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Abstract 
We consider some basic properties of the disjoint variation of lattice group-valued set 

functions and ���-boundedness for �-triangular set functions, not necessarily finitely 

additive or monotone. Using the Maeda-Ogasawara-Vulikh representation theorem of 

lattice groups as subgroups of continuous functions, we prove a Brooks-Jewett-type 

theorem for �-triangular lattice group-valued set functions, in which ���-boundedness is 

intended in the classical like sense, and not necessarily with respect to a single order 

sequence. To this aim, we deal with the disjoint variation of a lattice group-valued set 

function and study the basic properties of the set functions of bounded disjoint variation. 

Furthermore we show that our setting includes the finitely additive case.  

1. Introduction 

In the literature there have been several recent researches, about limit theorems for 

lattice-group or vector lattice-valued set functions. For a historical survey and related 

results see also [1-3] and their bibliographies. In this paper we deal with �-triangular 

lattice group-valued set functions. Some examples of such set functions are the 

�-measures, that is monotone set functions �with ��∅� � 0, continuous from above 

and from below and compatible with respect to finite suprema and infima, which are 

1-triangular set functions. The measuroids are examples of	1-triangular set functions, not 

necessarily monotone (see also [4]). 

In this paper, using the Maeda-Ogasawara-Vulikh representation theorem for lattice 

groups as subgroups of some suitable spaces of continuous functions, we extend to 

�-triangular set functions some Brooks-Jewett-type theorems, proved in [5] in the finitely 

additive setting. Note that, in our context, ���-boundedness is intended in the classical like 

sense, and not necessarily with respect to a single order sequence. Observe that, differently 

than in the finitely additive setting, boundedness of k-triangular set functions, in general, 

does not imply ���-boundedness. Thus, we consider the disjoint variation of a lattice 

group-valued set function � and prove that boundedness of the disjoint variation of � is 

a sufficient condition (in general, not necessary) for ���-boundedness of �. 

2. Preliminaries 

Let � be a Dedekind complete lattice group,  be an infinite set, Σ be a �-algebra of 

subsets of , �: Σ → � be a bounded set function, and � be a fixed positive integer. 
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A sequence �����  in �  is called ���-sequence iff it is 

decreasing and ⋀  �
��� �� � 0 . A sequence (��)�  in �  is 

order convergent (or (�)-convergent) to � iff there exists an (�)-sequence (��)� in � such that for every � ∈ ℕ there is 

a positive integer ��  with |�� − �| ≤ ��  for each � ≥ �� , 

and in this case we write (�) lim�   �� = �. 

The positive and negative part of �  are defined by �'((): = ⋁{ �(+): + ∈ Σ,   + ⊂ (}, �/((): = ⋁{ − �(+): + ∈ Σ,   + ⊂ (},   ( ∈ Σ, respectively. 

The semivariation of � is defined by 

0(�)((): = 1{ |�(+)|: + ∈ Σ,  + ⊂ (},   ( ∈ Σ. 
A set function �: Σ → �  is (�) -bounded iff (�) lim3 0 (�)(43) = 0 for every disjoint sequence (43)3in Σ . The set functions �5: Σ → � , 6 ∈ ℕ , are uniformly (�) -bounded iff (�) lim3( ⋁ 0�5�� (�5)(43)) = 0  for any 

disjoint sequence (43)3 in Σ. 

The set functions �5: Σ → �, 6 ∈ ℕ, are equibounded iff  

there is 7 ∈ �  with |�5(()| ≤ 7  whenever 6 ∈ ℕ  and ( ∈ Σ. 

We say that �: Σ → �  is � -triangular iff 0 = �(∅) ≤�(()  for any ( ∈ Σ  and �(() − � �(+) ≤ �(( ∪ +) ≤�(() + � �(+) for all (, + ∈ Σ, ( ∩ + = ∅. 

It is easy to prove the following 

Proposition 2.1 If �: ; → �  is � -triangular, then also 0(�) is �-triangular. 

3. The Main Results 

We begin with observing that it is well-known that, if �5: ; → �, 6 ∈ ℕ , are equibounded set functions, then the 

union of the ranges of the �5’s can be embedded in the space 

<(Ω): = {>: Ω → ℝ, > is continuous},	       (1) 

where Ω  is a suitable compact extremely disconnected 

Hausdorff topological space, existing thanks to the 

Maeda-Ogasawara-Vulikh representation theorem. Every 

lattice supremum and infimum in <(Ω)coincides with the 

respective pointwise supremum and infimum in the 

complement of a meager subset of Ω (see also [6] and [7, p. 

