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Abstract 
Optimization problems are not only formed into a linear programming but also nonlinear 

programming. In real life, often decision variables restricted on integer. Hence, came the 

nonlinear programming. One particular form of nonlinear programming is a convex 

quadratic programming which form the objective function is quadratic and convex and 

linear constraint functions. In this research designed a completion of a convex quadratic 

integer programming with Karush Kuhn Tucker conditions which then reduces the integer 

convex quadratic programming into a linear complementary problem. Then used a 

modified simplex method and Branch and Bound method to obtain the optimal and integer 

solution and fulfill all the constraints. The obtained solution by using KKT conditions is a 

global optimum solution due to the problem studied is convex. This method is effective in 

finding integer solution with result that is not too far from the initial solution to the 

problem which is quite simple. 

1. Introduction 

Many problems in economic, industrial, engineering and others can be expressed in the 

form of a mathematical model that is nonlinear programming. An optimization problem 

called nonlinear if the objective function and constraints have nonlinear form on one or 

both of them [9]. Nonlinear programs used in minimizing portfolio risk with a certain 

mean return [4]. Similarly to the paper industry, applications integer nonlinear 

programming model emerged as a nonlinear cutting stock problem [12]. Quadratic 

programming is a nonlinear program problem with a quadratic objective function and 

linear constraints. If the objective function is convex then the problem has a local 

minimum which is also a global minimum [17]. 

An optimization technique that can be used to search the optimum point of a constrained 

problem is Karush Kuhn Tucker (KKT) conditions. KKT conditions can be used to find 

the optimum solution of a function regardless the linearity [2]. If using KKT conditions in 

resolving convex problems, then the optimum KKT point is a global optimum. Convex 

quadratic program can be reduced to a linear complementarity problem using Karush 

Kuhn Tucker conditions as a condition in determining the optimum point of a problem [5]. 

Many optimization problems where the decision variables are restricted to integer 

variables. In the nonlinear optimization problem and all the variables are restricted in 

integers, then the problem stated as pure integer nonlinear programming [10]. Quadratic 

integer programming is part of nonlinear integer programming where the objective 

function is quadratic and the decision variables are restricted to integers [19]. 
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Several methods have been used in solving problems of 

integer optimization. Branch and Bound is one of the methods 

commonly used to resolve the integer linear programming. 

There are two stages in this method, branching and bounding. 

At the branching stage, the problem is partitioned into several 

sub problems by adding constraints without changing the 

original integer solution set. At the bounding stage, the 

objective function value of an integer solution sub problem 

determined to be the bound value of the objective function of 

other sub problems [13]. Branch and bound method is then 

applied to the convex quadratic programming. YoonAnn [19] 

solve the problem in the binary quadratic programming in 

which the value of each decision variable is 0 or 1. Buchheim 

[3] uses the branch and bound method in solving a convex 

quadratic programming with the constraints that are also 

convex. 

2. Pure Integer Convex Quadratic 

Programming Problems 

In this paper, the issues discussed are the problems modeled 

into convex quadratic programming model and where all 

decision variables are restricted to integers and the inequality 

constraints form. The general form of pure integer quadratic 

programming is as follows: 
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where � =  1,2, . . . , #  and $ =  1,2, . . . , � . � ��	  is an 

objective function that is convex. 

2.1. Convexity 

2.1.1. Convex and Concave Functions 

Convexity often used in the scope of nonlinear 

programming [1]. The set of convex can be seen as a 

collection of points with the convex function as the upper 

bound and concave function as lower bound. 

A function ���	 is called a convex function if for any two 

points �% and �%% where �% < �%%, 
�[(�%% + �1 − (	�%] ≤ (���%%	 + �1 − (	���%	 

for all values of ( that satisfies 0 < ( < 1. That function is a 

strictly convex if ≤ can be replaced by <. 
Contrarily, for the concave function. ���	 is convex if for 

every pair of points on the graph ���	 , the segment line 

connecting these two points on or above the graph ���	 and 

contrarily with a concave function. 

2.1.2. Convex and Concave Functions Several 

Variables 
The concept of convex and concave functions of one 

variable can be generalized to more than one variables 

function. That way, when ���	  to be ����, �+, … , ��	  the 

definition still applied when � become ��, �+, … , ��. 

