International Journal of Mathematical Analysis and Applications 2017; 4(6): 47-51 http://www.aascit.org/journal/ijmaa ISSN: 2375-3927

Keywords

Extended Cesáro Operator, Composition Operator, Boundedness and the Compactness

Received: May 14, 2016 Accepted: June 6, 2016 Published: November 16, 2017

Product of Extended Cesáro Operator and Composition Operator from B^{α} to $Q_k(p,q)$ Spaces

AASCIT

A. Kamal, T. I. Yassen

Department of Mathematics, Faculty of Science, Port Said University, Port Said, Egypt

Email address

taha_hmour@yahoo.com (T. I. Yassen)

Citation

A. Kamal, T. I. Yassen. Product of Extended Cesáro Operator and Composition Operator from B^{α} to $Q_k(p,q)$ Spaces. *International Journal of Mathematical Analysis and Applications*. Vol. 4, No. x6, 2017, pp. 47-51.

Abstract

In this paper, we study the properties boundedness and compactness of product of extended Cesáro operator and composition operator from the Bloch-type spaces B^{α} to $Q_{k}(p,q)$ spaces on the unit ball of Cⁿ Moreover, necessary and sucient conditions are given for The product of extended Cesáro operator and composition operator from the Bloch-type spaces B^{α} to $Q_{k}(p,q)$ spaces to be bounded and compact.

1. Introduction

Let $B = \{z \in \mathbb{C}^n : |z| < 1\}$ the open unit ball in \mathbb{C}^n , H(B) denote the class of all analytic functions in B. Let dA denote the Lebesegue measure on B normalized so that A(B) = 1.

For $f \in H(\mathsf{B})$, let

$$f'(z) = \sum_{k=1}^{n} z_k \frac{\partial f}{\partial z_k}(z)$$

be the redial derivative of f.

Definition 1.1 (see [20]) Let f be an analytic function in B and $0 < \alpha < \infty$. The α -Bloch space B^{α} is defined by

$$\mathsf{B}^{\alpha} = \{ f \in H(\mathsf{B}) : || f ||_{\mathsf{B}^{\alpha}} = \sup_{z \in \mathsf{B}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty \},\$$

the little α -Bloch space B_0^{α} is given as follows

$$\mathsf{B}_{0}^{\alpha} = \{ f \in H(\mathsf{B}) : || f ||_{\mathsf{B}_{0}^{\alpha}} = \lim_{|z| \to 1^{-}} (1 - |z|^{2})^{\alpha} | f'(z)| = 0 \}.$$

The spaces B^1 and B_0^1 are called the Bloch space and denoted by B and B_0 respectively (see [1]).

Let the Green's function of B be defined as $g(z,a) = \log \frac{1}{|\varphi_a(z)|}$, where

 $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$ is the Möbius transformation related to the point $a \in B$.

American Association for Science and Technology Definition 1.2 (see [17]) Let $K:[0,\infty) \to [0,\infty)$ be a right continuous and nondecreasing function. For $0 and <math>-2 < q < \infty$. The space $Q_{\kappa}(p,q)$ is defined by

$$Q_{K}(p,q) = \{ f \in H(\mathsf{B}) : \sup_{a \in \mathsf{B}} \int_{\mathsf{B}} |f'(z)|^{p} (1 - |z|^{2})^{q} K(g(z,a)) dA(z) < \infty \}.$$

If

$$\lim_{|a|\to 1^{-}} \sup_{a\in \mathsf{B}} \int_{\mathsf{B}} |f'(z)|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z) = 0$$

then $f \in Q_{K,0}(p,q)$.

Wulan and Zhou in [18] mentioned the following properties of these spaces:

- (a). For p = 2, q = 0, we obtain $Q_K(p,q) = Q_K$ (see [4, 11, 18]).
- (b). For p = 2, q = 0, and $K(t) = t^p$, we obtain $Q_K(p,q) = Q_p$ (see [2]).
- (c). For $K(t) = t^s$, then $Q_K(p,q) = F(p,q,s)$ (see [3, 19]).

