�U.� r  

Fix∅ ∈ |m~(Ω)  .Note that because ∅	#�0	K   are already 

differentiable ,their weak derivative  necessarily obeys the 

product rule for classical derivatives .So if |n| = 1, 

� UK
�

qr(∅)0S = � Uqr(∅) − Uqr(K)∅	0S
�

= −��qr(U)K + Uqr(K)�∅	0S
�

, 
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where we have used integration by parts and the fact that K∅ is still compactly supportd only on Ω to obtain the final 

equality. We know that qrU  exists (as U ∈ ��,<(Ω)  and qr(K)	SH2�2	�#2	K ∈ |m~(Ω)�. Thus, the result holds in the 

base case .Assume y < Y  and that the result holds for all 

|n| ≤ yand all functions K ∈ |m~(Ω). |ℎee2	 a multiindex n 

with |n| ≤ y + 1.Then, we can decompose |n|  in terms of 

some other multiindicies u, z  satisfying n = u + z  with |u| = y, |z| = 1. Then, for any K, ∅ ∈ |m~, 
� KU
�

qr(∅)0S = � UK
�

q�(q¡∅)0S = 	(−1)|�| � � �u��� ��
q�Kq�&�Uq¡∅0S 

= (−1)|�|¢|¡| � ��u��� ¡�
q¡�q�Kq�&�U�∅0S 

= (−1)|r| � � n�'� r�
q�Kqr&�U∅	0S 

which is the desire result. 

In the following theorem, we characterize the dual of ��,<(Ω), for all 1 ≤ � < ∞. Though this process is difficulty 

for many function space, clever application of the Riesz 

Representation Theorem and use of functional analysis make 

the following characterization quite direct. 

Theorem 3.1: (Riesz’s Representation Theorem in �.,<(Ω) ) Let 1 ≤ � < ∞  and let �, = <<&..  Then every � ∈ ��.,<(Ω)�∗ can be characterized in the following way: 

There  exist wd, . . . , w¤ ∈ �<¥ such that 

�(U) = � wdU�
+� �U�Sx wx

¤
x¦. 0S 

for all U ∈ �.,< and 

‖�‖�§5,��∗ = ¨�‖wx‖��©(�)<¥~
x¦d ª

5�©
 

Proof: Define  a function 

c:�.,< → �9(Ω, ℝ¤¢.) 
U ↦ �U, �U�S. , … , �U�S¤� 

Because the first coordinate of the image is exactly the 

corresponding element of the domain,we see that this map is 

injective and that the pre-image of an open set will be 

open,so that the function is continuous. Also, 

‖c(U)‖����,ℝ¬5� = ® � |U|< +�¯�U�Sx¯
< 0S¤

x¦.ℝ¬5
°

5�
 

For all U ∈ �.,<, so T is norm preserving .We know that �.,< is a Banach space,so  it must be closed.Hence,by the 

norm preserving property, ± = c��.,<(Ω)� must be closed 

in �<(Ω, ℝ¤¢.). Given a linear functional � ∈ �.,<, we now 

define a linear functional on ±. 

�.: ± → ℝ 

� = (�l , … �¤) ↦ ��c&.(�l, … �¤)� 

Now c&.		 is obviously linear, and L is linear by definition, 

so as a composition of linear maps �. is linear and because c&.  and L are bounded, their composition �.  must be 

bounded and thus is continuous (a linear functional is 

bounded if and only if it is continous). Finally, because T 

preserves the norm, we have that: 

‖�.‖²¥ = ‖�‖�§5,��∗ 
We are now free to apply the Hahn-Banach theorem and 

extend �. as a continous linear operator to: 

�.³ = �<(Ω, ℝ¤¢.) → ℝ 

Satisfying 

´�.³´����,ℝ¬5� = ‖�.‖²¥ = ‖�‖�§5,��∗ 
We now apply the Riesz Representation Theorem in �<(Ω, ℝ¤¢.)  and conclude that there exist functions wd, . . . , w¤ ∈ �<(Ω) such that 

�.(�) = � wd(S)�d(S) +�wx(S)�x(S)0S¤
x¦.�

 

For all � ∈ �<(Ω, ℝ¤¢.) and that 

‖�‖ §5,�(�)'∗ = ´�.³´����,ℝ¬5� = ¨�‖wx‖��©(�)<¤¢.
x¦d ª

5�©
 

By identifying the above functions �l , … , �¤  with an µ + 1 − �U�y	  of the form (U, MWMR¶ , … , MWMR¬)  ,we obtain the 

desired result: 

�(U) = � wd(S)U(S) +�wx(S) �U�Sx 0S.
¤
x¦.
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Theorem 3.2: (Lax-Miolgram) Let H be a Hilbert space 

and ·:¸ × ¸ → ℝ  be a bilinear mapping satisfying the 

following inequalities: 

