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Abstract 
Solution wave equation, structural-parametric models and parametric structural schematic 

diagrams of electromagnetoelastic actuators are obtained, its transfer functions are bult. 

Effects of geometric and physical parameters of electromagnetoelastic actuators and 

external load on its dynamic characteristics are determined. For calculation of control 

systems with piezoactuators the parametric structural schematic diagrams and the transfer 

functions of piezoactuators are obtained. 

1. Introduction 

For microelectronics, nanobiology, nanotechnology, nanobiology, power engineering, 

microelectronics, astronomy for large compound telescopes, antennas satellite telescopes 

and adaptive optics equipment is promising for use robotics and mechatronics systems 

with electromechanical actuators based on electromagnetoelasticity (piezoelectric, 

piezomagnetic, electrostriction, and magnetostriction effects). Piezoelectric actuator 

(piezoactuator) - piezomechanical device intended for actuation of mechanisms, systems 

or management based on the piezoelectric effect, converts electrical signals into 

mechanical movement or force. Piezoactuators are used in the majority of 

nanomanipulators for scanning tunneling microscopes (STMs), scanning force microscopes 

(SFMs), and atomic force microscopes (AFMs) [1−26]. 

By solving the wave equation with allowance for the corresponding equations of the 

electromagnetoelasticity, the boundary conditions on loaded working surfaces of a actuator, 

and the strains along the coordinate axes, it is possible to construct a structural parametric 

model of the electromagnetoelastic actuator. The transfer functions and the parametric 

structure scheme of the piezoactuator are obtained from a set of equations describing the 

corresponding structural parametric model of the piezoelectric actuator for control systems. 

2. Solution Wave Equation 

For constructing a structural parametric model of the electromagnetoelastic actuators 

nano- and microdisplacement, let us solve simultaneously the wave equation, the equation 

of the electromagnetoelasticity, and the equations of forces acting on faces of the actuator. 

Deformation of the piezoactuator corresponds to its stressed state. If the mechanical 
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stress T is created in the piezoelectric element, the 

deformation S  is formed in it. There are six stress 

components 
1

T , 
2

T , 
3

T , 
4

T , 
5

T , 
6

T , the components 
1

T  - 

3
T  are related to extension-compression stresses, 

4
T  - 

6
T  to 

shear stresses. 

The matrix state equations [7] connecting the electric and 

elastic variables for polarized ceramics have the form 

T= +D dT ε E ,                 (1) 

E t= +S s T d E .                 (2) 

Here, the first equation describes the direct piezoelectric 

effect, and the second - the inverse piezoelectric effect; S  is 

the column matrix of relative deformations; T  is the column 

matrix of mechanical stresses; E  is the column matrix of 

electric field strength along the coordinate axes; D  is the 

column matrix of electric induction along the coordinate axes; 
Es  is the elastic compliance matrix for constE = ; and td  

is the transposed matrix of the piezoelectric modules. In 

polarized ceramics PZT there are five independent 

components 
11

Es , 
12

Es , 
13

Es , 
33

Es , 
55

Es  in the elastic compliance 

matrix for polarized piezoelectric ceramics, three independent 

components of the piezoelectric modules 
33

d , 
31

d , 
15

d  in 

the transposed matrix of the piezoelectric modules and three 

independent components of the dielectric constants T

11
ε , T

22
ε , 

T

33
ε  in the matrix of dielectric constants. 

The direction of the polarization axis Р, i.e., the direction 

along which polarization was performed, is usually taken as 

the direction of axis 3 for the longitudinal and transverse 

piezoelectric effects. 