A linear composition operator C_{ϕ} is defined by $C_{\phi}(f) = (f \circ \phi)$ for f in the set H(B) of analytic functions on B. The study of composition operator C_{ϕ} acting on spaces of analytic functions has engaged many analysts for many years (see [3, 11] and others).

The problem of boundedness and compactness of C_{ϕ} has been studied in many Banach spaces of analytic functions and the study of such operators has recently attracted the most attention (see [9, 10, 16] and others).

Let $h \in H(B)$, the extended Cesáro operator T_h with symbol h is the operator on H(B),

$$T_h f(z) = \int_0^1 f(tz) h'(tz) \frac{dt}{t}, \qquad f \in H(\mathsf{B}), z \in \mathsf{B} \qquad (see \ [8]).$$

This operator is called generalized Cesáro operator, which has been studied in (see [5, 6, 7] and other).

Here, we consider the product of extended Cesáro operator T_h and of composition operator $\ C_\phi$, which are defined by

$$T_h C_{\varphi} f(z) = \int_0^1 f(\varphi(tz)) h'(tz) \frac{dt}{t}, \quad f \in H(\mathsf{B}), z \in \mathsf{B} \quad (see \ [12]).$$

In this paper we characterize the boundedness and compactness of the product $T_h C_{\phi}$ of extended Cesáro operator and composition operator from Bloch-type space to $Q_K(p,q)$ spaces on the unit ball of \mathbb{C}^n .

2. Auxiliary Results

In this section we state several results, which are used in the main result proofs.

Definition 2.1 The operator $T_h C_{\phi} : B^{\alpha} \to Q_K(p,q)$ is said to be bounded, if there is a positive constant C such that $||T_h C_{\phi} f||_{\mathcal{Q}_K(p,q)} \le C ||f||_{B^{\alpha}} \text{ for all } f \in B^{\alpha}.$

Definition 2.2 The operator $T_h C_{\phi} : B^{\alpha} \to Q_k(p,q)$ is said to be compact, if it maps any ball in B^{α} onto a pre-compact set in $Q_k(p,q)$.

The following lemma follows by standard arguments similar to those outlined in [16]. Hence we omit the proof.

Lemma 2.1 Assume ϕ is a analytic mapping from B into itself and let $0 < p, \alpha < \infty, -2 < q < \infty$, then $T_h C_{\phi} : B^{\alpha} \to Q_k(p,q)$ is compact if and only if for any bounded sequence $\{f_n\}_{n \in N} \in B^{\alpha}$ which converges to zero uniformly on compact subsets of B as $n \to \infty$ we have $\lim_{n \to \infty} ||T_h C_{\phi} f_n||_{Q_k(p,q)} = 0.$

Lemma 2.2 (see [13]) Let $f \in B^{\alpha}$. Then, for $z \in B$, we have

$$|f(z)| \leq C \begin{cases} ||f||_{B^{\alpha}} & \text{if} & 0 < \alpha < 1, \\ ||f||_{B^{\alpha}} \ln \frac{e}{1 - |z|^{2}} & \text{if} & \alpha = 1, \\ \\ \frac{||f||_{B^{\alpha}}}{(1 - |z|^{2})^{\alpha - 1}} & \text{if} & \alpha > 1. \end{cases}$$

Lemma 2.3 (see [12]) Suppose that $f, h \in H(B)$. Then

$$[T_h C_{\phi} f(z)]' = f(\phi(z))h'(z).$$

The next lemma was obtained in (see [14]).

Lemma 2.4 If $\alpha > 0, b > 0$, then the elementary inequality holds,

$$(a+b)^{p} \leq \begin{cases} a^{p} + b^{p} & \text{for} & 0$$

This lemma still holds for sum of finite number n_{1} , that is

$$(a_1 + a_2 + \dots + a_n)^p \le C(a_1^p + a_2^p + \dots + a_n^p), (1)$$

where $a_1, a_2, ..., a_n > 0$, and C > 0.

The next lemma was obtained in (see [15]).

