

Keywords

Definite Integrel, Indefinite Integral, Variational Calculus

Received: June 24, 2016
Accepted: July 4, 2016
Published: July 29, 2016

Exact Proof of the Riemann Hypothesis

Fayez Fok Al Adeh
President: The Syrian Cosmological Society, Damascus, Syria
Email address
hayfa@scs-net.org

Citation

Fayez Fok Al Adeh. Exact Proof of the Riemann Hypothesis. International Journal of Mathematical Analysis and Applications. Vol. 3, No. 2, 2016, pp. 17-25.

Abstract

I have already discovered a simple proof of the Riemann Hypothesis. The hypothesis states that the nontrivial zeros of the Riemann zeta function have real part equal to 0.5 . I assume that any such zero is $\mathrm{s}=\mathrm{a}+\mathrm{bi}$. I use integral calculus in the first part of the proof. In the second part I employ variational calculus. Through equations (50) to (59) I consider (a) as a fixed exponent, and verify that $a=0.5$. From equation (60) onward I view (a) as a parameter $(\mathrm{a}<0.5)$ and arrive at a contradiction. At the end of the proof (from equation (73)) and through the assumption that (a) is a parameter, I verify again that $\mathrm{a}=0.5$.

1. Introduction

The Riemann zeta function is the function of the complex variable $s=a+b i(i=$ $\sqrt{-1}$), defined in the half plane $\mathrm{a}>1$ by the absolute convergent series

$$
\begin{equation*}
\zeta(s)=\sum_{1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

and in the whole complex plane by analytic continuation.
The function $\zeta(s)$ has zeros at the negative even integers $-2,-4, \ldots$ and one refers to them as the trivial zeros. The Riemann hypothesis states that the nontrivial zeros of $\zeta(s)$ have real part equal to 0.5 .

2. First Part of the Proof of the Hypothesis

We begin with the equation

$$
\begin{equation*}
\zeta(s)=0 \tag{2}
\end{equation*}
$$

And with

$$
\begin{array}{r}
\mathrm{s}=\mathrm{a}+\mathrm{bi} \\
\zeta(a+b i)=0 \tag{4}
\end{array}
$$

It is known that the nontrivial zeros of $\zeta(s)$ are all complex. Their real parts lie between zero and one.

If $0<a<1$ then

$$
\begin{equation*}
\zeta(s)=\mathrm{s} \int_{0}^{\infty} \frac{[x]-x}{x^{s+1}} \mathrm{dx}(0<\mathrm{a}<1) \quad \int_{0}^{\infty} x^{-1-a}([x]-x) \cos (b \log x) d x=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} x^{-1-a}([x]-x) \sin (b \log x) d x=0 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{[x]-x}{x^{s+1}} \mathrm{dx}=0 \tag{6}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \int_{0}^{\infty}([x]-x) x^{-1-a-b i} d x=0 \tag{7}\\
& \int_{0}^{\infty}([x]-x) x^{-1-a_{x}-b i} d x=0 \tag{8}
\end{align*}
$$

$\int_{0}^{\infty} x^{-1-a}([x]-x)(\cos (b \log x)-i \sin (b \log x)) d x=0$
Separating the real and imaginary parts we get

$$
\begin{equation*}
\int_{0}^{\infty} x^{-2+a}([x]-x) \sin (b \log x) d x=0 \tag{12}
\end{equation*}
$$

In equation (11) replace the dummy variable x by the dummy variable y

$$
\begin{equation*}
\int_{0}^{\infty} y^{-1-a}([y]-y) \sin (b \log y) d y=0 \tag{13}
\end{equation*}
$$

We form the product of the integrals (12)and (13). This is justified by the fact that both integrals (12) and (13) are absolutely convergent .As to integral (12) we notice that

$$
\begin{gathered}
\int_{0}^{\infty} x^{-2+a}([x]-x) \sin (b \log x) d x \leq \int_{0}^{\infty}\left|x^{-2+a([\mathrm{x}]-\mathrm{x}) \sin (\mathrm{blog} \mathrm{x})}\right|^{\mathrm{dx}} \\
\leq \int_{0}^{\infty} x^{-2+a}((x)) d x
\end{gathered}
$$

