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Abstract

In this paper, we study the properties boundedness and compactness of product of
extended Cesaro operator and composition operator from the Bloch-type spaces B” to
Ox(p.q) spaces on the unit ball of C" Moreover, necessary and sucient conditions are given
for The product of extended Cesaro operator and composition operator from the
Bloch-type spaces B” to Qx(p,q) spaces to be bounded and compact.

1. Introduction

Let B={z0OC":|z|<1} the open unit ball in C", p(B) denote the class of all

analytic functions in B. Let 44 denote the Lebesegue measure on B normalized so that
AB)=1.
For fOH(B), let

ro=3aLe

be the redial derivative of f.
Definition 1.1 (see [20]) Let f be an analytic function in B and 0 <a < oo . The

a -Bloch space B“ is defined by
— . — 2 '
B —{fDH(B)-IIfIIBa—SIEJBp(l-IZI )1 f (@) <o},
the little & -Bloch space B¢ is given as follows

Bo Z{fDH(B)inIIBg: lim (1= z[") | f (2) |- 0}.

|z 1"

The spaces B' and Bé are called the Bloch space and denoted by B and B,
respectively (see [1]).

Let the Green’s function of B be defined as g(z q4)=1log 1 , Where
19.(2)|
$ (z)=-2—Z is the Mobius transformation related to the point 4 OB.
‘ 1-az
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Definition 1.2 (see [17]) Let

0<p<oand =2<g<co. Thespace Q, (p,q) is defined by

K :[0,0) - [0,00) be a right continuous and nondecreasing function.

For

Ok (p.q)={fTHB): sup f | £ ()" (=] 2[)! K (g(z,@))dA(z) < o},

If

lim sup [ | /') " (1=| 2 ) K (g(z,@))dA(2) = 0,

la| -1~ alB B

then /OO, ,(p,q).

Waulan and Zhou in [18] mentioned the following properties
of these spaces:
(a). For p=2,9=0, we obtain Or(p,q)=0y (see [4, 11,
18]).
(b).For p=2,4=0,
Ok (p.9)=0, (see [2]).
(c). For K(t)=t¢", then Ox(p,q)=F(p,q,s) (see[3, 19]).
A linear defined by

and K()=t", we obtain

composition operator c, is
C,(N=(fp) for f intheset g(B) ofanalytic functions
on B. The study of composition operator C, acting on

spaces of analytic functions has engaged many analysts for
many years (see [3, 11] and others).
The problem of boundedness and compactness of c, has

been studied in many Banach spaces of analytic functions and
the study of such operators has recently attracted the most
attention (see [9, 10, 16] and others).

Let nO0H(B), the extended Cesaro operator 7, with
symbol / is the operator on H (B),

T,f(z)= J:f(tz)h'(tz)%, fOHB),zOB  (see [3)).

This operator is called generalized Cesaro operator, which
has been studied in (see [5, 6, 7] and other).
Here, we consider the product of extended Cesaro operator

T, and of composition operator C,,, which are defined by

1 .
T,Csf(2) = Joj'(¢(tz))h (tz)?, fSOH®B),zOB (see [12]).

In this paper we characterize the boundedness and
compactness of the product 7,C, of extended Cesaro operator

and composition operator from Bloch-type space to O (p,q)

spaces on the unit ball of C”.

2. Auxiliary Results

In this section we state several results, which are used in the
main result proofs.
Definition 2.1 The operator T,C,: B » Oy(p.q) 18 said to

be bounded, if there is a positive constant C such that

IT,Cof g ryS CILS Nl o forall pOB7.
Definition 2.2 The operator T,C,: B - Oc(p.q) 1S said to

be compact, if it maps any ball in p“ onto a pre-compact set

in 0, (p.q).

The following lemma follows by standard arguments
similar to those outlined in [16]. Hence we omit the proof.

Lemma 2.1 Assume ¢ is a analytic mapping from B into
itself and let 0< p, g <o, -2<g<o, then I,C,:B° - O(p.g) 1S
compact if and only if for any bounded sequence (73  0OB“
which converges to zero uniformly on compact subsets of B
as n - o we have 11}9) I1T,C,f, HQK(pm: 0.