The generalized electromagnetoelasticity equation of the 

actuator [7] has the form 

, , , , ,E H H E E H

i ij j mi m mi m iS s T d E d H αΘ Θ Θ= + + + ∆Θ ,      (3) 

where 
i

S  is the relative deformation along the axis i, E is the 

electric field strength, H is the magnetic field strength, Θ  is 

the temperature, 
, ,E H

ij
s Θ

 is the elastic compliance for 

constE = , constH = , constΘ = , 
j

T  is the mechanical 

stress along the axis j, ,H

mi
d Θ  is the piezomodule, i.e., the 

partial derivative of the relative deformation with respect to 

the electric field strength for constant magnetic field strength 

and temperature, i.e., for constH = , constΘ = , 
m

E  is the 

electric field strength along the axis m, ,E

mi
d Θ  is the 

magnetostriction coefficient, 
m

H  is the magnetic field 

strength along the axis m, ,E H

i
α  is the coefficient of thermal 

expansion, ∆Θ  is deviation of the temperature Θ  from the 

value constΘ = , i = 1, 2, …, 6, j = 1, 2, …, 6, m = 1, 2, 3. 

For the electric and magnetic fields acting on the 

electromagnetoelastic actuator separately, we have equations: 

the equation of inverse piezoelectric effect: 

3 33 3 33 3

ES d E s T= +  for the longitudinal deformation when 

the electric field along axis 3 causes deformation along axis 3, 

1 31 3 11 1

ES d E s T= +  for the transverse deformation when the 

electric field along axis 3 causes deformation along axis 1, 

5 15 1 55 5

ES d E s T= +  for the shift deformation when the 

electric field along axis 1 causes deformation in the plane 

perpendicular to this axis, 

the equation of magnetostriction: 

3 33 3 33 3

HS d H s T= +  for the longitudinal deformation when 

the magnetic field along axis 3 causes deformation along axis 3, 

1 31 3 11 1

HS d H s T= + for the transverse deformation when the 

magnetic field along axis 3 causes deformation along axis 1, 

5 15 1 55 5

HS d H s T= +  for the shift deformation when the 

magnetic field along axis 1 causes deformation in the plane 

perpendicular to this axis. 

Let us consider the longitudinal piezoelectric effect in a 

piezoactuator shown in Fig. 1, where δ  is the thickness. The 

electrodes deposited on its faces perpendicular to axis 3, the 

area of face is equal to 0S . The equation of the inverse 

longitudinal piezoelectric effect [6, 7] has the following form: 

3 33 3 33 3( ) ( , )ES d E t s T x t= + ,            (4) 

Here, 3 ( , )S x t xξ= ∂ ∂  is the relative displacement of the 

cross section of the piezoactuator, 33d  is the piezomodule for 

the longitudinal piezoelectric effect, ( ) ( )3E t U t δ=  is the 

electric field strength, ( )U t  is the voltage between the 

electrodes of actuator, δ  is the thickness, 33

Es  is the elastic 

compliance along axis 3, and 3T  is the mechanical stress 

along axis 3. 

The equation of equilibrium for the forces acting on the 

piezoactuator (piezoelectric plate) can be written as 

( )2

3 0 2

,x t
T S F M

t

ξ∂
= +

∂
            (5) 

where F is the external force applied to the piezoactuator, 0S  

is the cross section area and M is the displaced mass. 

 

Fig. 1. Piezoactuator. 
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Let us solve simultaneously the wave equation, the equation 

of the inverse longitudinal piezoelectric effect, and the 

equation of forces acting on the faces of the piezoactuator for 

constructing a structural parametric model of the 

voltage-controlled piezoactuator. 

Calculations of the piezoactuators are performed using a 

wave equation [5−7] describing the wave propagation in a 

long line with damping but without distortions, which can be 

written as 

2 2
2

2 2 2

1 ( , ) 2 ( , ) ( , )
( , )

( )
E E

x t x t x t
x t

tс t c x

ξ α ξ ξα ξ∂ ∂ ∂+ + =
∂∂ ∂

,  (6) 

where ( , )x tξ  is the displacement of the section of the 

piezoelectric plate, x is the coordinate, t is time, 
E

c  is the 

sound speed for constE = , α  is the damping coefficient 

that takes into account the attenuation of oscillations caused 

by the energy dissipation due to thermal losses during the 

wave propagation. 

Using the Laplace transform, we can reduce the original 

problem for the partial differential hyperbolic equation of type 

(6) to a simpler problem for the linear ordinary differential 

equation [8, 9] with the parameter of the Laplace operator p. 