(where $((\mathrm{z})$) is the fractional part of $\mathrm{z}, 0 \leq((\mathrm{z}))<1)$
$=\lim (\mathrm{t} \rightarrow 0) \int_{0}^{1-t} x^{-1+a} \mathrm{dx}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-2+a}((\mathrm{x})) \mathrm{dx}$
(t is avery small positive number) (since $((\mathrm{x}))=\mathrm{x}$ whenever $0 \leq \mathrm{x}<1$)
$=\frac{1}{a}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-2+a}((\mathrm{x})) \mathrm{dx}$
$<\frac{1}{a}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-2+a} \mathrm{dx}=\frac{1}{a}+\frac{1}{a-1}$
And as to integral (13) $\int_{0}^{\infty} y^{-1-a}([y]-y) \sin (b \log y) d y$
$\leq \int_{0}^{\infty}\left|y^{-1-a}([y]-y) \sin (b \log y)\right|_{\mathrm{dy}}$
$\leq \int_{0}^{\infty} y^{-1-a}((y)) d y$
$=\lim (\mathrm{t} \rightarrow 0) \int_{0}^{1-t} y^{-a} \mathrm{dy}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} y^{-1-a}((y)) d y$
(t is avery small positive number) (since $((\mathrm{y}))=\mathrm{y}$ whenever $0 \leq \mathrm{y}<1$)
$=\frac{1}{1-a}+\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} y^{-1-a}((y)) d y$
$<\frac{1}{1-a}+\int_{1+t}^{\infty} y^{-1-a} d y=\frac{1}{1-a}+\frac{1}{a}$
Since the limits of integration do not involve x or y , the product can be expressed as the double integral

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \sin (b \log y) \sin (b \log x) d x d y=0 \tag{14}
\end{equation*}
$$

Thus

$$
\begin{gather*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y)(\cos (b \log y+b \log x)-\cos (b \log y-b \log x)) d x d y=0 \tag{15}\\
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y)\left(\cos (b \log x y)-\cos \left(b \log \frac{y}{x}\right)\right) d x d y=0 \tag{16}
\end{gather*}
$$

That is

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos (b \log x y) d x d y= \\
& \int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos \left(b \log \frac{y}{x}\right) d x d y \tag{17}
\end{align*}
$$

Consider the integral on the right-hand side of equation (17)

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos \left(b \log \frac{y}{x}\right) d x d y \tag{18}
\end{equation*}
$$

In this integral make the substitution $\mathrm{x}=\frac{1}{z} \mathrm{dx}=\frac{-d z}{z^{2}}$
The integral becomes

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\infty}^{0} z^{2-a} y^{-1-a}\left(\left[\frac{1}{z}\right]-\frac{1}{z}\right)([y]-y) \cos (b \log z y) \frac{-d z}{z^{2}} d y \tag{19}
\end{equation*}
$$

That is

$$
\begin{equation*}
-\int_{0}^{\infty} \int_{\infty}^{0} z^{-a} y^{-1-a}\left(\left[\frac{1}{z}\right]-\frac{1}{z}\right)([y]-y) \cos (b \log z y) d z d y \tag{20}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} z^{-a} y^{-1-a}\left(\left[\frac{1}{z}\right]-\frac{1}{z}\right)([y]-y) \cos (b \log z y) d z d y \tag{21}
\end{equation*}
$$

If we replace the dummy variable z by the dummy variable x , the integral takes the form

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-a} y^{-1-a}\left(\left[\frac{1}{x}\right]-\frac{1}{x}\right)([y]-y) \cos (b \log x y) d x d y \tag{22}
\end{equation*}
$$

Rewrite this integral in the equivalent form

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}\left(x^{2-2 a}\left[\frac{1}{x}\right]-\frac{x^{2-2 a}}{x}\right)([y]-y) \cos (b \log x y) d x d y \tag{23}
\end{equation*}
$$

Thus equation 17 becomes

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([x]-x)([y]-y) \cos (b \log x y) d x d y= \\
& \int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}\left(x^{2-2 a}\left[\frac{1}{x}\right]-\frac{x^{2-2 a}}{x}\right)([y]-y) \cos (b \log x y) d x d y \tag{24}
\end{align*}
$$

Write the last equation in the form

$$
\begin{equation*}
\left.\left(x^{2}-2 a\left[\frac{1}{x}\right]-\frac{x^{2-2 a}}{x}\right)-([\mathrm{x}]-\mathrm{x})\right\} \mathrm{dxdy}=0 \tag{25}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} x^{-2+a} y^{-1-a}([y]-y) \cos (b \log x y)\{ \\
& \left.\left(x^{2}-2 a\left[\frac{1}{x}\right]-\frac{x^{2}-2 a}{x}\right)-([\mathrm{x}]-\mathrm{x})\right\} \tag{31}
\end{align*}
$$

Let $\mathrm{p}>0$ be an arbitrary small positive number.We consider the following regions in the $\mathrm{x}-\mathrm{y}$ plane.