Line segment that connecting the two points (��% , �+% , … , ��% 	 

and (��%%, �+%%, … , ��%% 	 is the sum of points ���, �+, … , ��	 =[(��%% + �1 − (	��% , (�+%% + �1 − (	�+% , … , (��%% + �1 − (	��% ] , 

where 0 ≤ ( ≤ 1. 

So the line segments in #-dimensional space is a direct 

generalization of line segments in two-dimensional space. ����, �+, … , ��	  is a convex function if for every pair of 

points on the graph ����, �+, … , ��	  line segment that 

connecting the two points are all above or right on the graph of 

the function ����, �+, … , ��	 . That function is a strictly 

convex if line segments are all above the graph except for the 

two end points. Contrarily with concave and strictly concave 

functions. 

The second partial derivatives are used to test a function ����, �+, … , ��	 convex or not. A function ����, �+, … , ��	 is 

convex if and only if the matrix of second partial derivatives 

or Hessian matrix is semi-definite positive and the principal 

minor determinants are all nonnegative. 

Hessian matrix is a matrix whose entries are the second 

partial derivative of a function. This matrix is used to test 

whether a function is a convex function or not. Suppose a 

function ����, �+, … , ��	  with �  variables ���, �+, … , ��	 , 

then its Hessian matrix can be formed as follows. 

-�.	 = / 0+�012 . 013
4 = 5 ���  ⋮���  

��+ ⋯ ���⋮ ⋱ ⋮��+ ⋯ ���
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where � = 1,2, … , # and $ = 1,2, … , � 

2.2. KKT Conditions of Quadratic 

Programming 

From the general form of quadratic problems above, formed 

following Lagrange function 
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where <�+  and  
+  are slack variables that added to each 

constraint. (�  are the value of the Lagrange multipliers for 

each constraint. >
  is Lagrange multiplier values for every 

constraints where �
 ≥ 0.  The Karush Kuhn Tucker 

conditions obtained by differentiating partially Lagrange 

function for each decision variable and equating to 0. 
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�
 , <� ,  
 , (� , >
 ≥ 0             (2.6) 

The conditions (�<� = 0  and >
�
 = 0  called as 

complementary constraint conditions. (�<� = >
�
 = 0 

implies that variables �
 , >
 and <� cannot be basis variables 

simultaneously because one of every decision variable must 

be 0. 

2.3. Modified Simplex Methods 

Two-phase simplex method has been modified to solve the 

problems of nonlinear programming. The steps for each 

iteration of the simplex method is as follows: 

1. Change inequality constraints into the equations by 

adding slack variables <�+ and  
+ as described above. 

2. Form Lagrange function and obtained The Karush Kuhn 

Tucker conditions. 

3. Add artificial variables C
 , $ = 1,2, … , �  the Karush 

Kuhn Tucker conditions gained at step 3. 

4. Form the objective function in linear programming form 

as follows 
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1. Obtain a feasible solution to the problem 
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2. Solve with modified simplex method to obtain the 

optimal solution to the above problems. Modifications in 

the simplex method is the change in the selection of 

variables that will go to be the basis. 

Limited Entering Rules: In the selection of entering basis 

variable, it is not allowed to include non basis variables that 

have a complementary form of basis variable. The option 

should be taken from other non basis variables agree with the 

usual criteria for the simplex method. 

After forming the Lagrange function and obtain the KKT 

conditions in step 2, then the equations used as the new 

constraints of linear problem that exist in step 5. Due to the 

quadratic objective function, it can be ascertained the 

equations derived from the KKT conditions be linear 

equations. If the objective function is a polynomial of higher 

orde then it cannot be ascertained and require further 

research. The addition of artificial variables in step 3 and 

then making a linear objective function of the problem in step 

5. The number of artificial variables added must be in 

accordance with the number of constraints derived from the 

KKT conditions in step 2. Thus forming a linear 

programming in step 5. 

The purpose of this method certainly find an optimal 

solution to the linear programming that is minimizing the sum 

of artificial variables with the complementary constraints 

must be completed for each iteration. 

2.4. Branch and Bound Algorithm 

Branch and Bound Algorithm for pure integer quadratic 

programming is as follows: 

1. Initialization 

State the initial problem of pure integer convex quadratic 

programming as an element of K  is a convex quadratic 

problem is not an integer, K = :. Set the upper bound of D = +∞ and lower bound D = −∞. 