Applying the Laplace transform to the wave equation (6) 

{ }
0

( , ) ( , ( , ) ptx p L x t x t e dtξ ξ
∞

−Ξ = = ∫ ,         (7) 

and setting the zero initial conditions, 

0
0

( , )
( , ) 0

t
t

x t
x t

t

ξξ
=

=

∂= =
∂

.             (8) 

We obtain the linear ordinary second-order differential 

equation with the parameter p written as 

2
2 2

2 2

( , ) 1 2
( , ) 0

( )E E

d x p
p p x p

dx c c

α α
 Ξ − + + Ξ = 
 

,   (9) 

with its solution being the function 

( , ) x xx p Ce Beγ γ−Ξ = + ,             (10) 

where ( ),x pΞ  is the Laplace transform of the displacement 

of the section of the piezoelectric actuator, Ep cγ α= +  is 

the propagation coefficient. Determining coefficients C and B 

from the boundary conditions as 

1
(0, ) ( )p pΞ = Ξ  for 0x =             (11) 

2
( , ) ( )p pδΞ = Ξ  for x δ=  

Then, the constant coefficients 

( ) ( )1 2
2shC eδγ δγ = Ξ − Ξ   , ( ) ( )1 2

2shB e δγ δγ−  = Ξ − Ξ   . (12) 

Then, the solution (9) of the linear ordinary second-order 

differential equation can be written as 

( ) ( ) ( ) ( ){ } ( )1 2( , ) sh sh shx p p x p xδ γ γ δγ Ξ = Ξ − + Ξ  .  (13) 

The equations for the forces operating on the faces of the 

piezoelectric actuator plate are as follows:  

2

3 0 1 1 1
(0, ) ( ) ( )T p S F p M p p= + Ξ  for 0x = ,     (14) 

2

3 0 2 2 1
( , ) ( ) ( )T p S F p M p pδ = − + Ξ  for x δ= , 

where ( )3 0,T p  and ( )3 ,T pδ  are determined from the 

equation of the inverse piezoelectric effect. 

For 0x =  and x δ= , we obtain the following set of 

equations for determining stresses in the piezoactuator: 

33

3 3

033 33

1 ( , )
(0, ) ( )

E E

x

dd x p
T p E p

dxs s=

Ξ= − ,       (15) 

33

3 3

33 33

1 ( , )
( , ) ( )

E E

x

dd x p
T p E p

dxs sδ

δ
=

Ξ= − . 

Equations (14) yield the following set of equations for the 

structural parametric model of the piezoactuator: 

( )
( ) ( ) ( ){ }

2

1 1

1 33 33 3 1 2

( ) 1

( ) 1 ( ) sh ch ( ) ( )E

p M p

F p d E p p pχ γ δγ δγ

 Ξ = ⋅
 

    − + − Ξ − Ξ    

,                   (16) 

( )
( ) ( ) ( ){ }

2

2 2

2 33 33 3 2 1

( ) 1

( ) 1 ( ) sh ch ( ) ( )E

p M p

F p d E p p pχ γ δγ δγ

 Ξ = ⋅
 

    − + − Ξ − Ξ    

, 

where 33 33 0

E Es Sχ = . 

Figure 2 shows the parametric structural schematic diagram 

of a voltage-controlled piezoactuator corresponding to the set 

of equations (16), this diagram supplemented with an external 

circuit equation 0 0
( ) ( ) ( 1)U p U p RC p= + , where 

( ) ( ) ( )2

12 1 1 2
( ) th

ij ij
ij

W p p F p M p l Aχ χ γ γΨ Ψ = Ξ = − +   

is the supply voltage, R is the resistance of the external circuit, 

and 0
C  is the static capacitance of the piezoactuator. 
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Fig. 2. Parametric structural schematic diagram of a voltage-controlled piezoactuator for longitudinal piezoelectric effect. 