$$
\begin{equation*}
\text { The region of integration } \mathrm{I}=[0, \infty) \times[0, \infty) \tag{26}
\end{equation*}
$$

The large region $\mathrm{I} 1=[\mathrm{p}, \infty) \times[\mathrm{p}, \infty)$
The narrow strip I $2=[p, \infty) \times[0, \mathrm{p}]$
The narrow strip I $3=[0, \mathrm{p}] \times[0, \infty)$
Note that

$$
\begin{equation*}
\mathrm{I}=\mathrm{I} 1 \bigcup \mathrm{I} 2 \bigcup \mathrm{I} 3 \tag{30}
\end{equation*}
$$

Denote the integrand in the left hand side of equation (25) by

$$
\mathrm{F}(\mathrm{x}, \mathrm{y})=x^{-2+a} y^{-1-a}([y]-y) \cos (b \log x y)\{
$$

Let us find the limit of $\mathrm{F}(\mathrm{x}, \mathrm{y})$ as $\mathrm{x} \rightarrow \infty$ and $\mathrm{y} \rightarrow \infty$. This limit is given by

$$
\begin{gather*}
\operatorname{Lim} x^{-a} y^{-1-a}[-((\mathrm{y}))] \cos (\operatorname{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)\right. \\
+((\mathrm{x})) x^{2 a-2]} \tag{27}
\end{gather*}
$$

$((\mathrm{z}))$ is the fractional part of the number $\mathrm{z}, 0 \leq((\mathrm{z}))<1$
The above limit vanishes, since all the functions [-((y))], $\cos (b \log \mathrm{xy}),-\left(\left(\frac{1}{x}\right)\right)$, and $((\mathrm{x}))$ remain bounded as $\mathrm{x} \rightarrow \infty$ and $\mathrm{y} \rightarrow \infty$

Note that the function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is defined and bounded in the region I 1. We can prove that the integral

$$
\begin{equation*}
\iint F(x, y) d x \text { dy is bounded as follows } \tag{33}
\end{equation*}
$$

$$
\begin{aligned}
& \iiint_{\mathrm{I} 1}^{\mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}}=\iint_{x^{-a} y^{-1-a}[-((\mathrm{y}))] \cos (\mathrm{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x}))\right.}=x^{2 a-2] \mathrm{dx} \mathrm{dy}} \\
& \quad \leq \left\lvert\, \iint_{x^{-a}}-y^{-1-a^{[-((\mathrm{y}))] \cos (\mathrm{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x}))\right.} x^{2 a-2] \mathrm{dx} \mathrm{dy}}}\right.
\end{aligned}
$$

$$
=\left\lvert\, \int_{p}^{\infty}\left(\int_{p}^{\infty} x^{-a \cos (\operatorname{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x}))\right.} x^{2 a-2] \mathrm{dx})} y^{\left.-1-a_{[-((\mathrm{y}))}\right] \mathrm{dy} \mid}\right.\right.
$$

$$
\begin{aligned}
& \leq \int_{p}^{\infty} \left\lvert\, \int_{p}^{\infty} x^{-a} \cos (\mathrm{blog} \mathrm{xy})\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x}))\right.\right. \\
&\left.\left.x^{2 a-2}\right] \mathrm{dx}\right)\left|\left|y^{-1-a}[-((\mathrm{y}))]\right| \mathrm{dy}\right. \\
& \leq \int_{p}^{\infty}\left(\int_{p}^{\infty} x^{-a}|\cos (\operatorname{blog} \mathrm{xy})| \left\lvert\,\left[-\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x}))\right.\right.\right. \\
& x^{2 a-2] \mid \mathrm{dx})\left|y^{-1-a}[-((\mathrm{y}))]\right| \mathrm{dy}} \\
&<\int_{\mathrm{P}}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2] \mathrm{dx} \int_{\mathrm{P}}^{\infty} y^{-1-a}}\right. \\
&= \frac{1}{a p^{a}} \int_{\mathrm{P}}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2] \mathrm{dx}}\right. \\
&= \frac{1}{a p^{a}}\left\{\operatorname { l i m } (\mathrm { t } \rightarrow 0) \int _ { \mathrm { P } } ^ { 1 - t } x ^ { - a } \left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2]}\right.\right. \\
& \mathrm{d}^{2 a}+\lim (\mathrm{t} \rightarrow 0) \\
& \int_{1+t}^{\infty} x^{-a\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x}))\right.} x^{2 a-2] \mathrm{dx}\}}
\end{aligned}
$$

where t is avery small arbitrary positive. number. Since the integral

$$
\lim (\mathrm{t} \rightarrow 0) \int_{\mathrm{P}}^{1-t} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2] \mathrm{dx} \text { is }}\right.
$$ bounded, it remains to show that $\lim (\mathrm{t} \rightarrow 0)$

$$
\int_{1+t}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \text { is bounded. }
$$