Lemma 2.2 (see [13]) Let ypp®. Then, for OB, we

have
/1l if 0o<a<l,
W/l , n—— if a=1
| f(2)gC 8 =z ’
N1, ,
(=2 )™ v a-l

Lemma 2.3 (see [12]) Suppose that £ 40 H(B). Then

[T,Cof (2] = f(@A2)h (2).

The next lemma was obtained in (see [14]).
Lemma2.41If g >0, >0, thenthe elementary inequality

holds,
a’ +b” for

(a+b)f <
2" (a” +b") for

0<p<1,

p=1.
This lemma still holds for sum of finite number z, thatis
(a,+a,+....+a) <C(al +af +.....+a?), (1)

where a,,4a,,....a, >0,and C>0 .

The next lemma was obtained in (see [15]).
Lemma 2.5 Assume ¢ >1. Then there exist N = N(n)ON

and functions f,,....... £, 0B?(B) such that

| fi(@D) |+t | f(2) 2 (- ¢ z0OB, (2)

2Py

where C is a positive constant.
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3. The Boundedness and
Compactness of the Operator
T,Cy :BY - Ok (p.9)

3.1. The Case a>1

Theorem 3.1 Let a>1, hOH(B), ¢ is a analytic

mapping from B into itself. Then ThC(a;B" - 0r(p,q) 1s

bounded if and only if

[ L@ (-]2P) K g(z.a)
(-l P

Proof: Assume first (3) is holds, and f[B?, by Lemma
2.2 and Lemma 2.3 we have

@, :=sup dA(z) <oo. (3)
aB

1 T,Cof Ml g™ sup IB [(T,Cof) ()" (1=] ) K(g(2,@))dA(2)

=sup [ 1(£(@DH @)1 (=] 2 ) K (g(z,a)dA(2)

" (=12 ) K(g(z,a)

1 (2)
P
<cl s, S;;g’L

<clsi, o,

< o0,

It follows that T,C,:B" = 0u(p.q) is bounded.

(=l @) )"

dA(z)

For the other direction, we assume 7,C,:B” — O, (p,q) is bounded. Then using Lemma 2.4 and Lemma 2.5 we obtain

WTCofi kg FITCofs Ml g3

= sup IB[I (T,Cof)) @ +I(T,C,f5) (2)1'1(1= | 2[*) K (g(z,a))dA(2)}
2 {Slég IB[I (LC/) D +I(T,Cofy) (D) 17 (1=] 2')! K (g(z,a))dA(2)}

2 isup IB[I K@D+ L@V [ H (D)) (1= 2*) K (g(z,a))dA(2)}

[h ()" (1= 2[*)! K(g(z,a))

>Conl

>2(Co,.

Form this and the boundednesls of 7,C, it follows that (3)
holds. The proof of this theorem is completed.

Theorem 3.2 Let g>1, hOH(B), ¢ is a analytic
mapping from B into itself. Then 7,C,:BY - Oy(p.q) is
compact if and only if (3) holds.

Proof: Assume that Tth] ‘:B? 0« (p,q) is compact.

Then it is bounded, then (3) holds from Theorem 3.1.
Conversely, assume that (3) holds. Then, form (3) we obtain

M =sup [ [H(2)1" (1= 2 ) K (2(z,a)dA(2) < . (2

sup (1-x*)“™ >0.
XTJ0,1)

Since

dA(z)}

Assum that { ar is bounded sequence in B“, such that
f; - 0 uniformly on the compact subsets of B as ; — o,

Suppose that sup| £, HBHS 1. It follows from ( 3 ) that for any
JON

£>0, there exist a constant 5[(0,1), such that
|h (@) (-] 2 )" K(g(z,a))
(I-|@z) )"

Let M, ={w0B,|w|< J}, then M, is compact subset of
B. Since f -0 uniformly on the compact subsets of B as

sup dA(z)< &P, (5)

B A)<E

j - o and A0Q,(p,q), we have

IT,Cof k™ sup IB [(T,Cof ) (D" (1=] ) K (g(2,@))dA(2)
=sup [N @DE D (1=12 F) K (g(z.a))dA()
#sup [ 1 @DH ) (1] 2 ) K (g(z,a)dA(2)