69]). 

We will prove a Brooks-Jewett-type theorem for a sequence (�5)5 of lattice group-valued set functions. The technique we 

will use is to find a meager set @ ⊂ A  such that the 

real-valued “components” �5(⋅)(C) , 6 ∈ ℕ , are (�)-bounded and pointwise convergent for any C ∈ A ∖ 	@, 

and then to apply the corresponding classical results existing 

for real-valued k-triangular set functions (see also [2]). We 

require pointwise convergence of the �5’s with respect to a 

single (�)-sequence, in order to find a single corresponding 

meager set @,	 to obtain pointwise convergence of the 

“components” in A ∖ 	@. Concerning	(�)-boundedness of the 

“components”, observe that, differently from the finitely 

additive case, a bounded k-triangular set function, even 

monotone, in general is not (�)-bounded, as we will see in (2). 

So, in our setting, we will give a condition which implies (�)-boundedness of the “components”. To this aim, we deal 

with the disjoint variation of a lattice group-valued set 

function (see also [2, 8-9]) and prove that boundedness of the 

disjoint variation implies (�) -boundedness of the 

“components”. Furthermore, we will show that our context 

includes the finitely additive case. 

Now we give the following technical proposition. 

Proposition 3.1. Let �5: ; → �, 6 ∈ ℕ, be a sequence of 

equibounded set functions. If there is a meager set @∗ ⊂ A 

such that the set functions �5(⋅)(C)  are real-valued and �-triangular for every C ∈ A ∖ @∗ and 6 ∈ ℕ, then the �5’s 

are �-triangular. Moreover, if the �5’s are �-triangular, then  

the set functions �5(⋅)(C) , 6 ∈ ℕ , are real-valued and �-triangular for every C ∈ A. 
Proof: Thanks to (1), for every C ∈ Ω and 6 ∈ ℕ the set 

function �5,F  defined by �5,F((): = �5(()(C) , ( ∈ Σ, is 

real-valued. Now we prove the first part. Let @∗ be as in the 

hypothesis, then 

�5(()(C) − � �5(+)(C) ≤ �5(( ∪ +)(C)≤ �5(()(C) + � �5(+)(C) 

for every 6 ∈ ℕ, (, + ∈ Σ with ( ∩ + = ∅ and C ∈ Ω ∖ @∗, 

and 

0 = �5(∅)(C) ≤ �5(()(C) 

for all 6 ∈ ℕ, ( ∈ Σ and C ∈ Ω ∖ @∗. Since @∗ is meager, by 

a density argument it follows that 

�5(() − � �5(+) ≤ �5(( ∪ +) ≤ �5(() + � �5(+) 

for every 6 ∈ ℕ , (, + ∈ Σ  with ( ∩ + = ∅ , and 0 =�5(∅) ≤ �5(()  for all 6 ∈ ℕ  and ( ∈ Σ , that is �5  is �-triangular for every 6 ∈ ℕ. The proof of the last part is 

straightforward. 

Now we deal with (�)-boundedness of � -triangular set 

functions. In general, differently from the finitely additive 

setting, it is not true that every bounded �-triangular capacity 

is (�)-bounded. Indeed, let  = [1, 2], set 

�(∅) = 0,  and �(() = sup	 (		         (2) 

if ( ⊂ , ( ≠ ∅. It is not difficult to see that � is bounded, 

positive, monotone and 1 -triangular. For each disjoint 

sequence ((�)� of nonempty subsets of  it is �((�) ≥ 1 

for every � ∈ ℕ, and so it is not true that lim� � ((�) = 0. 

So, �  is not (�) -bounded. So, we consider the disjoint 

variation of a lattice group-valued set function. 

Definitions 3.2. Let us add to �  an extra element +∞, 

obeying to the usual rules, and for any set function �: Σ → � 

let us define the disjoint variation �: Σ → � ∪ {+∞} of � 

by 

�((): = 1(
S

T |�
U∈S

(VU)|),  ( ∈ Σ, 
where the involved supremum is taken with respect to all finite 
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disjoint families {VU : X ∈ Y} such that VU ∈ Σ and VU ⊂ ( for 

each X ∈ Y. 

A set function � is of bounded disjoint variation (or +VZ) 

iff �() ∈ �. 

Examples 3.3. We give an example of a 1-triangular 

monotone set function, which is not +VZ. Let � be as in (2). 

