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Abstract: Sampling inspection methods used in industrial quality control normally take the form of inspection-by-attributes 

or inspection-by-variables methods. Inspection-by-attributes sampling plans are noted for their robustness with respect to any 

distributional form of the characteristic of an assumed continuous distribution (usually a normal distribution) and therefore are 

not necessarily robust as departures from this assumed distribution are encountered in practice but do permit relatively smaller 

sample sizes than would be required under an equivalent attributes sampling plan. In this paper we provide a new method for 

sampling inspection. The sample size levels and robustness of the new method lies in between the two classical inspection-by-

variables and inspection-by-attributes sampling plans. The new method will be designed and explained, and its equivalence to 

the classical methods will be established. The sample size performance is thoroughly investigated and compared for the 

traditional and equivalent new methods. Their robustness will be discussed at a preliminary level. 
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1. Introduction 

Sampling inspection methods are commonly used in 

quality control to assess the acceptability of units of products 

formed into lots. The assessment involves selecting a random 

sample from the lot and following the procedure specified by 

a sampling plan established for that purpose. The two most 

popular approaches are designated as sampling by attributes 

and sampling by variables. The attribute-types plans are 

based on counts of an attribute of the quality of the items in 

the batch for a given sample size. The variables-type plans 

assume that the observed measurements are continuous 

observations drawn from a normally distributed population 

with mean µ and standard deviation σ. For convenience and 

without any loss of generality, we will assume σ = 1. 

For different sampling plans to be considered equivalent, 

they should have very similar operating characteristic (OC) 

curves. Due to the nature of OC curves, two sampling plans 

are considered to be equivalent if two points on their 

respective OC curves match. In this paper, we use this 

criterion to produce equivalent sampling plans within our 

new approach and show its equivalence to the traditional 

attributes and variables sampling plans. In the next sections, 

we give a description of our new approach and show its 

equivalence to the traditional attributes and variables 

sampling plans. Based on its equivalence, we compared all of 

these plans, assessing their performance for other good 

properties. We found that our new methods are actually a 

bridging gap between the equivalent attributes and variables 

plans in terms of sample size and robustness. 

2. Description and Parameters of the 

New Method 

By and large, inspection-by-variables methods are 

dependent on the mean, x̄, of the sample, x1, x2,…, xn, from a 

normal distribution. In the presence of extreme sample 

values, the sample mean is known to be highly unstable as an 

estimator of the lot mean. Consequently, this approach lacks 

robustness when the normality assumption is violated. To 

lessen the impact of these setbacks, we have introduced a 

transformation similar to the Winsorization approach in the 

new method. This transformation designated Q(x) and is a 

quality function that measures the quality of each sample 

observation, xi, such that Q(x) is an increasing function of x, 

defined as follows: 
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��x� = � 0 	
� � ≤ ��� − ���� − �� 	
� � < � < �1 	
� � ≥ �              (1) 

where A and B are normal distribution cut-off points such 

that A < B, giving for each given µ a proportion of totally 

nonconforming quality of P0 in the lower tail and a 

proportion of totally conforming quality of P1 in the upper 

tail. In the actual tabulations, and without any real loss of 

generality, the parameter A is set to 0. The displacement of µ 

will then determine P0 and P1. Though the context is different 

the ideas here are in a way similar to the three-parameter (n, 

t1, t2) plan of Kumar and Ramyamol [7] whereby for sample 

size n a lot is rejected of the time between successive failures 

(Yt) is < t1, and accepted if Yt ≥ t2. There is also the idea of a 

three-step solution procedure endorsed by Qin, Cudney and 

Hamzic [10] which effectively reduces the solution time for 

large size problems. 

This simple but powerful definition of quality can be used 

to develop a statistic,���������, i.e., the mean of quality function 

Q(x), which is then used in developing the new methods. It is 

obvious that Q(x) and hence ���������  have a mixture of 

discrete and continuous parts as is evident by the U-shaped 

nature of Q(x). As ��������� is an n-convolution of Q(x), we 

expect the cumulative sampling distribution for ��������� to be a 

mixture of continuous parts and discrete jumps. 

Based on the works of Cleroux and McConalogue [3] and 

McConalogue [8, 9], a computational numerical distribution 

of ��������� was evaluated using the concept of a numerical n-

convolution, continuous spline-fits and discrete binomial 

jumps. Such distributions were tabulated as percentage points 

at given percentiles, T, for given sample sizes and P0 and P1 

values. Table 1 below gives an example of such tables. We 

used these cumulative probability distributions and their 

given parameters and test criteria to find the decision rules of 

our new method based on equivalence. One restriction 

imposed is that at the discrete jumps, test criteria may not 

exist, a fact very familiar in all discrete distributions. In these 

cases, we will not have a plan as experienced in inspection-

by-attributes methods. 

These distributions and test criteria are used to set up and 

establish the decision rules for our new method for each set 

of the parameters (n, T, P0, P1) which can be translated as (n, 

µ, A, B). 

With the decision rules established for the new method 

based on given OC curves, we establish equivalences to the 

traditional variables and attributes plans, and examples of the 

new decision rules and plans will be shown as we build 

equivalence among the three approaches. 