=J,+J,.
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Since M, is compact and from (4) we have

[(f,( @2k () " (1=| 2 ") K (g(z,a))dA(z)

[h ()" (1=]2) K(g(z,a))dA(z)

J| —sup ores

< sup If,-(w)l"j

lp(2)|<d

SM .a)”—>0, J—>00
;‘LFI\f,( )| (6)

On other hand, by Lemma 2.4 and from (5), we have
|5 @2DH ()" (=] 2[") K (g(2,a))dA(z)

HEP (=12 K(&Ea) 4
(= @) )"

J, fsup.[a -

<C
1,0, supf
SCM? <égP. (7)
From (6), (7) and since &£ is an arbitrary positive number,

we get

lim | T,C,f; Il = O- (8)

J—oo

Hence by (8) and Lemma 2.1 we get 7,C,:B“ — O, (p,q)

is compact. This completes the proof of this theorem.
3.2. The Case 0<a<1
Theorem 3.3 Let 0<a <1, hOH(B),

mapping from B into itself. Then ThC¢5Ba - 0 (1,9 is

bounded if and only if A20Q.(p,q).
7,C,:B% - O,(p.,q) is bounded. Then

¢ is a analytic

Moreover, if

1T,Cof oy ™ I Plogirn )

Proof: Assume that A00Q,(p,q). For any sn0B?, by
Lemma 2.2 and Lemma 2.3 we have

I TCof Nk p.a™ sup L [(T,Cof) (D" (1= 2 ) K (g(2,a))dA(2)

= sup IB [(S(@Nh (DI (1= 2 ) K (g(z,a))dA(2)

&, =sup| | (2)| In
s=sup [ 1K) (

<ClfIa SupL [ (@) (=] 2 ") K(g(z,a))dA(2).
aB

That is

||ThC¢f||Ba )—C”h”K,p,q : (10)

For the other direction, we assume 1,C P B“

- Ok (p,9)
is bounded. By taking the function f(z)=10B“ and

1yl

—1, then we obtain

15 ey o ITC I

(g TP BT L0 (pag)
2| T,Cofo llog o)
= SISSJ.B |(T,C,fs) (2) " (1= | 2[)? K (g(z,a))dA(z)

= sup IB | (fo(@2)h ()" (1= ] 2 ") K (g(2,a))dA(2)
= SUP_L [H ()" (=] 2]") K (g(z,@))dA(2)

aB
=l Allx g -

That is

1y 112

1Bl o SITCof | (an

B -0 ()

Thus from (10) and (11) we have the relation in (9). The
proof of this theorem is completd.

Theorem 3.4 Let 0<a <1, hOH(@B), ¢ is a analytic
mapping from B into itself. Then T,C,:BY - Ou(p.q) is
compact ifand only if K0Q, (p,q).

Proof: The proof of this theorem is similar to that of
Theorem 3.2.

3.3. The Case a=1

Theorem 3.5 Let a=1, hOH®B), ¢ is a analytic
mapping from B into itself. Then ThC¢181 -~ 0c(p.g) 18

bounded (compact) if

————)"(1=| z[")" K (g(z,a))dA(z) < o. (12)

Iw()l

Proof: Assume that (12) holds. For any f[OB', by Lemma 2.2 and Lemma 2.3 we have

I T,Cof Il .= sup IB [(T,C,f) (D)1 (1=] 2")! K (g(z,a))dA(z)

= sup IB |(f(@2Dh ()" (1= 2 ) K(g(z,a))dA(2)

P ' P
<CIIS Nl sup [, 15 )1 (U

<CIfI @, <.

ICU( e ——— )" (1=1z[")K(g(z,a))dA(2).

So T,C,:BY » Q¢(p,q) is bounded. The proof of
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compactness is similar to the corresponding part of Theorem
3.2.

4. Conclusion

We proved in many case depended on the value of o =1
the boundedness and Compactness of product of extended
Cesaro operator and composition operator from the
Bloch-type spaces B to g, (p.q) spaces on the unit ball still

holds.
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