International Journal of Mathematical Analysis and Applications

Keywords

Extended Cesáro Operator, Composition Operator, Boundedness and the Compactness

Received: May 14, 2016
Accepted: June 6, 2016
Published: November 16, 2017

Product of Extended Cesáro Operator and Composition Operator from B^{α} to $Q_{k}(p, q)$ Spaces

A. Kamal, T. I. Yassen

Department of Mathematics, Faculty of Science, Port Said University, Port Said, Egypt

Email address

taha_hmour@yahoo.com (T. I. Yassen)

Citation

A. Kamal, T. I. Yassen. Product of Extended Cesáro Operator and Composition Operator from B ${ }^{\alpha}$ to $Q_{k}(p, q)$ Spaces. International Journal of Mathematical Analysis and Applications. Vol. 4, No. x6, 2017, pp. 47-51.

Abstract

In this paper, we study the properties boundedness and compactness of product of extended Cesáro operator and composition operator from the Bloch-type spaces B^{α} to $Q_{K}(p, q)$ spaces on the unit ball of C^{n} Moreover, necessary and sucient conditions are given for The product of extended Cesáro operator and composition operator from the Bloch-type spaces B^{α} to $Q_{K}(p, q)$ spaces to be bounded and compact.

1. Introduction

Let $\mathrm{B}=\left\{z \in \mathrm{C}^{n}:|z|<1\right\}$ the open unit ball in $\mathrm{C}^{n}, H(\mathrm{~B})$ denote the class of all analytic functions in B . Let $d A$ denote the Lebesegue measure on B normalized so that $A(\mathrm{~B})=1$.

For $f \in H(\mathrm{~B})$, let

$$
f^{\prime}(z)=\sum_{k=1}^{n} z_{k} \frac{\partial f}{\partial z_{k}}(z)
$$

be the redial derivative of f.
Definition 1.1 (see [20]) Let f be an analytic function in B and $0<\alpha<\infty$. The α-Bloch space B^{α} is defined by

$$
\mathrm{B}^{\alpha}=\left\{f \in H(\mathrm{~B}):\|f\|_{\mathrm{B}^{\alpha}}=\sup _{z \in \mathrm{~B}}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|<\infty\right\},
$$

the little α-Bloch space B_{0}^{α} is given as follows

$$
\mathrm{B}_{0}^{\alpha}=\left\{f \in H(\mathrm{~B}):\|f\|_{\mathrm{B}_{0}^{\alpha}}=\lim _{|k| \rightarrow 1^{-}}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|=0\right\} .
$$

The spaces B^{1} and B_{0}^{1} are called the Bloch space and denoted by B and B_{0} respectively (see [1]).
Let the Green's function of B be defined as $g(z, a)=\log \frac{1}{\left|\varphi_{a}(z)\right|}$, where $\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}$ is the Möbius transformation related to the point $a \in \mathrm{~B}$.

Definition 1.2 (see [17]) Let $K:[0, \infty) \rightarrow[0, \infty)$ be a right continuous and nondecreasing function. For $0<p<\infty$ and $-2<q<\infty$. The space $Q_{K}(p, q)$ is defined by

$$
Q_{K}(p, q)=\left\{f \in H(\mathrm{~B}): \sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\infty\right\} .
$$

If
$\lim _{|a| \rightarrow 1^{-}} \sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)=0$,
then $f \in Q_{K, 0}(p, q)$.
Wulan and Zhou in [18] mentioned the following properties of these spaces:
(a). For $p=2, q=0$, we obtain $Q_{K}(p, q)=Q_{K}$ (see $[4,11$, 18]).
(b). For $\quad p=2, q=0, \quad$ and $\quad K(t)=t^{p}$, we obtain $Q_{K}(p, q)=Q_{p} \quad($ see [2]).
(c). For $K(t)=t^{s}$, then $Q_{K}(p, q)=F(p, q, s)$ (see [3, 19]). A linear composition operator C_{ϕ} is defined by $C_{\phi}(f)=(f \circ \phi)$ for f in the set $H(\mathrm{~B})$ of analytic functions on B. The study of composition operator C_{ϕ} acting on spaces of analytic functions has engaged many analysts for many years (see $[3,11]$ and others).