Since $\mathrm{x}>1$,then $\left(\left(\frac{1}{x}\right)\right)=\frac{1}{x}$ and we have $\lim (\mathrm{t} \rightarrow 0)$

$$
\begin{aligned}
& \int_{1+t}^{\infty} x^{-a}\left[\left(\left(\frac{1}{x}\right)\right)+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \\
& \quad=\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} x^{-a}\left[\frac{1}{x}+((\mathrm{x})) x^{2 a-2}\right] \mathrm{dx} \\
& \quad=\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty}\left[x^{-a-1}+((\mathrm{x})) x^{a-2}\right] \mathrm{dx}
\end{aligned}
$$

$$
\begin{equation*}
<\lim (\mathrm{t} \rightarrow 0) \int_{1+t}^{\infty}\left[x^{-a-1+} x^{a-2}\right] \mathrm{dx}=\frac{1}{a(1-a)} \tag{34}
\end{equation*}
$$

Hence the boundedness of the integral $\iint \begin{gathered}F(x, y) d x d y \\ \text { is }\end{gathered}$ proved.

Consider the region

$$
\begin{equation*}
\mathrm{I} 4=\mathrm{I} 2 \bigcup \mathrm{I} 3 \tag{35}
\end{equation*}
$$

We know that

$$
\begin{equation*}
0=\iint_{I}^{F(x, y) d x d y}=\iint_{I}^{F(x, y) d x d y}+\iint{ }_{I 1}^{F(x, y) d x} d y \tag{36}
\end{equation*}
$$ and that

$$
\begin{equation*}
\iint \frac{\mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \text { dy is bounded }}{\mathrm{I} 1} \tag{37}
\end{equation*}
$$

From which we deduce that the integral

$$
\begin{equation*}
\iint \frac{\mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \text { dy is bounded }}{\mathrm{I} 4} \tag{38}
\end{equation*}
$$

Remember that

$$
\iint \begin{gather*}
F(x, y) d x d y \tag{39}\\
I 4
\end{gather*}=\iint_{I 2}^{F(x, y) d x d y}+\iint{ }_{I 2}^{F(x, y) d x d y}
$$

Consider the integral

$$
\begin{gathered}
\iint_{\mathrm{I}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}}^{\mathrm{I} 2} \leq \mid \iint_{\mathrm{F}}^{\mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}} \\
=\left\lvert\, \int_{\mathrm{I} 2}^{p}\left(\int_{p}^{\infty} x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\}\right.\right.
\end{gathered}
$$

$$
\cos (b \log x y) \mathrm{dx}) \frac{1}{y^{a}} \mathrm{dy}
$$

$$
\leq \int_{0}^{p} \left\lvert\, \int_{p}^{\infty}\left(x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\}\right.\right.
$$

$$
\cos (b \log x y) \mathrm{dx}) \left\lvert\, \frac{1}{y^{a}} \mathrm{dy}\right.
$$

$$
\leq \int_{0}^{p}\left(\int_{p}^{\infty}\left|x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\}\right|\right.
$$

$\cos (b \log x y) \mid$ dx $\frac{1}{y^{a}} \mathrm{dy}$

$$
\leq \int_{\mathrm{P}}^{\infty}\left|x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\}\right| \mathrm{dx} \times \int_{0}^{\mathrm{P}} \frac{1}{y^{a}}
$$

dy
(This is because in this region $((y))=y)$. It is evident that the integral $\int_{\mathrm{P}}^{\infty}\left|x^{-a}\left\{\left(\left(\frac{1}{x}\right)\right)-((\mathrm{x})) x^{2 a-2}\right\}\right| \mathrm{dx}$ is bounded, this was proved in the course of proving that the integral $\iint \begin{gathered}F(x, y) d x d y \\ \text { I1 }\end{gathered}$ bounded .Also it is evident that the integral
$\int_{0}^{\mathrm{P}} \frac{1}{y^{a}}$ dyis bounded. Thus we deduce that the integral (40) $\iint{ }_{\text {I2 }}^{F(x, y) d x ~ d y}$ is bounded

Hence, according to equation(39), the integral

$$
\iint \begin{gather*}
\mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \text { dy is bounded } \tag{40}\\
\mathrm{I} 3
\end{gather*}
$$