2. Termination Test 

If K = ∅ , stop the process. The process is terminated 

when the integer convex quadratic problem has been resolved 

and obtained for whole solutions are integers. Then �∗ that 

produces the best value D is an optimal solution. 

3. Problem Selection and Relaxation 

Select and remove the pure integer convex quadratic 

programming problem of K. Solve relaxation with modified 

simplex method described previously. Set D�  as the optimal 

objective value of relaxation and ��  as a solution of the 

relaxation. If D = −∞, then the set D = D� . 
4. Pruning 

a. If D� ≥ D, go to step 2. 

b. If D� < D and �� are feasible integres, then D� = D 

and go to step 2. 

c. Otherwise go to step 5. 

5. Branching 

Let {<�
}
��
�Q
 be a feasible division of constraints <�  of 

the problem pure integer convex quadratic programming to 

the bound <�
 . Add the constraints to K and go to step 2. D�  is the lower bound of the optimum value of sub problem. 

The value of this sub problem is used to renew the D� . 

Problems in step 5 are called sub problems. Usually the 

division of the problem using the form of connective variables �� ≤ � and �� ≤ � + 1 to variable �� and � is integer. The 

constraints being resolved by the modified simplex method 

described earlier. 

Branch and bound algorithm is a common method used to 

obtain a solution which is restricted to integer, both in linear 

and nonlinear program. However, this algorithm resulted in 

the `long process. This is because the search for solutions to 

be traced continuously until the result is entirely an integer. 

Then, it results in efficiency in turnaround time. 
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Figure 2.1. Flowchart of Branch and Bound Algorithm. 

3. Result and Discussions 

Example of the implementation on the methods on 

nonlinear problem is as follows, 

Min: ��� − 18	+ � ��+ ) 16	+ 

S.t: 2�� � �+ � 15 

��, �+ � 0 ��� ������  

Formulate the Lagrange function: 

: 
 ��� ) 18	+ � ��+ ) 16	+ � (��2�� � �+ � <�
+ ) 15	

) >��)�� �   �
+	 ) >+�)�+ �  +

+	 

and reduce the above problem into linear programming with 

Karush Kuhn Tucker condition is then solved with a modified 

simplex method 

Min: D 
 C� � C+ � CU 

S.t: 2�� � 2(� ) >� � C� 
 36 

2�+ � (� ) >+ � C+ 
 32 

2�� � �+ � <� � CU 
 15 

��, �+ � 0 ��� ������  

yield the following results 
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Y
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�XZ

�W
 with D 
 273

X

Y
. While the 

other decision variables are 0, ie >� 
 >+ 
 <� 
 0. 

Table 3.1. Modified Simplex. 

C basic 
0 0 0 0 0 0 1 1 1 

B 
x1 x2 λλλλ1 µ1 µ2 S1 A1 A2 A3 

0 λ1 0 0 1 )
2

5
 

1

5
 )

2

5
 

2

5
 

1

5
 )

2

5
 

148

10
 

0 x2 0 1 0 
1

5
 )

1

5
 

1

5
 

1

5
 

2

5
 

1

5
 

43

5
 

0 x1 1 0 0 )
1

10
 

1

5
 

2

5
 

1

10
 )

1

5
 

2

5
 

32

10
 

Zj − Cj 0 0 0 0 0 0 -1 -1 -1 0 

Feasible and optimal solution obtained has a non-integer 

values for the variables that are restricted integer, then the 

problem will be branched in one of variable is not an integer. 

Selection of variables to be branched greatly affect the 

efficiency of time and number of steps that must be solved. 

3.1. Branching in ab 

 

Figure 3.1. Flowchart of branching in ��. 

By selecting branching variable in �� , obtained new 

constraints from bounding process, that are sub problem 1 

with addition constraint �� � 3  and sub problem 2 with 

constraint �� � 4. With the same process obtained the result 

for sub problem 1 is �� 
 3, �+ 
 9, (� 
 14, (+ 


2 with D 
 274. While the other decision variables are 0, i.e 

>� 
 >+ 
 <� 
 <+ 
 0. 

 

Figure 3.2. Flowchart of Sub Problem 1. 
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Then sub problem 2 obtained �� = 4, �+ = 7, (� = 18, (+ = 8 and D = 277. While the other decision variables 

are 0, i.e >� = >+ = <� = <+ = 0. 