Lemma 2.5 Assume $\alpha > 1$. Then there exist $N = N(n) \in \mathbb{N}$ and functions $f_1, \dots, f_n \in \mathbb{B}^{\alpha}(\mathbb{B})$ such that

$$|f_1(z)| + \dots + |f_n(z)| \ge \frac{C}{(1-|z|^2)^{\alpha-1}}, \qquad z \in \mathsf{B}, (2)$$

where C is a positive constant.

3. The Boundedness and Compactness of the Operator

 $T_h C_{\varphi} : \mathsf{B}^{\alpha} \to Q_K(p,q)$

3.1. The Case α>1

Theorem 3.1 Let $\alpha > 1$, $h \in H(B)$, ϕ is a analytic

mapping from B into itself. Then $T_h C_{\phi} : B^{\alpha} \to Q_K(p,q)$ is bounded if and only if

$$\Phi_{1} := \sup_{a \in \mathsf{B}} \int_{\mathsf{B}} \frac{|h'(z)|^{p} (1 - |z|^{2})^{q} K(g(z, a))}{(1 - |\phi(z)|^{2})^{(\alpha - 1)p}} dA(z) < \infty.$$
(3)

Proof: Assume first (3) is holds, and $f \in B^{\alpha}$, by Lemma 2.2 and Lemma 2.3 we have

$$\|T_{h}C_{\phi}f\|_{K,p,q}^{p} = \sup_{a \in \mathbf{B}} \int_{\mathbf{B}} |(T_{h}C_{\phi}f)'(z)|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z)$$

$$= \sup_{a \in \mathbf{B}} \int_{\mathbf{B}} |(f(\phi(z))h'(z))|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z)$$

$$\leq C \|f\|_{B^{\alpha}}^{p} \sup_{a \in \mathbf{B}} \int_{\mathbf{B}} \frac{|h'(z)|^{p} (1-|z|^{2})^{q} K(g(z,a))}{(1-|\phi(z)|^{2})^{(\alpha-1)p}} dA(z)$$

$$\leq C \|f\|_{B^{\alpha}}^{p} \Phi_{1}.$$

It follows that $T_h C_{\phi} : \mathbf{B}^{\alpha} \to Q_K(p,q)$ is bounded.

For the other direction, we assume $T_h C_{\phi} : \mathbf{B}^{\alpha} \to Q_K(p,q)$ is bounded. Then using Lemma 2.4 and Lemma 2.5 we obtain

$$\begin{split} &\{ \| T_h C_{\phi} f_1 \|_{K,p,q}^p + \| T_h C_{\phi} f_2 \|_{K,p,q}^p \} \\ &= \{ \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} [| (T_h C_{\phi} f_1)'(z) |^p + | (T_h C_{\phi} f_2)'(z) |^p] (1 - |z|^2)^q K(g(z,a)) dA(z) \} \\ &\geq \{ \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} [| (T_h C_{\phi} f_1)'(z) | + | (T_h C_{\phi} f_2)'(z) |]^p (1 - |z|^2)^q K(g(z,a)) dA(z) \} \\ &\geq \{ \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} [| f_1(\phi(z)) | + | f_2(\phi(z)) |]^p | h'(z) |^p (1 - |z|^2)^q K(g(z,a)) dA(z) \} \\ &\geq C \{ \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} \frac{|h'(z)|^p (1 - |z|^2)^q K(g(z,a))}{(1 - |\phi(z)|^2)^{(\alpha - 1)p}} dA(z) \} \\ &\geq C \Phi_1. \end{split}$$

Form this and the boundedness of $T_h C_{\phi}$, it follows that (3) holds. The proof of this theorem is completed.

Theorem 3.2 Let $\alpha > 1$, $h \in H(B)$, ϕ is a analytic mapping from B into itself. Then $T_h C_{\phi} : B^{\alpha} \to Q_K(p,q)$ is compact if and only if (3) holds.

Proof: Assume that $T_h C_{\phi} : \mathbb{B}^{\alpha} \to Q_K(p,q)$ is compact. Then it is bounded, then (3) holds from Theorem 3.1.