Now consider the integral

$$
\iint \begin{gather*}
F(x, y) d x d y \tag{41}\\
I 3
\end{gather*}
$$

We write it in the form

$$
\begin{aligned}
\iint \begin{array}{l}
\mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}
\end{array} & =\int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{xy}) \mathrm{dy}\right) \\
& \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}
\end{aligned}
$$

(This is because in this region $((\mathrm{x}))=\mathrm{x}$)

$$
\begin{gathered}
\leq \left\lvert\, \int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{xy}) \mathrm{dy}\right) \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}}\right. \\
\mathrm{dx}
\end{gathered}
$$

$$
\leq \int_{0}^{p}\left|\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{xy}) \mathrm{dy}\right)\right| \mid
$$

$$
\left.\frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \right\rvert\, \mathrm{dx}
$$

$$
\leq \int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}\right)\left|\frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}}\right|
$$

Now we consider the integral with respect to y

$$
\begin{aligned}
& \int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy} \\
& =(\lim \mathrm{t} \rightarrow 0) \int_{0}^{1-t} \mathrm{y}^{-1-a} \times \mathrm{y} \mathrm{dy}+(\lim \mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} \mathrm{y}^{-1-a}
\end{aligned}
$$ ((y)) dy

(where t is a very small arbitrary positive number). (Note that $((y))=y$ whenever $0 \leq y<1)$.

Thus we have $(\lim \mathrm{t} \rightarrow 0) \int_{1+t}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \mathrm{dy}<(\lim \mathrm{t}$ $\rightarrow 0) \int_{1+t}^{\infty} \mathrm{y}^{-1-a} \mathrm{dy}=\frac{1}{a}$
$\operatorname{and}(\lim \mathrm{t} \rightarrow 0) \int_{0}^{1-t} \mathrm{y}^{-1-a} \times \mathrm{y} d \mathrm{y}=\frac{1}{1-a}$
Hence the integral (43) $\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y}))$ dy is bounded. (43) Since $\left|\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \operatorname{logxy}) \mathrm{dy}\right| \leq \int_{0}^{\infty} \mathrm{y}$ ${ }^{-1-a}((\mathrm{y}))$ dy, we conclude that the integral $\mid \int_{0}^{\infty} \mathrm{y}^{-1-a}$ $((y)) \cos (b \log x y) d y \mid$ is a bounded function of x. Let this function be $\mathrm{H}(\mathrm{x})$. Thus we have

$$
\begin{equation*}
\left|\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{xy}) \mathrm{dy}\right|=\mathrm{H}(\mathrm{x}) \leq \mathrm{K} \tag{44}
\end{equation*}
$$

(K is a positive number)
Now equation (44) gives us

$$
\begin{equation*}
-\mathrm{K} \leq \int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \log \mathrm{x} y) \mathrm{dy} \leq \mathrm{K} \tag{45}
\end{equation*}
$$

According to equation (42) we have

$$
\begin{aligned}
\iint_{\mathrm{I} 3}^{\mathrm{F}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}}= & \int_{0}^{p}\left(\int_{0}^{\infty} \mathrm{y}^{-1-a}((\mathrm{y})) \cos (\mathrm{b} \operatorname{logxy}) \mathrm{dy}\right) \\
& \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx} \\
& \geq \int_{0}^{p}(-K) \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx}
\end{aligned}
$$

$$
\begin{equation*}
=\mathrm{K} \int_{p}^{0} \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx} \tag{46}
\end{equation*}
$$

Since $\iint \begin{gathered}F(x, y) d x d y \\ I 3\end{gathered}$ is bounded, then
$\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}$
$\frac{\mathrm{x}}{x^{a}} \mathrm{dx}$ is also bounded. Therefore the integral

$$
\begin{equation*}
\mathrm{G}=\int_{0}^{p} \frac{\left\{\left(\left(\frac{1}{\mathrm{x}}\right)\right)-x^{2 a-1}\right\}}{x^{a}} \mathrm{dx} \text { is bounded } \tag{47}
\end{equation*}
$$

We denote the integrand of (47) by

$$
\begin{equation*}
\mathrm{F}=\frac{1}{x^{a}}\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\} \tag{48}
\end{equation*}
$$

Let $\delta \mathrm{G}[\mathrm{F}]$ be the variation of the integral G due to the variation of the integrand δ F.