It is easy to check that 0(�)() = 2. Pick arbitrarily � ∈ ℕ 

and put VU = [1 + U/�� , 1 + U� [ , X = 1, … , � . It is �(VU) =sup	 VU ≥ 1 , and so ∑ ��U�� (VU) ≥ � . From this and 

arbitrariness of � we get �() = +∞, and hence � is not +VZ. Thus, boundedness does not imply +VZ, though it is 

easy to see that the converse implication holds. 

We give an example of a 1-triangular monotone set function, 

which is +VZ  but not finitely additive. Let ��((): =∑ (/�)]�^�∈_ , ( ⊂ ℕ ,�∗((): = |��(()| , �((): = 0(�∗)(() =
sup	{ |��(+)|: + ⊂ (} = sup	{ | ∑ (/�)]

�^�∈` |: + ⊂ (},   ( ⊂ ℕ.  

Note that �∗ is not increasing, since �∗({1,3}) = ��b > d�de =�∗({1,2,3}). It is easy to see that �∗ is 1-triangular. Hence, 

by Proposition 2.1, � is 1-triangular. 

Note that � is positive and monotone, �(∅) = 0 and 

0 ≤ �(ℕ) = supS ( T �
U∈S

(VU)) = supS ( T(
U∈S

max`⊂gh | T (−1)�
�i�∈`

|)) ≤ 

≤ supS( ∑ (U∈S ∑ ��^�∈gh )) = ∑ ��^���� = j^
e ,        (3) 

where the involved supremum is taken with respect to all finite 

disjoint families {VU : X ∈ Y} such that VU ⊂ ℕ for every X ∈ Y, 

and hence �  is +VZ . Note that the supremum in (3) is 

exactly equal to 
j^
e : indeed, it is enough to consider, for each � ∈ ℕ, the family {V5: = {6}: 6 = 1, … , �}, and to take into 

account that �({6}) = �5^  for any 6 ∈ ℕ . Finally, it is 

�({1,2}) = max	{ 1, �k , dk} = 1 < mk = 1 + �k = �({1}) +�({2}). Thus, � is not finitely additive. 

We now show that, in general, (�)-boundedness does not 

imply +VZ. Let  = [1,1], Σ be the �-algebra of all Borel 

subsets of  , ��(() = n_ sgn � p� , ( ∈ Σ , where 

sgn (�) = 1  if � ∈]0, 1] , sgn (�) = −1  if � ∈ [−1,0]  and 

sgn(0) = 0, and set �∗(() = q|��(()|, ( ∈ Σ. Note that �∗ is not monotone: indeed, 

�∗() = q|��()| = r| s�
/� sgn � p�| = 0

= �∗(∅), �∗([0,1]) = q|��([0,1])|
= r| s�

� sgn � p�| = 1. 
Now, fix arbitrarily � ∈ ℕ  and pick VU = [U/�� , U� [ , X = −� + 1, −� + 2,…,−1, 0, 1,…,�. It is 

�∗() ≥ ∑ t���U�/�'� = i �√� = 2√�,	 and hence, by 

arbitrariness of �, it follows that �∗ is not +VZ. 

We now prove that �∗  is 1 -triangular. Pick any two 

disjoint sets (, + ∈ Σ. Then, it is 

�∗(( ∪ +) = q|��(( ∪ +)| = rvs_∪` sgn � p�v = rvs_ sgn � p� + s̀ sgn � p�v ≤ rvs_ sgn � p�v + vs̀ sgn � p�v
= q|��(()| + |��(+)| ≤ q|��(()| + q|��(+)| = �∗(() + �∗(+); 

�∗(() = 	q|��(()|= t| n_ sgn � p�| = t| n_∪` sgn � p� − ǹ sgn � p�| ≤ t| n_∪` sgn � p�| + | ǹ sgn � p�| 
= q|��(( ∪ +)| + |��(+)| ≤ q|��(( ∪ +)| + q|��(+)| = �∗(( ∪ +) + �∗(+), 

getting 1-triangularity of �∗. 
Set �((): = 0(�∗)(() = sup	{ �∗(+): + ∈ Σ, + ⊂ (} , ( ∈ Σ. Note that � is positive and increasing. Since �∗ is 

not +VZ, then a fortiori � is not. By Proposition 2.1, � is 1-triangular, since �∗ is. Moreover, it is not difficult to see 

that �∗ is (�)-bounded. Hence, � is (�)-bounded (see also 

[9, Theorem 2.2]). Thus, property +VZ  is not a necessary 

condition for (�)-boundedness of �-triangular set functions. 