Conversely, assume that (3) holds. Then, form (3) we obtain

$$M = \sup_{a \in \mathsf{B}} \int_{\mathsf{B}} |\dot{h}(z)|^{p} (1 - |z|^{2})^{q} K(g(z, a)) dA(z) < \infty.$$
(4)

Since $\sup_{x\in[0,1)} (1-x^2)^{(\alpha-1)} > 0.$

Assum that $\{f_j\}_{j\in\mathbb{N}}$ is bounded sequence in \mathbb{B}^{α} , such that $f_j \to 0$ uniformly on the compact subsets of \mathbb{B} as $j \to \infty$. Suppose that $\sup_{j\in\mathbb{N}} ||f_j||_{\mathbb{B}^{\alpha}} \le L$. It follows from (3) that for any $\varepsilon > 0$, there exist a constant $\delta \in (0,1)$, such that

$$\sup_{a\in\mathsf{B}}\int_{|\phi(z)|<\delta}\frac{|\dot{h}(z)|^{p}(1-|z|^{2})^{q}K(g(z,a))}{(1-|\phi(z)|^{2})^{(\alpha-1)p}}dA(z)<\varepsilon^{p}.$$
 (5)

Let $M_1 = \{\omega \in B, |\omega| \le \delta\}$, then M_1 is compact subset of B. Since $f_j \to 0$ uniformly on the compact subsets of B as $j \to \infty$. and $h \in Q_k(p,q)$, we have

$$\begin{split} \|T_{h}C_{\phi}f_{j}\|_{K,p,q}^{p} &= \sup_{a \in \mathsf{B}} \int_{\mathsf{B}} |(T_{h}C_{\phi}f_{j})'(z)|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z) \\ &= \sup_{a \in \mathsf{B}} \int_{|\phi(z)| \leq \delta} |(f_{j}(\phi(z))h'(z))|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z) \\ &+ \sup_{a \in \mathsf{B}} \int_{|\phi(z)| \geq \delta} |(f_{j}(\phi(z))h'(z))|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z) \\ &= J_{1} + J_{2}. \end{split}$$

Since M_1 is compact and from (4) we have

$$J_{1} := \sup_{a \in \mathsf{B}} \int_{|\phi(z)| \le \delta} |(f_{j}(\phi(z))h'(z))|^{p} (1 - |z|^{2})^{q} K(g(z, a)) dA(z)$$

$$\leq \sup_{\omega \in M_{1}} |f_{j}(\omega)|^{p} \int_{|\phi(z)| \le \delta} |h'(z)|^{p} (1 - |z|^{2})^{q} K(g(z, a)) dA(z)$$

$$\leq M \sup_{\omega \in M_{1}} |f_{j}(\omega)|^{p} \to 0, \quad J \to \infty.$$
(6)

On other hand, by Lemma 2.4 and from (5), we have

$$J_{2} := \sup_{a \in \mathsf{B}} \int_{|\phi(z)| > \delta} |(f_{j}(\phi(z))h'(z))|^{p} (1 - |z|^{2})^{q} K(g(z, a)) dA(z)$$

$$\leq C ||f_{j}||_{B^{\alpha}} \sup_{a \in \mathsf{B}} \int_{|\phi(z)| < \delta} \frac{|h'(z)|^{p} (1 - |z|^{2})^{q} K(g(z, a))}{(1 - |\phi(z)|^{2})^{(\alpha - 1)p}} dA(z)$$

$$\leq CM^{p} < \varepsilon^{p}, \quad (7)$$

From (6), (7) and since \mathcal{E} is an arbitrary positive number, we get

$$\lim_{j \to \infty} \|T_h C_{\phi} f_j\|_{K,p,q}^p = 0.$$
(8)

Hence by (8) and Lemma 2.1 we get $T_h C_{\phi} : \mathbf{B}^{\alpha} \to Q_k(p,q)$ is compact. This completes the proof of this theorem.