Since

$$
\begin{equation*}
\mathrm{G}[\mathrm{~F}]=\int \mathrm{F} \mathrm{dx} \text { (the integral (49) is indefinite) } \tag{49}
\end{equation*}
$$

(here we do not consider a as a parameter, rather we consider it as a given exponent)

We deduce that $\frac{\delta G[F]}{\delta F(x)}=1$
that is

$$
\begin{equation*}
\delta \mathrm{G}[\mathrm{~F}]=\boldsymbol{\delta} \mathrm{F}(\mathrm{x}) \tag{50}
\end{equation*}
$$

But we have

$$
\delta \mathrm{G}[\mathrm{~F}]=\int \mathrm{dx} \frac{\delta G[F]}{\delta F(x)} \delta F(x) \text { (the integral (51) is }
$$

Using equation (50) we deduce that
$\delta \mathrm{G}[\mathrm{F}]=\int \mathrm{dx} \delta F(x)$ (the integral (52) is indefinite) (52)
Since $G[F]$ is bounded across the elementary interval $[0, p]$, we must have that

$$
\begin{equation*}
\delta \mathrm{G}[\mathrm{~F}] \text { is bounded across this interval } \tag{53}
\end{equation*}
$$

From (52) we conclude that

$$
\begin{gather*}
\delta G=\int_{0}^{\mathrm{P}} \mathrm{dx} \delta F(x)=\int_{0}^{\mathrm{P}} \mathrm{dx} \frac{d F}{d x} \delta x=[\mathrm{F} \delta x](\text { at } \mathrm{x}=\mathrm{p})- \\
{[\mathrm{F} \delta x](\mathrm{at} \mathrm{x}=0)} \tag{54}
\end{gather*}
$$

Since the value of [F $\delta x]$ (at $\mathrm{x}=\mathrm{p})$ is bounded, we deduce from equation (54) that

$$
\begin{equation*}
\lim (\mathrm{x} \rightarrow 0) \mathrm{F} \delta \mathrm{x} \text { must remain bounded. } \tag{55}
\end{equation*}
$$

Thus we must have that
$(\lim \mathrm{x} \rightarrow 0)\left[\delta \times \frac{1}{x^{a}}\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\}\right]$ is bounded.
First we compute

$$
\begin{equation*}
(\lim \mathrm{x} \rightarrow 0) \frac{\delta x}{x^{a}} \tag{57}
\end{equation*}
$$

Applying L 'Hospital ' rule we get
$(\lim \mathrm{x} \rightarrow 0) \frac{\delta x}{x^{a}}=(\lim \mathrm{x} \rightarrow 0) \frac{1}{a} \times x^{1-a} \times \frac{d(\delta x)}{d x}=0$
We conclude from (56) that the product
$0 \times(\lim \mathrm{x} \rightarrow 0)\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\}$ must remain bounded.
Assume that a $=0.5$. (remember that we considered a as a given exponent)This value $\mathrm{a}=0.5$ will guarantee that the quantity $\left\{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}\right\}$ will remain bounded in the limit as $(x \rightarrow 0)$.Therefore, in this case $(a=0.5)$ (56) will approach zero as $(\mathrm{x} \rightarrow 0)$ and hence remain bounded.

3. Second Part of the Proof of the Hypothesis

Now suppose that $\mathrm{a}<0.5$. In this case we consider a as a parameter.Hence we have
$\mathrm{G}_{a}[\mathrm{x}]=\int \mathrm{dx} \frac{F(x, a)}{x} x$ (the integral (60) is indefinite) (60)
Thus

$$
\begin{equation*}
\frac{\delta G_{a}[x]}{\delta x}=\frac{F(x, a)}{x} \tag{61}
\end{equation*}
$$

But we have that

$$
\begin{equation*}
\delta G_{a}[x]=\int d x \frac{\delta G_{a}[x]}{\delta x} \delta x \tag{62}
\end{equation*}
$$

(the integral (62) is indefinite)
Substituting from (61) we get

$$
\begin{gather*}
\delta G_{a}[x]=\int d x \frac{F(x, a)}{x} \delta x \\
\text { (the integral (63) is indefinite) } \tag{63}
\end{gather*}
$$

We return to equation (49) and write
$\mathrm{G}=\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} F d x(\mathrm{t}$ is a very small positive number $\quad 0<\mathrm{t}<\mathrm{p})$

$$
\begin{equation*}
=\{F x(\text { at } p)-\lim (\mathrm{t} \rightarrow 0) F x(\text { at } \mathrm{t})\}-\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \mathrm{xdF} \tag{64}
\end{equation*}
$$