The problem of boundedness and compactness of C_{ϕ} has been studied in many Banach spaces of analytic functions and the study of such operators has recently attracted the most attention (see $[9,10,16]$ and others).

Let $h \in H(\mathrm{~B})$, the extended Cesáro operator T_{h} with symbol h is the operator on $H(\mathrm{~B})$,

$$
T_{h} f(z)=\int_{0}^{1} f(t z) h^{\prime}(t z) \frac{d t}{t}, \quad f \in H(\mathrm{~B}), z \in \mathrm{~B} \quad \text { (see [8]). }
$$

This operator is called generalized Cesáro operator, which has been studied in (see [5, 6,7] and other).

Here, we consider the product of extended Cesáro operator T_{h} and of composition operator C_{ϕ}, which are defined by

$$
T_{h} C_{\varphi} f(z)=\int_{0}^{1} f(\varphi(t z)) h^{\prime}(t z) \frac{d t}{t}, \quad f \in H(\mathrm{~B}), z \in \mathrm{~B} \quad(\text { see }[12]) .
$$

In this paper we characterize the boundedness and compactness of the product $T_{h} C_{\phi}$ of extended Cesáro operator and composition operator from Bloch-type space to $Q_{K}(p, q)$ spaces on the unit ball of C^{n}.

2. Auxiliary Results

In this section we state several results, which are used in the main result proofs.

Definition 2.1 The operator $T_{h} C_{\phi}: B^{\alpha} \rightarrow Q_{K}(p, q)$ is said to be bounded, if there is a positive constant C such that
$\left\|T_{h} C_{\phi} f\right\|_{Q_{K}(p, q)} \leq C\|f\|_{B^{\alpha}}$ for all $f \in B^{\alpha}$.

Definition 2.2 The operator $T_{h} C_{\phi}: B^{\alpha} \rightarrow Q_{K}(p, q)$ is said to be compact, if it maps any ball in B^{α} onto a pre-compact set in $Q_{K}(p, q)$.

The following lemma follows by standard arguments similar to those outlined in [16]. Hence we omit the proof.

Lemma 2.1 Assume ϕ is a analytic mapping from B into itself and let $0<p, \alpha<\infty,-2<q<\infty$, then $T_{T_{h} C_{\phi}: B^{\alpha} \rightarrow Q_{K}(p, q)}$ is compact if and only if for any bounded sequence $\left\{f_{n}\right\}_{n \in N} \in B^{\alpha}$ which converges to zero uniformly on compact subsets of B as $n \rightarrow \infty$ we have $\lim _{n \rightarrow \infty}\left\|T_{h} C_{\phi} f_{n}\right\|_{Q_{K}(p, q)}=0$.

Lemma 2.2 (see [13]) Let $f \in B^{\alpha}$. Then, for $z \in \mathrm{~B}$, we have

$$
|f(z)| \leq C\left\{\begin{array}{llr}
\|f\|_{B^{\alpha}} & \text { if } & 0<\alpha<1 \\
\|f\|_{B^{\alpha}} \ln \frac{e}{1-|z|^{2}} & \text { if } & \alpha=1 \\
\frac{\|f\|_{B^{\alpha}}}{\left(1-|z|^{2}\right)^{\alpha-1}} & \text { if } & \alpha>1
\end{array}\right.
$$

Lemma 2.3 (see [12]) Suppose that $f, h \in H(\mathrm{~B})$. Then

$$
\left[T_{h} C_{\phi} f(z)\right]^{\prime}=f(\phi(z)) h^{\prime}(z)
$$

The next lemma was obtained in (see [14]).
Lemma 2.4 If $\alpha>0, b>0$, then the elementary inequality holds,

$$
(a+b)^{p} \leq\left\{\begin{array}{lll}
a^{p}+b^{p} & \text { for } & 0<p<1 \\
2^{b-1}\left(a^{p}+b^{p}\right) & \text { for } & p \geq 1
\end{array}\right.
$$

This lemma still holds for sum of finite number n, that is

$$
\begin{equation*}
\left(a_{1}+a_{2}+\ldots \ldots+a_{n}\right)^{p} \leq C\left(a_{1}^{p}+a_{2}^{p}+\ldots \ldots .+a_{n}^{p}\right), \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots . . a_{n}>0$, and $C>0$.
The next lemma was obtained in (see [15]).
Lemma 2.5 Assume $\alpha>1$. Then there exist $N=N(n) \in \mathrm{N}$ and functions $f_{1}, \ldots \ldots . . f_{n} \in \mathrm{~B}^{\alpha}(\mathrm{B})$ such that

$$
\left|f_{1}(z)\right|+\ldots \ldots+\left|f_{n}(z)\right| \geq \frac{C}{\left(1-|z|^{2}\right)^{\alpha-1}}, \quad z \in \mathrm{~B}, \quad \text { (2) }
$$

where C is a positive constant.