Now we prove that +VZ  is a sufficient condition for (�)-boundedness of a set function � with values in a lattice 

group � and of its real-valued “components”. 

Proposition 3.4. Let �: Σ → � be a +VZ set function, and Ω  be as in (1). Then the set function �F: = �(⋅)(C)  is 

real-valued, +VZ  and (�) -bounded for every C ∈ A . 

Moreover � is (�)-bounded. 

Proof. Since � is bounded, arguing analogously as at the 

beginning of the proof of Proposition 3.1, for any C ∈ Ω the 

set function �F defined by �F((): = �(()(C), ( ∈ Σ, is 

real-valued. For each	C ∈ Ω it is 

�F() = supS ( T |
U∈S

�(VU)(C)|) = supS ( (T |�
U∈S

(VU)|)(C)) ≤ 

≤ (1(
S

T |�
U∈S

(VU)|))(C) = (�())(C) ∈ ℝ, 
since the pointwise supremum is less or equal than the 

corresponding lattice supremum in <(Ω). So, �F  is +VZ 

for each C ∈ Ω . By [8, Theorem 3.2], for each disjoint 

sequence (x�)�  in Σ  and C ∈ Ω  it is lim� �F (x�) = 0 , 

and a fortiori lim� 0(�F) (x�) = 0. This proves the first part. 

Now, choose any disjoint sequence (x�)� in Σ . By the 

Maeda-Ogasawara-Vulikh representation theorem (see also 

[6]) there is a meager set @∗ with 
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[y(�
���

1 0�
z��

(�)(xz))](C) = [y(�
���

1(�
z��

1 |
_∈{,_⊂|}

�(()|))](C) = inf� ( supz�� ( sup_∈{,_⊂|} | �(()(C)|))
= inf� ( supz�� 0 (�(⋅)(C))(xz)) = 0 = sup� ( infz�� 0 (�(⋅)(C))(xz) = sup� ( infz��( sup_∈{,_⊂|} | �(()(C)|)
= [1(�

���
y(�
z��

1 |
_∈{,_⊂|}

�(()|))](C) = [1(�
���

y 0�
z��

(�)(xz))](C) 

for every C ∈ Ω ∖ @∗ . From this we obtain [(�) lim� 0 (�)(x�)](C) = 0  for each C ∈ Ω ∖ @∗ . By a 

density argument, we get [(�) lim� 0 (�)(x�)](C) = 0 for 

every C ∈ Ω , namely (�) lim� 0 (�)(x�) = 0.  By 

arbitrariness of the chosen sequence (x�)� , we have (�)-boundedness of �. 

Now we show that our setting includes the finitely additive 

case. Indeed we have the following 

Proposition 3.5. Every bounded finitely additive measure �: ; → � is +VZ. 

Proof: First of all consider the case in which � is positive. 

Then, thanks to finite additivity, �  is also increasing. If {VU : X ∈ Y} is any disjoint finite family of subsets of , whose 

union we denote by +, then we get 

∑ �U∈S (VU) = �(⋃ VUU∈S ) = �(+) ≤ �()      (4) 

(see also [2, Proposition 3.4]). From (4) and boundedness of � we deduce that �	is +VZ, at least when � is positive. In 

the general case,	� = �' − �/, where �' and �/ are the 

positive and the negative part of �, respectively. Proceeding 

analogously as in [10, Theorem 2.2.1], it is possible to check 

that �' and �/ are finitely additive. Then, by the previous 

case, �' and �/are +VZ, and 

∑ |U∈S �(VU)| = ∑ (U∈S �(VU))' + ∑ (U∈S �(VU))/ ≤  (5) 

≤ T �'
U∈S

(VU) + T �/
U∈S

(VU) ≤ �'() + �/(). 
Taking in (5) the supremum with respect to Y, we get the 

assertion. 

Now we are in position to prove the following 

Brooks-Jewett-type theorem, which extends [5, Theorem 3.1] 

to the context of �-triangular set functions. 

Theorem 3.6. Let A be as in (1), �5: ; → �, 6 ∈ ℕ, be a 

sequence of BDV � -triangular equibounded set functions. 

Suppose that there is a set function ��: ; → � such that the 

sequence (�5)5(�)-converges to �� with respect to a single (�)-sequence. Then there is a meager subset @ ⊂ A such that 

for each C ∈ A ∖ @ the real-valued set functions �5(⋅)(C), 6 ∈ ℕ , are uniformly (�) -bounded (with respect to 6 ). 