The equation of the inverse piezoelectric effect [6, 7] for the 

transverse strain in the voltage-controlled piezoactuator 

1 31 3 11 1
( ) ( , ) ,ES d E t s T x t= +           (17) 

where 
1

( , )S x t xξ= ∂ ∂  is the relative displacement of the 

cross section along axis 1, 
31

d  is the piezomodule for the 

transverse piezoeffect, ( )3E t  is the electric field strength 

along axis 3, 11

Es  is the elastic compliance along axis 1, and 

1T  is the mechanical stress along axis 1. 

The wave equation of the piezoactuator can be written as 

equation (6). Then, the solution of the linear ordinary 

differential equation (9) can be written as (10), where the 

constants C and B for this solution are determined from the 

boundary conditions as  

1(0, ) ( )p pΞ = Ξ  for 0x = ,          (18) 

2( , ) ( )l p pΞ = Ξ  for x h= , 

( ) ( )1 2 2shhC e hγ γ = Ξ − Ξ   , ( ) ( )1 2 2sh
h

B e h
γ γ−  = Ξ − Ξ   . (19) 

Then, the solution (10) can be written as 

( ) ( ) ( ) ( ){ } ( )1 2( , ) sh sh sh .x p p h x p x hγ γ γ Ξ = Ξ − + Ξ   (20) 

The equations of forces acting on the faces of the 

piezoelectric actuator are as follows: 

2

1 0 1 1 1(0, ) ( ) ( )T p S F p M p p= + Ξ  for x = 0,    (21) 

2

1 0 2 2 2( , ) ( ) ( )T h p S F p M p p= − + Ξ  for x = h, 

where ( )1 0,T p  and ( )1 ,T h p  are determined from the 

equation of the inverse piezoelectric effect. Thus, we obtain 

the following set of equations for mechanical stresses in the 

piezoactuator at 0x =  and x h=  

31

1 3

011 11

1 ( , )
(0, ) ( ) ,

E E

x

dd x p
T p E p

dxs s=

Ξ= −      (22) 

31

1 3

11 11

1 ( , )
( , ) ( ) .

E E

x h

dd x p
T h p E p

dxs s=

Ξ= −  

The set of equations (22) for mechanical stresses in 

piezoactuator yields the following set of equations describing 

the structural parametric model of piezoactuator for the 

transverse piezoelectric effect 

( )
( ) ( ) ( ){ }

2

1 1

1 11 31 3 1 1

( ) 1

( ) 1 ( ) sh ch ( ) ( )E

p M p

F p d E p h h p pχ γ γ γ

 Ξ = ⋅
 

    − + − Ξ − Ξ    

,                         (23) 
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( )
( ) ( ) ( ){ }

2

2 2

2 11 31 3 2 1

( ) 1

( ) 1 ( ) sh ch ( ) ( )E

p M p

F p d E p h h p pχ γ γ γ

 Ξ = ⋅
 

    − + − Ξ − Ξ    

, 

where 11 11 0

E Es Sχ = . 

We obtain the set of equations (23) describing the structural parametric model of piezoactuator and parametric structural 

schematic diagram of a voltage-controlled piezoactuator for transverse piezoelectric effect on Figure 3, 

 

Fig. 3. Parametric structural schematic diagram of a voltage-controlled piezoactuator for transverse piezoelectric effect. 

Taking into account generalized electromagnetoelasticity equation (3), we obtain the following system of equations describing 

the generalized structural-parametric model of the electromagnetoelastic actuators nano- and microdisplacement for the control 

systems in the following form:  

( )
( ) ( ) ( ){ }

2

1 1

1 1 2

( ) 1

( ) 1 ( ) sh ch ( ) ( )ij mi m

p M p

F p p l l p pχ ν γ γ γΨ

 Ξ = ⋅
 

    − + Ψ − Ξ − Ξ    

,                  (24) 