Let us compute

$$
\begin{equation*}
\lim (\mathrm{t} \rightarrow 0) \operatorname{Fx}(\text { at } \mathrm{t})=\lim (\mathrm{t} \rightarrow 0) \mathrm{t}^{1-a}\left(\left(\frac{1}{t}\right)\right)-\mathrm{t}^{a}=0 \tag{65}
\end{equation*}
$$

Thus equation (64) reduces to

$$
\begin{equation*}
\mathrm{G}-\mathrm{Fx}(\text { at } \mathrm{p})=-\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \mathrm{xdF} \tag{66}
\end{equation*}
$$

Note that the left - hand side of equation (66) is bounded. Equation (63) gives us

$$
\begin{equation*}
\boldsymbol{\delta} \mathrm{G}_{a}=\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \mathrm{dx} \frac{F}{x} \delta x \tag{67}
\end{equation*}
$$

(t is the same small positive number $0<\mathrm{t}<\mathrm{p}$)
We can easily prove that the two integrals $\int_{t}^{p} \mathrm{xdF}$ and $\int_{t}^{p} \mathrm{dx} \frac{F}{x} \delta x$ are absolutely convergent .Since the limits of integration do not involve any variable, we form the product of (66) and (67)

$$
\mathrm{K}=\lim (\mathrm{t} \rightarrow 0) \int_{t}^{p} \int_{t}^{p} \mathrm{xdF} \times \mathrm{dx} \frac{F}{x} \delta x=\lim (\mathrm{t} \rightarrow 0)
$$

$$
\begin{equation*}
\int_{t}^{p} \mathrm{FdF} \times \int_{t}^{p} \delta x d x \tag{68}
\end{equation*}
$$

(K is a bounded quantity)
That is

$$
\begin{align*}
& \mathrm{K}=\lim (\mathrm{t} \rightarrow 0)\left[\frac{F^{2}}{2}(\text { at } \mathrm{p})-\frac{F^{2}}{2}(\text { at } \mathrm{t})\right] \\
& \times[\delta \mathrm{x}(\text { at } \mathrm{p})-\delta \mathrm{x}(\text { at } \mathrm{t})] \tag{69}
\end{align*}
$$

We conclude from this equation that

$$
\begin{gather*}
\left\{\left[\frac{F^{2}}{2}(\text { at } \mathrm{p})-\lim (\mathrm{t} \rightarrow 0) \frac{F^{2}}{2}(\text { at } \mathrm{t})\right] \times[\boldsymbol{\delta} \mathrm{x}(\text { at } \mathrm{p})]\right\} \\
\text { is bounded. } \tag{70}
\end{gather*}
$$

(sincelim ($\mathrm{x} \rightarrow 0) \delta \mathrm{x}=0$, which is the same thing as $\lim (\mathrm{t} \rightarrow 0) \delta \mathrm{x}=0)$

Since $\frac{F^{2}}{2}($ at p$)$ is bounded, we deduce at once that $\frac{F^{2}}{2}$ must remain bounded in the limit as $(t \rightarrow 0)$, which is the same thing as saying that F must remain bounded in the limit as $(x \rightarrow 0)$. Therefore.

$$
\begin{equation*}
\lim (\mathrm{x} \rightarrow 0) \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}} \text { must remain bounded } \tag{71}
\end{equation*}
$$

But

$$
\begin{align*}
& \lim (\mathrm{x} \rightarrow 0) \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}}=\lim (\mathrm{x} \rightarrow 0) \frac{x^{1-2 a}}{x^{1-2 a} \times} \\
& \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}} \\
& =\lim (\mathrm{x} \rightarrow 0) \frac{x^{1-2 a}\left(\left(\frac{1}{x}\right)\right)-1}{x^{1-a}}=\lim (\mathrm{x} \rightarrow 0) \frac{-1}{x^{1-a}}
\end{align*}
$$

It is evident that this last limit is unbounded. This contradicts our conclusion (71) that
$\lim (\mathrm{x} \rightarrow 0) \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}}$ must remain bounded (for $\left.\mathrm{a}<0.5\right)$
Therefore the case $\mathrm{a}<0.5$ is rejected. We verify here that, for $\mathrm{a}=0.5$ (71)remains bounded as $(\mathrm{x} \rightarrow 0)$.