 

Figure 3.3. Branch and Bound Algorithm Branching in ��. 

From the value of D from two sub problems above can be 

be concluded that D = 274 is a minimum optimum solution 

satisfies two decision variables, that �� = 3 and �+ = 9 are 

integer with (� =  14 and (+ = 2. This means that change in 

the objective function is directly proportional to the change of 

the first constraint with Lagrange multiplier factor of 14. As to 

the second constraints is 2. 

3.2. Branching in ag 

By selecting branching variable in �+ , obtained new 

constraints that are sub problem 1 with addition constraint �+ ≤ 8 and �+ ≥ 9 to sub problem 2. With the same process 

obtained the result for sub problem 1 is �� = h
+ , �+ = 8, (� =

+i
+ , (+ = U

+  ��� D = 274,2. While the other decision variables 

are 0, i.e >� = >+ = <� = <+ = 0. Due to sub problem 1 gives 

a result real variable, then done the next branching �� ≤ 3 

and �� ≥ 4 . For the additional constraint �� ≤ 3 

obtained �� = 3, �+ = 8, <� = 1, (+ = 16, (U = 30 ��� D =289. While the other decision variables are 0, i.e >� = >+ =(� = <+ = <U = 0 . Then the additional constraint �� ≥ 4 

obtained �� = 4, �+ = 7, (� = 10, <+ = 1, (U = 8 ��� D =277. While the other decision variables are 0, i.e >� = >+ =<� = (+ = <U = 0. Sub problem 2 gives a result �� = 3, �+ =9, (� = 15, (+ = 1 ��� D = 274 . While the other decision 

variables are 0, i.e >� = >+ = <� = <+ = 0. 

From these four nodes obtained integer solution for twice 

branching. However, for �+ ≤ 9  gives more minimum 

solution. Hence, the optimum solution for the problem is �� = 3; �+ = 9  and D = 274  with (� =  15 and (+ = 1 . 

This means that change in the objective function is directly 

proportional to the change in the first constraint with Lagrange 

multiplier factor of 15. As to the second constraint is 1. 

From the solving process by branching in �+ above 

provide more iterations than in �� at the beginning of the 

calculation. From all solving performed at each node, the 

optimal solution that satisfies all the constraints obtained in 

the second sub problem. 

From the completion of the above process is obtained that 

the branch and bound method has resulted in the settlement 

process to be traced any node that might be to obtain the right 

optimal solution. 

By selecting the smallest variable to branch provides 

shorter steps than the greater one. So the selection of variables 

to be branched greatly affect the efficiency of Branch and 

Bound algorithm. 

KKT conditions provide a global optimal solution in a 

convex quadratic program. Combine KKT conditions for 

reducing the convex quadratic nonlinear program problem and 

then solved by a modified simplex method and branch and 

bound method for finding integer solution provide excellence 

solution are not far from the initial optimal solution. Hence it 

is a very effective to solve quite simple problems. 

However, for the problems which contains more decision 

variables and constraints, it is not recommended. This is 

caused by the uncertainty of the number of iterations to be 

solved. Therefore, it would lead to inefficiency completion 

time. The use of software also requires quite large storage and 

the long turnaround time (CPU time). 

 

Figure 3.4. Branch and Bound Algorithm Branching in �+. 

4. Conclusion 

In integer convex quadratic programming problem, KKT 

conditions reduce nonlinear problem to be linear then change 

them into linear constraints and form linear objective function 

with artificial variables then is solved with modified simplex 
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method. 

In modified simplex method attention is needed at the 

limited entering rules that satisfies complementary constraints. 
Branch and Bound method gives a role in forming new 

constraints by branching and bounding obtained from real 

optimum solution. Strategy in selecting branching variables at 

the initial completion in branch and bound method would lead 

to different completion steps and cause at the efficiency 

turnaround time of the completion. Hence, convexity test is 

required at the beginning of the process. Using KKT condition 

and branch and bound method in solving simple integer 

convex quadratic programming gives a result that is not far 

from the initial optimum calculation. KKT conditions provide 

a global optimum solution for convex problems. In this paper 

the problem been discussed is limited on integer convex 

quadratic programming with two decision variables. Hence, 

further research and the use of software such as Matlab are 

also required for more complicated problems such as 

convcave or polynomial problems. In addition, the method is 

expected to be applied directly on the real world problems. 
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