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Abstract 
In this paper, we study the properties boundedness and compactness of product of 
extended Cesáro operator and composition operator from the Bloch-type spaces Bα

 to 
QK(p,q) spaces on the unit ball of Cn Moreover, necessary and sucient conditions are given 
for The product of extended Cesáro operator and composition operator from the 
Bloch-type spaces Bα

 to QK(p,q) spaces to be bounded and compact. 

1. Introduction 

Let 1}|<|:{= zz nCB ∈  the open unit ball in ,nC  )(BH  denote the class of all 

analytic functions in .B  Let dA  denote the Lebesegue measure on B  normalized so that 
1.=)(BA  

For ),(BHf ∈  let 

)(=)(
1=

z
z

f
zzf

k

k

n

k

'

∂
∂

∑  

be the redial derivative of f. 
Definition 1.1 (see [20]) Let f  be an analytic function in B  and ∞<<0 α . The 

α -Bloch space αB  is defined by 
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the little α -Bloch space α
0B  is given as follows 
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The spaces 1B  and 1
0B  are called the Bloch space and denoted by B  and 

0B  

respectively (see [1]). 

Let the Green’s function of B  be defined as ,
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Definition 1.2 (see [17]) Let )[0,)[0,: ∞→∞K  be a right continuous and nondecreasing function. For 

.<<2<<0 ∞−∞ qandp  The space ),( qpQK
 is defined by 
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then ).,(,0 qpQf K∈  

Wulan and Zhou in [18] mentioned the following properties 
of these spaces: 

(a). For 0,=2,= qp  we obtain KK QqpQ =),(  (see [4, 11, 
18]). 

(b). For 0,=2,= qp  and ,=)( pttK  we obtain 

pK QqpQ =),(  (see [2]). 

(c). For ,=)( sttK  then ),,(=),( sqpFqpQK  (see [3, 19]). 

A linear composition operator 
φC  is defined by 

)(=)( φφ �ffC  for f  in the set )(BH  of analytic functions 

on .B  The study of composition operator φC  acting on 

spaces of analytic functions has engaged many analysts for 
many years (see [3, 11] and others). 

The problem of boundedness and compactness of 
φC  has 

been studied in many Banach spaces of analytic functions and 
the study of such operators has recently attracted the most 
attention (see [9, 10, 16] and others). 

Let ),(BHh∈  the extended Cesáro operator 
hT  with 

symbol h  is the operator on ),(BH  
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This operator is called generalized Cesáro operator, which 
has been studied in (see [5, 6, 7] and other). 

Here, we consider the product of extended Cesáro operator 

hT  and of composition operator φC , which are defined by 

1

0
( ) = ( ( )) ( ) , ( ), ( [12]).'

h

dt
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In this paper we characterize the boundedness and 
compactness of the product 

φCTh
 of extended Cesáro operator 

and composition operator from Bloch-type space to ),( qpQK
 

spaces on the unit ball of nC . 

2. Auxiliary Results 

In this section we state several results, which are used in the 
main result proofs. 

Definition 2.1 The operator ),(: qpQBCT Kh →α
φ

 is said to 

be bounded, if there is a positive constant C such that 

αφ Bqp
K

Qh fCfCT |||||||| ),( ≤  for all .αBf ∈  

Definition 2.2 The operator ),(: qpQBCT Kh →α
φ

 is said to 

be compact, if it maps any ball in αB  onto a pre-compact set 
in ).,( qpQK

 

The following lemma follows by standard arguments 
similar to those outlined in [16]. Hence we omit the proof. 

Lemma 2.1 Assume φ  is a analytic mapping from B  into 

itself and let ,<<2,<,<0 ∞−∞ qp α  then ),(: qpQBCT Kh →α
φ

 is 

compact if and only if for any bounded sequence αBf Nnn ∈∈}{  

which converges to zero uniformly on compact subsets of B  
as ∞→n  we have 0.=||||lim ),( qp

K
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Lemma 2.2 (see [13]) Let .αBf ∈  Then, for ,B∈z  we 

have 
















−

−≤

− 1.>
)||(1

1,=
||1

ln

1,<<0

|)(|

12

2

α

α

α

α

α

α

α

if
z

f

if
z

e
f

iff

Czf

B

B

B

||||

||||

||||

 

Lemma 2.3 (see [12]) Suppose that ).(, BHhf ∈  Then 
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The next lemma was obtained in (see [14]). 
Lemma 2.4 If 0,>0,> bα  then the elementary inequality 

holds, 
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This lemma still holds for sum of finite number ,n  that is 
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where 0>0,>,....., 21 Candaaa n . 