1) There exists n > 0  such that |·¹U, Kº| ≤ n‖U‖‖K‖  for 

all U, K ∈ ¸, 
2) There exists u > 0  such that u‖U‖� ≤ ·¹U, Uº  for all U ∈ ¸. 
Then if w: ¸ → ℝ is a bounded linear functional on ¸,there 

exists a unique element U ∈ ¸ such that 

·¹U, Kº = 〈w, K〉 
For all K ∈ ¸. 
Note that we cannot directly apply the Riesz 

Representation Theorem because we do not know that our 

bilinear form is symmetric (ie it is possible that ·¹U, Kº ≠·¹K, Uº). 
Proof .By the assumed inequalities, we see that for a fixed 

element U ∈ ¸, the mapping K ↦ ·¹U, Kº is a bounded linear 

functional on H .Here we can directly apply the Riesz 

Representation Theorem to fine an element U ∈ ¸ such that 

·¹U, Kº = (3, K)we/K ∈ ¸. 
We define a mapping J:¸ → ¸  by U ↦ 3,  where 3  fits 

the above definition.This allows us to write  

·¹U, Kº = (JU, K)(K ∈ ¸). 
We claim that A is a bounded linear operator .It is easy to 

see that the operator is linear: take ¾ ∈ ℝ, �, U, K ∈ ¸. Then 

(J(¾� + U), K) = ·¹¾� + U, Kº = ¾·¹�, Kº + ·¹U, Kº 
= (¾J�, K) + (JU, K) = (¾J� + JU, K), 

Proving linearity. We can apply the first inequality 

required of bilinear form B to prove boundedness: 

‖JU‖� = (JU, JU) = ·¹U, JUº ≤ n‖U‖‖JU‖ 

So, ‖JU‖ ≤ n‖U‖ for all U ∈ ¸, and so by definition A is 

bounded. We now apply the other assumed inequality to 

show that A is injective and has a closed range in H .This 

second criterion will be used later to show that our function 

is surjective .Directly applying the second assumed inequality, 

u‖U‖� ≤ ·¹U, Uº = (JU, U) ≤ ‖JU‖‖U‖. 
Hence, 	u‖U‖ ≤ ‖JU‖ . If A sent some U ≠ 0	�e	0, this 

inequality would be contradicted. This is enough to show 

injectivity .To show that the range is closed, choose some 

convergent sequence FJUpI → 3 . Now, u‖Up − U¿‖ ≤ ‖JUp − JU¿‖ → 0. So FUpI is a convergent sequence in ¸ 

so U¿ → U  in ¸  and thus by continuity, limp→~ JUp = 3. 
Hence, the range of A is closed in H because JU = 3. 

We now show that the range of J, denoted	=(J) is in fact 

all of ¸ and hence that our Map J is a bijection.We Know 

that the range of J is closed.Suppose that the range is not all 

of ¸ . Then there exists a nonzero element 3 ∈ ¸  with 3 ∈ =(J)Á. But this implies that 

u‖3‖� ≤ ·¹3,3º = (J3,3) = 0, 
which is a contradiction. 

Again we can apply the Riesz Representation Theorem to 

find a U ∈ ¸ such that 

〈w, K〉 = (3, K) 
For all K ∈ 3.But then because A is bijective, we can find 	U ∈ ¸ such that JU = 3.this gives 

·¹U, Kº = (JU, K) = (3, K) = 〈w, K〉. 
This is exactly what we needed to show.All that is left is 

uniqueness and we prove this with a typical contradiction 

argument. Suppose there exist �, U ∈ ¸ satisfying the above 

equation. Then 

·¹U, Kº = 〈w, K〉 = ·¹�, Kº. 
We conclude that ·¹U − �, Kº = 0,	 for all K ∈ ¸.  Setting K = U − � we see that 

u‖U − �‖� ≤ ·¹U − �, U − �º = 0. 
We defined a weak solution of equation (2.10) in an 

analogous way to our formulation of weak derivatives.That is 

we integrate equation (2.10) against K ∈ |m~(Ω)  and 

determine for which the function U	 the resulting integral 

equality holds.That is,we wish to fine a function u satisfying , 

� ��U�� K + Y �U�S �K�S − YU �U�S� 0S = −
�

J̅ � ` �U, �U�S� �K�S 0S
�

we/#yyK ∈ |m~(a), 
(where  U = MWMR) 

By density of |m~(a)  in ḑ.(Ω) , choosing K ∈ ḑ.(Ω)  in 

the above process will yield the same result. 