3. The Boundedness and Compactness of the Operator

$T_{h} C_{\varphi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$

3.1. The Case $\alpha>1$

Theorem 3.1 Let $\alpha>1, \quad h \in H(\mathrm{~B}), \quad \phi$ is a analytic
mapping from B into itself. Then $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is bounded if and only if

$$
\left.\Phi_{1}:=\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}} \frac{\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a))}{\left(1-|\phi(z)|^{2}\right)^{(\alpha-1) p}} d A(z)<\infty . \text {. } 3\right)
$$

Proof: Assume first (3) is holds, and $f \in \mathrm{~B}^{\alpha}$, by Lemma 2.2 and Lemma 2.3 we have

$$
\begin{aligned}
\left\|T_{h} C_{\phi} f\right\|_{K, p, q}^{p} & =\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|\left(T_{h} C_{\phi} f\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& =\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|\left(f(\phi(z)) h^{\prime}(z)\right)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& \leq C\|f\|_{B^{\alpha}}^{p} \sup _{a \in \mathrm{~B}} \int_{\mathrm{B}} \frac{\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a))}{\left(1-|\phi(z)|^{2}\right)^{(\alpha-1) p}} d A(z) \\
& \leq C\|f\|_{B^{\alpha}}^{p} \Phi_{1} . \\
& <\infty .
\end{aligned}
$$

It follows that $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is bounded.
For the other direction, we assume $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is bounded. Then using Lemma 2.4 and Lemma 2.5 we obtain

$$
\begin{aligned}
& \left\{\left\|T_{h} C_{\phi} f_{1}\right\|_{K, p, q}^{p}+\left\|T_{h} C_{\phi} f_{2}\right\|_{K, p, q}^{p}\right\} \\
= & \left\{\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left[\left|\left(T_{h} C_{\phi} f_{1}\right)^{\prime}(z)\right|^{p}+\left|\left(T_{h} C_{\phi} f_{2}\right)^{\prime}(z)\right|^{p}\right]\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)\right\} \\
\geq & \left\{\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left[\left|\left(T_{h} C_{\phi} f_{1}\right)^{\prime}(z)\right|+\left|\left(T_{h} C_{\phi} f_{2}\right)^{\prime}(z)\right|\right]^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)\right\} \\
\geq & \left\{\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left[\left|f_{1}(\phi(z))\right|+\left|f_{2}(\phi(z))\right|\right]^{p}\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)\right\} \\
\geq & C\left\{\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}} \frac{\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a))}{\left(1-|\phi(z)|^{2}\right)^{(\alpha-1) p}} d A(z)\right\} \\
\geq & C \Phi_{1} .
\end{aligned}
$$

Form this and the boundedness of $T_{h} C_{\phi}$, it follows that (3) holds. The proof of this theorem is completed.

Theorem 3.2 Let $\alpha>1, \quad h \in H(\mathrm{~B}), \quad \phi$ is a analytic mapping from B into itself. Then $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is compact if and only if (3) holds.

Proof: Assume that $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is compact. Then it is bounded, then (3) holds from Theorem 3.1.

Conversely, assume that (3) holds. Then, form (3) we obtain

$$
\begin{equation*}
M=\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\infty . \tag{4}
\end{equation*}
$$

Since $\sup _{x \in[0,1)}\left(1-x^{2}\right)^{(\alpha-1)}>0$.