Moreover the �5’s are uniformly (�)-bounded. 

Proof: Observe that, since the �5’s are equibounded and �-triangular, for every C ∈ Ω the functions �5(⋅)(C), 6 ∈ ℕ, 

are real-valued, � -triangular and +VZ , and hence (�)-bounded on Σ , thanks to [8, Theorem 3.2]. Moreover 

there is an (�)-sequence (��)�  such that for every � ∈ ℕ 

and ( ∈ Σ there is 6� ∈ ℕ with |�5(() − ��(()| ≤ ��  for 

all 6 ≥ 6� . By the Maeda-Ogasawara-Vulikh representation 

theorem (see also [6]) there is a meager set @ ⊂ Ω, such that 

the sequence (��(C))�  is an (�)-sequence in ℝ for each C ∈ Ω ∖ @. Thus for every � ∈ ℕ and ( ∈ Σ there is 6� ∈ ℕ 

with 

|�5(()(C) − ��(()(C)| ≤ ��(C)       (6) 

for each C ∈ Ω ∖ @  and 6 ≥ 6� . This implies that lim5   �5(()(C) = ��(()(C) for any ( ∈ Σ and C ∈ Ω ∖ @. 

Thus for such C ’s the real-valued set functions �5(⋅)(C) 

satisfy the hypotheses of the Brooks-Jewett-type theorem (see 

also [2]), and so they are uniformly (�) -bounded. This 

concludes the first part of the assertion. 

Now we prove that the set functions �5 , 6 ∈ ℕ , are 

uniformly (�)-bounded. Pick arbitrarily any disjoint sequence (43)3 in Σ and let us show that 

⋀ [�z�� ⋁ (�3�z ⋁ [�5�� ⋁  `∈{,`⊂�� �5(+)])] = 0.    (7) 

As the set functions �5(⋅)(C) are uniformly (�)-bounded 

for any C ∈ Ω ∖ @, where @ is as in (6), it is 

infz[ sup3�z{ sup5[ 0(�5(⋅)(C))(43)]}] = lim3{ sup5[ 0(�5(⋅)(C))(43)]} = 0                    (8) 

for all C ∈ Ω ∖ @. As any countable union of meager subsets of Ω is still meager, then there is a meager subset �	of Ω, without 

loss of generality containing @, such that for any ℎ ∈ ℕ and C ∈ Ω ∖ � it is 

sup5[ sup`∈{,`⊂��   �5(+)(C)] = (⋁ [5 ⋁  `∈{,`⊂�� �5(+)])(C).		                       (9) 

From (8) and (9) it follows that 

⋀ [�z�� ⋁ (�3�z ⋁ [�5�� ⋁  `∈{,`⊂�� �5(+)])](C) = 0    (10) 

for every C ∈ Ω ∖ � . Thus, (7) follows from (10) and a 

density argument. From (7) we deduce that (�) lim 3( ⋁ [�5�� ⋁`∈{,`⊂�� �5(+)]) = 0 , that is 

(�) lim3( ⋁ 05 (�5)(43)) = 0. Hence, by arbitrariness of the 

chosen sequence (43)3, the �5’s are uniformly (�)-bounded. 

4. Conclusions 

We proved a Brooks-Jewett-type theoremfor Dedekind 

complete lattice group-valued k-triangular set functions, not 
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necessarily finitely additive, extending [5, Theorem 3.1]. We 

used the corresponding classical results for real-valued set 

functions. Note that, in the non-additive setting, boundedness 

of a set function is not sufficient to have (�)-boundedness or (�) -boundedness of its real-valued “components”. So, we 

dealt with the disjoint variation of a lattice group-valued set 

function and we studied the property +VZ	(bounded disjoint 

variation). We showed that there exist bounded monotone 

k-triangular set functions not +VZ	and not finitely additive, 

that there are bounded monotone k-triangular set functions 

satisfying	+VZ	but not finitely additive, that property +VZ	is 

a sufficient but not necessary condition for (�)-boundedness 

and allows to prove our Brooks-Jewett-type theorem without 

assuming finite additivity. Furthermore, we proved that our 

setting includes the finitely additive case, since every bounded 

finitely additive lattice group-valued set function satisfies 

property +VZ. 
Prove similar results with respect to other kinds of 

convergence. 

Prove other types of limit theorems in different abstract 

contexts. 

Prove some kinds of limit theorems without assuming 

condition +VZ. 
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