( )
( ) ( ) ( ){ }

2

2 2

2 2 1

( ) 1

( ) 1 ( ) sh ch ( ) ( )ij mi m

p M p

F p p l l p pχ ν γ γ γΨ

 Ξ = ⋅
 

    − + Ψ − Ξ − Ξ    

, 

where 

33 31 15

33 31 15

33 31 15

, ,

, ,

, ,

mi

d d d

v g g g

d d d


= 



, 

3 1

3 1

3 1

,

,

,

m

E E

D D

H H


Ψ = 



, 

33 11 55

33 11 55

33 11 55

, ,

, ,

, ,

E E E

D D D

ij

H H H

s s s

s s s s

s s s

Ψ


= 



, 

E

D

H

c

c c

c

Ψ


= 



, 

E

D

H

γ
γ γ

γ


= 



, l h

b

δ
= 



, 0ij ijs Sχ Ψ Ψ= , 

then parameters Ψ  of the control for the 

electromagnetoelastic actuator: E for voltage control, D for 

current control, H for magnetic field strength control. Figure 4 

shows the generalized parametric structural schematic 

diagram of the electromagnetoelastic actuator corresponding 

to the set of equations (24). 

Generalized structural-parametric model (24) of the 

electromagnetoelastic actuators nano- and microdisplacement 

after algebraic transformations provides the matrix transfer 

functions of the electromagnetoelastic actuator in the form of 

the ratio of the Laplace transform of the displacement of the 

actuator face and the Laplace transform of the corresponding 
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Fig. 4. Generalized parametric structural schematic diagram of the 

electromagnetoelastic actuator. 

3. The Transfer Functions of the 

Electromagnetoelastic Actuators 

The joint solution of equations (24) for the Laplace 

transforms of displacements of two faces of the 

electromagnetoelastic actuator yields 

( )1 11 12 1 13 2( ) ( ) ( ) ( ) ( ) ( )mp W p p W p F p W p F pΞ = Ψ + + ,  (25) 

( )2 21 22 1 23 2( ) ( ) ( ) ( ) ( ) ( )mp W p p W p F p W p F pΞ = Ψ + + , 

where the generalized transfer functions of the 

electromagnetoelastic actuator are  

( ) ( ) ( )2

11 1 2( ) th 2m mi ij
ij

W p p p M p l Aν χ γ γΨ = Ξ Ψ = +  , 

0ij ijs Sχ Ψ Ψ= , 

( ) ( ) ( ){ }
( ) ( ) ( )

2
4 3

1 2 1 2

2
2 2

1 2

th

th 1 2 ,

ij ij ij

ij

A M M p M M c l p

M M l c p p c

χ χ γ

χ α γ α α

Ψ Ψ Ψ

Ψ Ψ Ψ

 = + + + 

 + + + +
  

 

( ) ( ) ( )2

21 2 1
( ) th 2

m ij ij
ij

W p p p M p l Aν χ γ γΨ = Ξ Ψ = +  , 

( ) ( ) ( )2

12 1 1 2
( ) th

ij ij
ij

W p p F p M p l Aχ χ γ γΨ Ψ = Ξ = − +  , 

( ) ( )
( ) ( ) ( )

13 1 2

22 2 1

( )

( ) shij
ij

W p p F p

W p p F p l Aχ γ γΨ

= Ξ =

 = Ξ =  
, 

( ) ( ) ( )2

23 2 2 1
( ) th

ij ij
ij

W p p F p M p l Aχ χ γ γΨ Ψ = Ξ = − +  . 

Therefore, we obtain from equations (25) the generalized 

matrix equaion for the electromagnetoelastic actuator nano- 

and microdisplacement in the matrix form for the control 

systems. 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

1 11 12 13

1

2 21 22 23

2

m
p

p W p W p W p
F p

p W p W p W p
F p

 Ψ
   Ξ  =        Ξ     

 

.  (26) 

Let us find the displacement of the faces the 

electromagnetoelastic actuator in a stationary regime for 

( ) 0
1( )

m m
t tΨ = Ψ ⋅ , ( )1 2

( ) 0F t F t= =  and inertial load. The 

static displacement of the faces the electromagnetoelastic 

actuator ( )1
ξ ∞  and ( )2

ξ ∞  can be written in the form: 

( ) ( ) ( )

( ) ( )

1 1 11 00

0

0 2 1 2

lim lim

2

mpt

mi m

t pW p p

l M m M M m

α

ξ ξ

ν

→→∞
→

∞ = = Ψ =

Ψ + + +
,      (27) 