3.2. The Case 0<α<1

Theorem 3.3 Let $0 < \alpha < 1$, $h \in H(B)$, ϕ is a analytic mapping from B into itself. Then $T_h C_{\phi} : B^{\alpha} \to Q_K(p,q)$ is bounded if and only if $h \in Q_K(p,q)$. Moreover, if $T_h C_{\phi} : B^{\alpha} \to Q_K(p,q)$ is bounded. Then

$$\|T_h C_{\phi} f\|_{\mathsf{B}^{\alpha} \to \mathcal{Q}_K(p,q)} \approx \|h\|_{\mathcal{Q}_K(p,q)}$$
(9)

Proof: Assume that $h \in Q_K(p,q)$. For any $f \in B^{\alpha}$, by Lemma 2.2 and Lemma 2.3 we have

$$\|T_{h}C_{\phi}f\|_{K,p,q}^{p} = \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |(T_{h}C_{\phi}f)'(z)|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z)$$
mapping from B into itself. Then

$$= \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |(f(\phi(z))h'(z))|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z)$$
bounded (compact) if

$$\Phi_{2} := \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |h'(z)|^{p} (\ln \frac{e}{1-|\phi(z)|^{2}})^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z) < \infty.$$

Proof: Assume that (12) holds. For any
$$f \in B^1$$
, by Lemma 2.2 and Lemma 2.3 we have

$$\|T_{h}C_{\phi}f\|_{K,p,q}^{p} = \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |(T_{h}C_{\phi}f)'(z)|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z)$$

$$= \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |(f(\phi(z))h'(z))|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z)$$

$$\leq C \|f\|_{B^{\alpha}}^{p} \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |h'(z)|^{p} (ln \frac{e}{1-|\phi(z)|^{2}})^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z).$$

$$\leq C \|f\|_{B^{1}}^{p} \Phi_{2} < \infty.$$

So $T_{h}C_{\phi} : \mathbb{B}^{\alpha} \to Q_{K}(p,q)$ is bounded. The proof of

$$\leq C \| f \|_{B^{\alpha}}^{p} \sup_{a \in \mathbf{B}} \int_{\mathbf{B}} |\dot{h}(z)|^{p} (1-|z|^{2})^{q} K(g(z,a)) dA(z).$$

That is

$$\|T_{h}C_{\phi}f\|_{\mathsf{B}^{\alpha}\to\mathcal{Q}_{K}(p,q)} \le C \|h\|_{K,p,q}.$$
(10)

For the other direction, we assume $T_h C_{\phi} : \mathbb{B}^{\alpha} \to Q_K(p,q)$ is bounded. By taking the function $f_0(z) = 1 \in \mathbb{B}^{\alpha}$ and $\| f_0 \|_{\mathbb{B}^{\alpha}} = 1$, then we obtain

$$\begin{split} &\|T_{h}C_{\phi}\|_{\mathsf{B}^{\alpha}\to\mathcal{Q}_{K}(p,q)}^{p}=\|T_{h}C_{\phi}\|_{\mathsf{B}^{\alpha}\to\mathcal{Q}_{K}(p,q)}^{p}\|\|f_{0}\|_{\mathsf{B}^{\alpha}}^{p}\\ \geq \|T_{h}C_{\phi}f_{0}\|_{\mathcal{Q}_{K}(p,q)}^{p}\\ &=\sup_{a\in\mathsf{B}}\int_{\mathsf{B}}|(T_{h}C_{\phi}f_{0})'(z)|^{p}(1-|z|^{2})^{q}K(g(z,a))dA(z)\\ &=\sup_{a\in\mathsf{B}}\int_{\mathsf{B}}|(f_{0}(\phi(z))h'(z))|^{p}(1-|z|^{2})^{q}K(g(z,a))dA(z)\\ &=\sup_{a\in\mathsf{B}}\int_{\mathsf{B}}|h'(z))|^{p}(1-|z|^{2})^{q}K(g(z,a))dA(z)\\ &=\|h\|_{K}^{p}|_{p,q}. \end{split}$$

That is

$$\|h\|_{K,p,q} \le \|T_h C_{\phi} f\|_{\mathsf{B}^{\alpha} \to \mathcal{Q}_{K}(p,q)}.$$

$$(11)$$

(12)

Thus from (10) and (11) we have the relation in (9). The proof of this theorem is completd.