Assum that $\left\{f_{j}\right\}_{j \in N}$ is bounded sequence in B^{α}, such that $f_{j} \rightarrow 0$ uniformly on the compact subsets of B as $j \rightarrow \infty$. Suppose that $\sup _{j \in N}\left\|f_{j}\right\|_{\mathrm{B}^{\alpha}} \leq L$. It follows from (3) that for any $\varepsilon>0$, there exist a constant $\delta \in(0,1)$, such that

$$
\begin{equation*}
\sup _{a \in \mathrm{~B}} \int_{\phi(z) \mid<\delta} \frac{\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a))}{\left(1-|\phi(z)|^{2}\right)^{(\alpha-1) p}} d A(z)<\mathcal{E}^{p} \tag{5}
\end{equation*}
$$

Let $M_{1}=\{\omega \in \mathrm{B},|\omega| \leq \delta\}$, then M_{1} is compact subset of B. Since $f_{j} \rightarrow 0$ uniformly on the compact subsets of B as $j \rightarrow \infty$. and $h \in Q_{K}(p, q)$, we have

$$
\begin{aligned}
\left\|T_{h} C_{\phi} f_{j}\right\|_{K, p, q}^{p} & =\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|\left(T_{h} C_{\phi} f_{j}\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& =\sup _{a \in \mathrm{~B}} \int_{|\phi(z)| \leq \delta}\left|\left(f_{j}(\phi(z)) h^{\prime}(z)\right)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& +\sup _{a \in \mathrm{~B}} \int_{|\phi(z)|>\delta}\left|\left(f_{j}(\phi(z)) h^{\prime}(z)\right)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& =J_{1}+J_{2} .
\end{aligned}
$$

Since M_{1} is compact and from (4) we have

$$
\begin{align*}
& J_{1}:=\sup _{a \in \mathrm{~B}} \int_{|\phi(z)| \leq \delta}\left|\left(f_{j}(\phi(z)) h^{\prime}(z)\right)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& \leq \sup _{\omega \in M_{1}}\left|f_{j}(\omega)\right|^{p} \int_{\mid \phi(z) \leq \delta}\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& \quad \leq M \sup _{\omega \in M_{1}}\left|f_{j}(\omega)\right|^{p} \rightarrow 0, \quad J \rightarrow \infty \tag{6}
\end{align*}
$$

On other hand, by Lemma 2.4 and from (5), we have
$J_{2}:=\sup _{a \in \mathrm{~B}} \int_{|\phi(z)|>\delta}\left|\left(f_{j}(\phi(z)) h^{\prime}(z)\right)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)$
$\leq C\left\|f_{j} \mid\right\|_{B^{\alpha}} \sup _{a \in \mathrm{~B}} \int_{\phi(z)<\delta} \frac{\left|h^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a))}{\left(1-|\phi(z)|^{2}\right)^{(\alpha-1) p}} d A(z)$
$\leq C M^{p}<\mathcal{E}^{p}$. (7)
From (6), (7) and since ε is an arbitrary positive number, we get

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|T_{h} C_{\phi} f_{j}\right\|_{K, p, q}^{p}=0 \tag{8}
\end{equation*}
$$

Hence by (8) and Lemma 2.1 we get $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is compact. This completes the proof of this theorem.

3.2. The Case $0<\alpha<1$

Theorem 3.3 Let $0<\alpha<1, \quad h \in H(\mathrm{~B}), \quad \phi$ is a analytic mapping from B into itself. Then $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is bounded if and only if $h \in Q_{K}(p, q)$. Moreover, if $T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is bounded. Then

$$
\begin{equation*}
\left\|T_{h} C_{\phi} f\right\|_{\mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)} \approx|h|_{Q_{K}(p, q)} \tag{9}
\end{equation*}
$$

Proof: Assume that $h \in Q_{K}(p, q)$. For any $f \in \mathrm{~B}^{\alpha}$, by Lemma 2.2 and Lemma 2.3 we have

$$
\begin{align*}
& \left\|T_{h} C_{\phi} f\right\|_{K, p, q}^{p}=\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|\left(T_{h} C_{\phi} f\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& =\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|\left(f(\phi(z)) h^{\prime}(z)\right)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& \Phi_{2}:=\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|h^{\prime}(z)\right|^{p}\left(\ln \frac{e}{1-|\phi(z)|^{2}}\right)^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\infty . \tag{12}
\end{align*}
$$