( ) ( ) ( )

( ) ( )

2 2 21 00

0

0 1 1 2

lim lim

2

mpt

mi m

t pW p p

l M m M M m

α

ξ ξ

ν

→→∞
→

∞ = = Ψ =

Ψ + + +
,      (28) 

( ) ( ) ( )1 2 1 2 0
( ) lim( )

mi m
t

t t lξ ξ ξ ξ ν
→∞

∞ + ∞ = + = Ψ ,     (29) 

where m  is the mass of the electromagnetoelastic actuator, 

1 2
,M M  are the load masses. 

Let us consider a numerical example of the calculation of 

static characteristics of the piezoactuator from piezoceramics 

PZT under the longitudinal piezoelectric effect at 
1

m M<<  

and 
2

m M<< . For 10

33
4 10d −= ⋅ m/V, 400U = V, 

1
10M =

kg and 
2

40M = kg we obtain the static displacement of the 

faces of the piezoactuator ( )1
128ξ ∞ = nm, ( )2

32ξ ∞ = nm, 

( )1 2
( ) 160ξ ξ∞ + ∞ = nm. 

The static displacement the faces of the piezoactuator for 

the transverse piezoelectric effect and inertial load at 

( ) 0
1( )U t U t= ⋅ , ( ) ( ) ( )3 30 0

1( ) 1E t E t U tδ= ⋅ = ⋅  and 

( )1 2
( ) 0F t F t= =  can be written in the following form: 

( ) ( ) ( )

( ) ( ) ( )

1 1 11 00

0

0 2 1 231

lim lim ( )

2

pt
t pW p U p

d h U M m M M m

α

ξ ξ δ

δ

→→∞
→

∞ = = =

+ + +
,    (30) 

( ) ( ) ( )

( ) ( ) ( )

2 2 21 00

0

31 0 1 1 2

lim lim ( )

2

pt
t pW p U p

d h U M m M M m

α

ξ ξ δ

δ

→→∞
→

∞ = = =

+ + +

,    (31) 

( ) ( ) ( ) ( )1 2 1 2 31 0
( ) lim( )

t
t t d h Uξ ξ ξ ξ δ

→∞
∞ + ∞ = + = .    (32) 

The static displacement of the faces of the piezoactuator for 

the transverse piezoelectric effect and inertial load at 
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1
m M<<  and 

2
m M<<  

( ) ( ) ( )

( ) ( )

1 1 11 00

0

31 0 2 1 2

lim lim ( )
pt

t pW p U p

d h U M M M

α

ξ ξ δ

δ

→→∞
→

∞ = = =

+
,    (33) 

( ) ( ) ( )

( ) ( )

2 2 21 00

0

31 0 1 1 2

lim lim ( )
pt

t pW p U p

d h U M M M

α

ξ ξ δ

δ

→→∞
→

∞ = = =

+
.    (34) 

Let us consider a numerical example of the calculation of 

static characteristics of the piezoactuator from piezoceramics 

PZT under the transverse piezoelectric effect at 
1

m M<<  and 

2
m M<< . For 10

31
2.5 10d −= ⋅ m/V, 

2
4 10h

−= ⋅ m, 

3
2 10δ −= ⋅ m, 100U = V, 

1
10M = kg and 

2
40M = kg we 

obtain the static displacement of the faces of the piezoelectric 

actuator ( )1 400ξ ∞ = nm, ( )2 100ξ ∞ = nm, 

( )1 2( ) 500ξ ξ∞ + ∞ = nm. 