Theorem 3.4 Let $0 < \alpha < 1$, $h \in H(B)$, ϕ is a analytic mapping from B into itself. Then $T_h C_{\phi} : B^{\alpha} \to Q_k(p,q)$ is compact if and only if $h \in Q_k(p,q)$.

Proof: The proof of this theorem is similar to that of Theorem 3.2.

3.3. The Case α=1

Theorem 3.5 Let $\alpha = 1$, $h \in H(B)$, ϕ is a analytic mapping from B into itself. Then $T_h C_{\phi} : B^1 \to Q_K(p,q)$ is bounded (compact) if compactness is similar to the corresponding part of Theorem 3.2.

4. Conclusion

We proved in many case depended on the value of $\alpha = 1$ the boundedness and Compactness of product of extended Cesáro operator and composition operator from the Bloch-type spaces B^{α} to $Q_{\kappa}(p,q)$ spaces on the unit ball still holds.

References

- J. Arazy, D. Fisher and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1986), 110-145.
- [2] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its applications, Pitman Research Notes in Math. 305, Longman Scientific and Technical Harlow, (1994), 136-146.
- [3] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators on some holomorphic Banach function spaces, Math. Scand. 104 (2) (2009), 275-295.
- [4] M. Essén, H. Wulan, and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_k spaces, J. Funct. Anal. 230 (2006), 78-115.
- [5] Z. S. Fang, Z. H. Zhou, Extended Cesàro operators from weighted Bloch spaces to Zygmund spaces in the unit ball, J. Math. Anal. Appl. 359 (2) (2009) 499-507.
- [6] Z. S. Fang, Z. H. Zhou, Extended Cesàro operators on BMOA spaces in the unit ball, J. Math. Inequal. 4 (1) (2010) 27-36.
- [7] D. Gu, Extended Cesàro operators from logarithmic-type spaces to Bloch-type spaces, Abstr. Appl. Anal. 2009, 9p, Article ID 246521.
- [8] Z. J. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (7) (2003) 2171-2179.

- [9] A. Kamal, A. El-Sayed Ahmed and T. I. Yassen, Quasi-metric spaces and composition operators on B^{*}_{α,log} and F^{*}_{log}(p;q;s) spaces, J. Comp. Theoretical Nanoscience. 12 (8) (2015), 1795-1801.
- [10] A. Kamal, and T. I. Yassen, Some Properties of Composition Operator Acting Between General Hyperbolic Type Spaces, Int. J. Math. Anal. Appl. 2 (2) (2015), 17-26.
- [11] S. Li and H. Wulan, Composition operators on Q_{κ} spaces, J. Math. Anal. Appl. 327 (2007), 948-958.
- [12] Yu-Xia Liang, Ze-Hua Zhou, Product of Extended Cesàro Operator and Composition Operator from Lipschitz Space to F(p,q,s) Space on the Unit Ball. Abstr, Appl. Anal. 2011, 9 p, Article ID 152635.
- [13] LÜ Xiao-fen, Weighted composition operators from F(p,q,s) spaces to Bers-type spaces in the unit ball, Appl. Math. J. Chinese Univ., 24 (4) (2009), 462-472.
- [14] J. Shi, Inequalities for the integral means of holomorphic function and their derivatives in the unit ball of Cⁿ, Trans Amer Math Soc. 328 (1991), 619-637.
- [15] S. Stevi'c, On operator P_{φ}^{g} from the logarithmic Bloch-type space to the mixed-norm space on the unit ball, Appl. Math. Comput. 215 (2010) 4248-4255.
- [16] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), 4683-4698.
- [17] H. Wulan and J. Zhou, Q_{K} type spaces of analytic functions. J. Funct. Spaces Appl. 4 (1) (2006), 73-84.
- [18] H. Wulan and Y. Zhang, Hadamard products and Q_k spaces, J. Math. Anal. Appl, 337 (2) (2008), 1142-1150.
- [19] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Series A I. Mathematica. Dissertationes. 105. Helsinki: Suomalainen Tiedeakatemia, (1996), 1-56.
- [20] R. Zhao, On α -Bloch functions and VMOA, Acta. Math. Sci, 3 (1996), 349 360.