Proof: Assume that (12) holds. For any $f \in \mathrm{~B}^{1}$, by Lemma 2.2 and Lemma 2.3 we have

$$
\begin{aligned}
\left\|T_{h} C_{\phi} f\right\|_{K, p, q}^{p} & =\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|\left(T_{h} C_{\phi} f\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& =\sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|\left(f(\phi(z)) h^{\prime}(z)\right)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
& \leq C\|f\|_{B^{\alpha}}^{p} \sup _{a \in \mathrm{~B}} \int_{\mathrm{B}}\left|h^{\prime}(z)\right|^{p}\left(\ln \frac{e}{1-|\phi(z)|^{2}}\right)^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) . \\
& \leq C\|f\|_{B^{1}}^{p} \Phi_{2}<\infty .
\end{aligned}
$$

So $\quad T_{h} C_{\phi}: \mathrm{B}^{\alpha} \rightarrow Q_{K}(p, q)$ is bounded. The proof of
compactness is similar to the corresponding part of Theorem 3.2.

4. Conclusion

We proved in many case depended on the value of $\alpha=1$ the boundedness and Compactness of product of extended Cesáro operator and composition operator from the Bloch-type spaces B^{α} to $Q_{K}(p, q)$ spaces on the unit ball still holds.

References

[1] J. Arazy, D. Fisher and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1986), 110-145.
[2] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its applications, Pitman Research Notes in Math. 305, Longman Scientific and Technical Harlow, (1994), 136-146.
[3] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators on some holomorphic Banach function spaces, Math. Scand. 104 (2) (2009), 275-295.
[4] M. Essén, H. Wulan, and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_{K} spaces, J. Funct. Anal. 230 (2006), 78-115.
[5] Z. S. Fang, Z. H. Zhou, Extended Cesàro operators from weighted Bloch spaces to Zygmund spaces in the unit ball, J. Math. Anal. Appl. 359 (2) (2009) 499-507.
[6] Z. S. Fang, Z. H. Zhou, Extended Cesàro operators on BMOA spaces in the unit ball, J. Math. Inequal. 4 (1) (2010) 27-36.
[7] D. Gu, Extended Cesàro operators from logarithmic-type spaces to Bloch-type spaces, Abstr. Appl. Anal. 2009, 9p, Article ID 246521.
[8] Z. J. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (7) (2003) 2171-2179.
[9] A. Kamal, A. El-Sayed Ahmed and T. I. Yassen, Quasi-metric spaces and composition operators on $B_{\alpha, \log }^{*}$ and $F_{\log }^{*}(p ; q ; s)$ spaces, J. Comp. Theoretical Nanoscience. 12 (8) (2015), 1795-1801.
[10] A. Kamal, and T. I. Yassen, Some Properties of Composition Operator Acting Between General Hyperbolic Type Spaces, Int. J. Math. Anal. Appl. 2 (2) (2015), 17-26.
[11] S. Li and H. Wulan, Composition operators on Q_{K} spaces, J. Math. Anal. Appl. 327 (2007), 948-958.
[12] Yu-Xia Liang, Ze-Hua Zhou, Product of Extended Cesàro Operator and Composition Operator from Lipschitz Space to $F(p, q, s)$ Space on the Unit Ball. Abstr, Appl. Anal. 2011, 9 p, Article ID 152635.
[13] LÜ Xiao-fen, Weighted composition operators from $F(p, q, s)$ spaces to Bers-type spaces in the unit ball, Appl. Math. J. Chinese Univ., 24 (4) (2009), 462-472.
[14] J. Shi, Inequalities for the integral means of holomorphic function and their derivatives in the unit ball of C^{n}, Trans Amer Math Soc. 328 (1991), 619-637.
[15] S. Stevi `c , On operator P_{φ}^{g} from the logarithmic Bloch-type space to the mixed-norm space on the unit ball, Appl. Math. Comput. 215 (2010) 4248-4255.
[16] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), 4683-4698.
[17] H. Wulan and J. Zhou, Q_{K} type spaces of analytic functions. J. Funct. Spaces Appl. 4 (1) (2006), 73-84.
[18] H. Wulan and Y. Zhang, Hadamard products and Q_{K} spaces, J. Math. Anal. Appl, 337 (2) (2008), 1142-1150.
[19] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Series A I. Mathematica. Dissertationes. 105. Helsinki: Suomalainen Tiedeakatemia, (1996), 1-56.
[20] R. Zhao, On α-Bloch functions and VMOA, Acta. Math. Sci, 3 (1996), 349-360.