We have that

$$
\begin{equation*}
\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}<1-x^{2 a-1} \tag{73}
\end{equation*}
$$

Therefore
$\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{\left(\left(\frac{1}{x}\right)\right)-x^{2 a-1}}{x^{a}}<\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0)$

$$
\begin{equation*}
\frac{1-x^{2 a-1}}{x^{a}} \tag{74}
\end{equation*}
$$

We consider the limit

$$
\begin{equation*}
\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{1-x^{2 a-1}}{x^{a}} \tag{75}
\end{equation*}
$$

We write

$$
\begin{equation*}
\mathrm{a}=(\lim \mathrm{x} \rightarrow 0)(0.5+\mathrm{x}) \tag{76}
\end{equation*}
$$

Hence we get

$$
\begin{align*}
\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) x^{2 a-1} & =\lim (\mathrm{x} \rightarrow 0) \mathrm{x}^{2(0.5+x)-1}=\lim \\
(\mathrm{x} & \rightarrow 0) \mathrm{x}^{2 x}=1 \tag{77}
\end{align*}
$$

(Since $\lim (\mathrm{x} \rightarrow 0) \mathrm{x}^{x}=1$)
Therefore we must apply L 'Hospital ' rule with respect to x in the limiting process (75)

$$
\begin{align*}
\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow & 0) \frac{1-x^{2 a-1}}{x^{a}}=\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \\
& \frac{-(2 a-1) x^{2 a-2}}{a x^{a-1}} \\
& =\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{\left(\frac{1}{a}-2\right)}{x^{1-a}} \tag{78}
\end{align*}
$$

Now we write again

$$
\begin{equation*}
\mathrm{a}=(\lim \mathrm{x} \rightarrow 0)(0.5+\mathrm{x}) \tag{79}
\end{equation*}
$$

Thus the limit (78) becomes

$$
\begin{array}{r}
\lim (\mathrm{a} \rightarrow 0.5)(\mathrm{x} \rightarrow 0) \frac{\left(\frac{1}{a}-2\right)}{x^{1-a}}=\lim (\mathrm{x} \rightarrow 0) \\
\frac{(0.5+x)^{-1}-2}{x^{0.5-x}}=\lim (\mathrm{x} \rightarrow 0) \frac{(0.5+x)^{-1}-2}{x^{0.5} \times x^{-x}} \\
=\lim (\mathrm{x} \rightarrow 0) \frac{(0.5+x)^{-1}-2}{x^{0.5}}\left(\text { Since } \lim (\mathrm{x} \rightarrow 0) \mathrm{x}^{-x}=1\right) \tag{80}
\end{array}
$$

We must apply L 'Hospital ' rule

$$
\begin{gather*}
\lim (x \rightarrow 0) \frac{(0.5+x)^{-1}-2}{x^{0.5}}=\lim (x \rightarrow 0) \frac{-(0.5+x)^{-2}}{0.5 x^{-0.5}}= \\
\lim (x \rightarrow 0) \frac{-2 \times x^{0.5}}{(0.5+x)^{2}}=0 \tag{81}
\end{gather*}
$$

Thus we have verified here that, for $\mathrm{a}=0.5$ (71) approaches zero as ($\mathrm{x} \rightarrow 0$) and hence remains bounded.

We consider the case a >0.5. This case is also rejected, since according to the functional equation, if $(\zeta(s)=0)(\mathrm{s}=$ $\mathrm{a}+\mathrm{bi}$) has a root with $\mathrm{a}>0.5$, then it must have another root with another value of a <0.5. But we have already rejected this last case with $\mathrm{a}<0.5$

Thus we are left with the only possible value of a which is $\mathrm{a}=0.5$

Therefore $\mathrm{a}=0.5$
This proves the Riemann Hypothesis.

References

[1] Titch marsh, E. C. (1999) "The Theory of the Riemann zeta function", London: Oxford University Press.
[2] Apostol, Tom M. (1974) "Mathematical Analysis", Reading, Massachusetts; Addison -wesley Publishing Company.
[3] Edwards, H. M. (1974) "Riemann 's zeta function", New York: Academic Press, Inc.
[4] Apostol, Tom M. (1976) "Introduction to Analytic Number Theory", New York: Springer - Verlag.
[5] Koblits, Neal (1984) 'P- adic Numbers, P - adic Analysis, and Zeta - Functions", New York: Springer - Verlag.
[6] Geiner, Walter. Reinhardt, Joachim (1996)" Field Quantization", Berlin: Springer - Verlag.
[7] Ribenboim, Paulo (1988) "The Book of Prime Number Records", Berlin: Springer - Verlag.
[8] Larson, Loren C. (1983) "Problem-Solving Through Problems", Berlin: Springer - Verlag.
[9] Wilf, Herbert S. (1994) "Generatingfunctionology", New York: Academic Press.
[10] Guy, Richard K. (1994) "Unsolved Problems in Number Theory", Berlin: Springer - Verlag.