Definition 3.4: The bilinear form ·¹. , º associated with a 

divergence form linear operator L is defined by  

·¹U, Kº = � ��U�� K + Y �U�S �K�S − YK �U�S� 0S�
 

Definition 3.5: We say that U ∈ ḑ.(Ω) is a weak solution 

of equation 2.10 

−�U�� − Y �U�S �K�S + YU �U�S = J̅ ��S ` �U, �U�S� (S, �) ∈ Ω	 × (0, c) 
U(S, 0) = Ud(S) 

If 

·¹U, Kº = (w, K) 
for all K ∈ ḑ.(Ω), where (.,.) denotes the inner product in ��(Ω). 
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4. Main Result 

Theorem 4.1; Let 	U, K ∈ ḑ.(Ω), then there exist constants n, u > 0	 and 	z ≥ 0 such that 

(1)|·¹U, Kº| ≤ n‖U‖ÃÄ5(Å)‖K‖ÃÄ5(Å), #�0	, 

(2)‖U‖ÃÄ5(Å)� ≤ ·¹U, Uº 
Proof: The first inequality is given by direct computation, 

although we do need a bit of creativity 

|·¹U, Kº| = �  MWM� K + Y MWMR MOMR − YU MOMR' 0S =� − J̅ � `  U, MWMR' MOMR 0S.�                                      (4.1) 

By (4.1) we have 

� �U���
K0S + � �Y �U�S �K�S + YU �K�S��

0S = −J̅ � ` �U, �U�S� �K�S 0S�
. 

Thus 

[� MWM�Å K0S[ ≤ [�  Y MWMR MOMR + YU MOMR'Å 0S[ + −J̅ [� `  U, MWMR' MOMR 0SÅ [. 
By Holder inequality, 

[� MWM� KÅ 0S[ ≤ Y �� [MWMR[�Å 0S�. �⁄ �� [MOMR[�Å 0S�. �⁄ + Y  � |U|�Å 0S'. �⁄ �� [MOMR[�Å 0S�. �⁄ + �� [`  U, MWMR'[� 0SÅ �. �⁄ �� [MOMR[�Å 0S�. �⁄
  

 

Since ‖K‖ÃÄ5(�) ≤ 1, using the assumption 

`(�, Ç) ≤ |�| + |Ç| 
And the Poincare’s inequality we deduce 

È� �U��Å
K0SÈ ≤ n‖U(�)‖ÃÄ5(Å) 

where 	n	is a constant.so 

É�U�� (�)ÉÃÊ5(�) ≤ n‖U(�)‖ÃÄ5(Å) 
Therefore, 

� É�U�� (�)ÉÃÊ5(Å) 0� ≤ n
�

�‖U(�)‖ÃÄ5(Å)�
0� = n‖U(�)‖��(�)�  

Then	this	implies	
‖U‖��(Å) ≤ n‖U(�)‖��(Å) 

From	this	it	is	easy	to	see	that		
u‖U‖ÃÄ5� ≤ ·¹U, Uº + z‖U(�)‖��(Å)� . 

While this is a nice result, ifz ≠ 0 we do not satisfy the 

hypothesis of the Lax- Milgram Theorem.In the following 

proof of the existence theorem, we will have to manufacture 

a new bilinear form which does satisfy the hypothesis. 

Theorem 4.2 (First Existence Theorem for weak solutions): 

Let 	�U = − MWM� − Y MWMR MOMR + YU MWMR 	#�0	w = J̅ MMR `  U, MWMR'	, 
there exists a number z ≥ 0  such that for each 1 ≥ z  and 

each function w ∈ ��(Ω) there exists a unique weak solution U ∈ ḑ.(Ω) of the boundary –value problem: 

Õ�U + 1U = wH�	ΩU = 0		e��a . 

Proof: Choose z to be the z from the second inequality of 

the energy estimates theorem, and choose any 1 ≥ z . We 

defined the following bilinear form. 

·L = ·¹U, Kº + 1(U, K), we/U, K ∈ ḑ.(Ω), 
Where (. , . )  denotes the inner product in ��(a) .We see 

that this bilinear form corresponds to the operator �LU = �U + 1U  and that ·L = ¹. , . º  satisfies the hypothesis of the 

Lax-Milgram Theorem.Now fix w ∈ ��(Ω)  and set 〈w, K〉 = (w, K)��(Å) . This is a bounded linear functional on ��(Ω) 
(because the inner product is continuous and linear), and 

hence is a bounded linear functional on ḑ.(Ω) as well. We 

apply the Lax-Milgram Theorem and fine a unique U ∈  

ḑ.(a) satisfying 

·L = ¹U, Kº = 〈w, K〉 
For all K ∈ ḑ.(a). By definition U is a weak solution of 

equation 2.10. 

5. Conclusion 

The Sobolev spaces appear naturally in the solution of 

problem (2.10) in the sense that |m~(Ω) can be extended by 

continuity to	 ḑ.(Ω). We characterize the dual of ��,<(Ω), 

for all  1 ≤ � < ∞. Though this process is difficult for many 

function space. The Riesz Representation Theorem in 

Sobolev space was established and we were able to find the 

weak solution of equation 2.10 using theRiesz representation 

theorem in Sobolev space.Existence of the weak solution is 

established. 
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