Let us consider the description of the piezoactuator for the 

longitudinal piezoelectric effect for one rigidly fixed face of the 

transducer at 1M → ∞ , therefore, we obtain from equation (25) 

the transfer functions of the piezoactuator for the longitudinal 

piezoelectric effect in the following form: 

( ) ( )
( )

21 2 3

2

33 2 33

( )

cth
E

W p p E p

d M pδ δχ δγ δγ

= Ξ =

 + 
,          (35) 

We obtain the expression the transfer function in the 

frequency range of 0 0,01 Ecω δ< < , using the 

approximation of the hyperbolic cotangent by two terms of the 

power series in transfer functions (35), at 
2

m M<<  in the 

form: 

( ) ( ) ( )2 2

21 2 3 33( ) 2 1t t tW p p E p d T p T pδ ξ= Ξ = + + ,   (36) 

( ) 2 2 33

E E

tT c M m M Cδ= = , ( ) 23t m Mξ αδ= , 

( ) ( )33 0 33 331E E EC S s δ χ δ= = . 

where tT  is the time constant and tξ  is the damping 

coefficient, 33

EC  - is the is rigidity of the piezoactuator under 

the longitudinal piezoeffect. 

4. The Main Results 

Taking into account equation of generalized 

electromagnetoelasticity (piezoelectric, piezomagnetic, 

electrostriction, and magnetostriction effects) and decision 

wave equation we obtain a generalized parametric structural 

schematic diagram of electromagnetoelastic actuator Figure 4 

and generalized transfer functions for the control systems. The 

results of constructing a generalized structural-parametric 

model and parametric structural schematic diagram of 

electromagnetoelastic actuator for the longitudinal, transverse 

and shift deformations are shown in Figure 4. Parametric 

structural schematic diagrams piezoactuators for longitudinal 

piezoeffect Figure 2 and for transverse piezoeffect Figure 3 

converts to generalized parametric structural schematic 

diagram of the electromagnetoelastic actuator Figure 4 with 

the replacement of the parameters 

3m EΨ = , 33 31,mi d dν = , 33 11,E E

ijs s sΨ = , ,l hδ= . 

Generalized structural-parametric model and generalized 

parametric structural schematic diagram of the 

electromagnetoelastic actuator after algebraic transformations 

provides the transfer functions of the electromagnetoelastic 

actuators nano- and microdisplacement for communications 

systems. 

The piezoactuator with the transverse piezoelectric effect 

compared to the piezoactuator for the longitudinal 

piezoelectric effect provides a greater range of static 

displacement and less working force. 

Using the solutions of the wave equation of the 

electromagnetoelastic actuator and taking into account the 

features of the deformations along the coordinate axes, it is 

possible to construct the generalized structural-parametric 

model, generalized parametric structural schematic diagram 

and the transfer functions of the electromagnetoelastic 

actuator for control systems. 

5. Conclusions 

Using the obtained solutions of the wave equation and 

taking into account the features of the deformations along the 

coordinate axes, it is possible to construct the generalized 

structural-parametric model and parametric parametric 

structural schematic diagram of the electromagnetoelastic 

actuator and to describe its dynamic and static properties with 

allowance for the physical properties, the external load during 

its operation as a part of the control systems. 

The parametric structural schematic diagrams and the 

transfer functions of the piezoactuators for the longitudinal 

and transverse piezoeffects are obtained from structural 

parametric models of the piezoactuators. 

References 

[1] Uchino K. Piezoelectric actuator and ultrasonic motors. 
Boston, MA: Kluwer Academic Publisher, 1997. 347p. 

[2] S. M. Afonin, Block diagrams of a multilayer piezoelectric 
motor for nano- and microdisplacements based on the 
transverse piezoeffect, Journal of computer and systems 
sciences international 54 (3) (2015), 424-439. 

[3] S. M. Afonin, Absolute stability conditions for a system 
controlling the deformation of an elecromagnetoelastic 
transduser, Doklady mathematics 74 (3) (2006), 943-948. 

[4] S. M. Afonin, Stability of strain control systems of nano-and 
microdisplacement piezotransducers, Mechanics of solids 49 (2) 
(2014), 196-207. 



38 Sergey M. Afonin:  Solution Wave Equation and Parametric Structural Schematic Diagrams of  

Electromagnetoelastic Actuators Nano- and Microdisplacement 

[5] S. M. Afonin, Structural parametric model of a piezoelectric 
model of a piezoelectric nanodisplacement transduser, Doklady 
physics 53 (3) (2008), 137-143. 