The next lemma was obtained in (see [15]). 
Lemma 2.5 Assume 1.>α  Then there exist N∈)(= nNN  

and functions )(,.......1 BBα∈nff  such that 
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where C  is a positive constant. 
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3. The Boundedness and 

Compactness of the Operator 

: ( , )→Bh KT C Q p qα
ϕ  

3.1. The Case α>1 

Theorem 3.1 Let 1,>α  ),(BHh ∈  φ  is a analytic 

mapping from B  into itself. Then ),(: qpQCT Kh →α
φ B  is 

bounded if and only if 
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Proof: Assume first (3) is holds, and ,αB∈f  by Lemma 

2.2 and Lemma 2.3 we have 
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It follows that ),(: qpQCT Kh →α
φ B  is bounded. 

For the other direction, we assume ),(: qpQCT Kh →α
φ B  is bounded. Then using Lemma 2.4 and Lemma 2.5 we obtain 
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.1Φ≥ C  
Form this and the boundedness of ,φCTh

 it follows that (3) 

holds. The proof of this theorem is completed. 

Theorem 3.2 Let 1,>α  ),(BHh∈  φ  is a analytic 

mapping from B  into itself. Then ),(: qpQCT Kh →α
φ B  is 

compact if and only if (3) holds. 
Proof: Assume that ),(: qpQCT Kh →α

φ B  is compact. 

Then it is bounded, then (3) holds from Theorem 3.1. 
Conversely, assume that (3) holds. Then, form (3) we obtain 
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0,>ε  there exist a constant (0,1),∈δ  such that 
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Let },||,{=1 δωω ≤∈BM  then 
1M  is compact subset of 

.B  Since 0→jf  uniformly on the compact subsets of B  as 
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Since 

1M  is compact and from (4) we have 
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On other hand, by Lemma 2.4 and from (5), we have 
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From (6), (7) and since ε  is an arbitrary positive number, 
we get 
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Hence by (8) and Lemma 2.1 we get ),(: qpQCT Kh →α
φ B  

is compact. This completes the proof of this theorem. 

3.2. The Case 0<α<1 

Theorem 3.3 Let 1,<<0 α  ),(BHh∈  φ  is a analytic 

mapping from B  into itself. Then ),(: qpQCT Kh →α
φ B  is 

bounded if and only if ).,( qpQh K∈  Moreover, if 

),(: qpQCT Kh →α
φ B  is bounded. Then 
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Proof: Assume that ).,( qpQh K∈  For any ,αB∈f  by 

Lemma 2.2 and Lemma 2.3 we have 
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Thus from (10) and (11) we have the relation in (9). The 
proof of this theorem is completd. 

Theorem 3.4 Let 1,<<0 α  ),(BHh ∈  φ  is a analytic 

mapping from B  into itself. Then ),(: qpQCT Kh →α
φ B  is 

compact if and only if ).,( qpQh K∈  

Proof: The proof of this theorem is similar to that of 
Theorem 3.2. 

3.3. The Case α=1 

Theorem 3.5 Let 1,=α  ),(BHh ∈  φ  is a analytic 

mapping from B  into itself. Then ),(: 1 qpQCT Kh →Bφ
 is 

bounded (compact) if 
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Proof: Assume that (12) holds. For any ,1B∈f  by Lemma 2.2 and Lemma 2.3 we have 
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So ),(: qpQCT Kh →α
φ B  is bounded. The proof of 
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compactness is similar to the corresponding part of Theorem 
3.2. 

4. Conclusion 

We proved in many case depended on the value of 1=α  
the boundedness and Compactness of product of extended 
Cesáro operator and composition operator from the 
Bloch-type spaces αB  to ),( qpQK

 spaces on the unit ball still 

holds. 
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