[6] S. M. Afonin, Solution of the wave equation for the control of 
an elecromagnetoelastic transduser, Doklady mathematics 73 
(2) (2006), 307-313. 

[7] Physical Acoustics: Principles and Methods. Vol. 1. Part A. 
Methods and Devices. Ed.: W. Mason. New York: Academic 
Press. 1964. 515 p. 

[8] D. Zwillinger, Handbook of Differential Equations. Boston: 
Academic Press. 1989. 673 p. 

[9] S. M. Afonin, Structural-parametric model and transfer 
functions of electroelastic actuator for nano- and 
microdisplacement, in Piezoelectrics and Nanomaterials: 
Fundamentals, Developments and Applications. Ed. I. A. 
Parinov. New York: Nova Science. 2015. pp. 225-242. 

[10] S. M. Afonin, Generalized parametric structural model of a 
compound elecromagnetoelastic transduser, Doklady physics 
50 (2) (2005), 77-82. 

[11] S. M. Afonin, Generalized hysteresis characteristic of a 
piezoelectric transducer and its harmonic linearization, 
Mechanics of solids 39 (6) (2004), 14-19. 

[12] S. M. Afonin, Parametric structural diagram of a piezoelectric 
converter, Mechanics of solids 37 (6) (2002), 85-91. 

[13] S. M. Afonin, Deformation, fracture, and mechanical 
characteristics of a compound piezoelectric transducer, 
Mechanics of solids 38 (6) (2003), 78-82. 

[14] S. M. Afonin, Parametric block diagram and transfer functions 
of a composite piezoelectric transducer, Mechanics of solids 39 
(4) (2004), 119-127. 

[15] S. M. Afonin, Elastic compliances and mechanical and 
adjusting characteristics of composite piezoelectric transducers, 
Mechanics of solids 42 (1) (2007), 43-49. 

[16] S. M. Afonin, Static and dynamic characteristics of a 
multy-layer electroelastic solid, Mechanics of solids 44 (6) 
(2009), 935-950. 

[17] S. M. Afonin, Design static and dynamic characteristics of a 
piezoelectric nanomicrotransducers, Mechanics of solids 45 (1) 
(2010), 123-132. 

[18] S. M. Afonin, Structural-parametric model of 
nanometer-resolution piezomotor, Russian engineering 
research 21 (5) (2001), 42-50. 

[19] S. M. Afonin, Parametric structure of composite nanometric 
piezomotor, Russian engineering research 22 (12) (2002), 
9-24. 

[20] S. M. Afonin, Electromechanical deformation and 
transformation of the energy of a nano-scale piezomotor, 
Russian engineering research 31 (7) (2011), 638-642. 

[21] S. M. Afonin,. Electroelasticity problems for multilayer nano- 
and micromotors, Russian engineering research 31 (9) (2011), 
842-847. 

[22] S. M. Afonin, Nano- and micro-scale piezomotors, Russian 
engineering research 32 (7-8) (2012), 519-522. 

[23] S. M. Afonin, Dynamic characteristics of multilayer 
piezoelectric nano- and micromotors, Russian engineering 
research 35 (2) (2015), 89-93. 

[24] S. M. Afonin, Generalized structural parametric model of an 
elecromagnetoelastic transduser for control system of nano- 
and microdisplacement: I. Solution of the wave equation for 
control problem of an elecromagnetoelastic transduser, Journal 
of computer and systems sciences international 44 (3) (2005), 
399-405. 

[25] S. M. Afonin, Generalized structural parametric model of an 
elecromagnetoelastic transduser for control system of nano- 
and microdisplacements: II. On the generalized structural 
parametric model of a compound elecromagnetoelastic 
transduser, Journal of computer and systems sciences 
international 44 (4), (2005), 606-612. 

[26] S. M. Afonin, Generalized structural-parametric model of an 
elecromagnetoelastic converter for nano- and micrometric 
movement control systems: III. Transformation parametric 
structural circuits of an elecromagnetoelastic converter for 
nano- and micromovement control systems, Journal of 
computer and systems sciences international 45 (2) (2006), 
317-325. 

 