Table 1 Distribution of the r. v. ��������� for given sample 

size n, P1 and normal mean µ (i.e., P0) 

For Sample size n = 8 µ = 1.30 {i.e., P0 = 0.09680} 

Table 1. Distribution of the r. v. )(xQ
n

 for given sample size n, P1 and normal mean µ (i.e. P0). 

n = 8 µ=1.30 {i.e. P0 = 0.09680} 

QMIN: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SCALE: 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

P1: 0.1151 0.1775 0.2478 0.3239 0.4032 0.4825 0.5586 0.6289 

 

P[ )(xQn
< T] TEST CRITERION, T 

0.04 0.5241 NE 0.4702 0.4371 0.4055 0.4000 0.3456 0.3143 
0.05 0.5769 0.5413 0.5101 0.4791 0.4456 0.4135 0.3826 0.3535 

0.06 0.6126 0.5706 0.5369 0.5042 0.4712 0.4381 0.4062 0.3761 

0.04 NE 0.5931 0.5573 0.5237 0.4905 0.4566 0.4240 0.3931 
0.05 0.7500 0.6117 0.5740 0.5396 0.5055 0.4717 0.4386 0.4070 

0.06 0.6419 NE 0.5882 0.5531 0.5187 0.4845 0.4509 0.4189 

0.49 NE 0.8379 0.8020 0.7671 0.7329 0.6953 0.6574 0.6196 
0.50 NE 0.8415 0.8054 0.7705 0.7362 0.6986 0.6607 0.6228 

0.51 NE 0.8451 0.8088 0.7739 0.7395 0.7019 0.6639 0.6260 

0.89 NE 0.9802 0.9465 0.9141 0.2802 0.8481 0.8113 0.7731 
0.90 NE 0.9860 0.9525 0.9202 0.8866 0.8542 0.8175 0.7795 

0.91 NE 0.9919 0.9586 0.9266 0.8933 0.8606 0.8242 0.7862 

0.94 NE NE 0.9789 0.9484 0.9164 0.8820 0.8476 0.8102 
0.95 NE NE 0.9865 0.9568 0.9255 0.8917 0.8571 0.8201 

0.96 NE NE 0.9947 0.9661 0.9357 0.9027 0.8681 0.8315 

Notes about the table: 

1) This table shows the percentage probabilities of ��������� on the first column while the entries in the other columns give the corresponding ith percentile, T, for 

each B value (for B = 0.5, 0.7, 0.9,…, 1.9 which reflect the tail spike probability P1). 

2) Here, we need to compute ��������� value for the ith cell using i, Qmin, and SCALE. For i = 49, ���������=Qmin + i(scale) = 0.0 + 49(0.01) = 0.49. 

3) For example, if n=8, µ=1.3, (i.e. P0 = 0.0968), B=1.7 (i.e. P1 = 0.5586), the 3rd cell (i = 3), ��������� = ���� + 3�0.01� = 0.03 has a cumulative probability 

of 0.4062. This means that T=0.4062 is the 3rd percentile of ��������� for n = 8. 

4) The entry “NE” in the table indicates that the value of T is non-existent as it corresponds to a jump in the probability distributions. 

3. Equivalence Procedures and the 

New Method’s Decision Rules 

The concept of equivalence based on OC curves is 

extensively covered in the literature of quality control and 

acceptance sampling. Basically there are two definitions of 

equivalence. One is attributable to Hamaker and Von Strick 

[6] and the other is due to Bravo and Wetherill [2]. Hamaker 

and Von Strick stated that OC curves of different plans are 
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equivalent when they share some indifference point of 50% 

acceptance, say p50, and have the same relative slope h at that 

point; where 

ℎ = − �� ln !" � ln #$ % |#'( =  −2*!" *#$ |#'(        (2) 

Clearly, this is not very practical as it at least assumes an 

analytically defined continuous function for (p, Pa) or that the 

relative slope exists, two facts that are not defined for plans 

that are based on discrete distributions. 

Bravo and Wetherill [2] suggested matching at the two 

points corresponding to the acceptance quality limit (AQL) 

point and the point of indifference at Pa = 50%. Since OC 

curves are known to be nicely behaving, these two definitions 

are basically the same but the latter is more practical for us to 

adopt. 

In the new method, the values (n, T, P0, B) are used to fix 

the two points on the OC curve, thus determining the 

decision rule and criterion for these plans. Then, we look up 

the equivalent decision rule and criterion for each of the 

traditional plans matching these two OC points. In other 

words, for given n = n* and B = B*, the cut-off point t = t* 

of the distribution of ��������� , i.e., the average quality, is 

determined such that an inspected lot with p0(1) proportion 

nonconforming (i.e., p associated with AQL) will have a 

probability of acceptance Pa = 1-α (for a pre-specified α) 

while a lot with p0(2) proportion nonconforming is accepted 

with probability Pa = β where β < 1-α and p0(1) < p0(2). The 

OC curve so discussed now passes through the two points: 

(AQL, 1-α) and (p0(2), β). Noting how our method’s 

distribution is constructed, AQL can be translated as µ(1-α) 

and p0(2) as µ(β), and we have now fixed (n*, t*, µ(1-α), 

µ(β), B*) as our new plan corresponding to a quality 

protection of a specific OC level. Likewise, we can fix any 

and many OC levels of quality protection. In the next 

paragraph, we explain how our plans work. 

The decision parameters above are used as in the following 

typical basic rules: 

i. Decide the specific values of n* and B*. 

ii. Determine t* value by choice of the protection OC 

level of (AQL, 1-α) and (p0(2), β) for given α and β. 

iii. Take a random sample x1, x2,…, xn drawn 

independently from an inspected lot, believed to be 

normally distributed. 

iv. Evaluate Q(xi) for each xi, and compute ��������� , the 

sample mean. 

v. If ��������� > t*, accept the lot. Otherwise reject the lot as 

having poor quality. 

Like this plan, Al-Omari [1] suggested the idea of 

truncation at a predetermined level, yet his was limited to the 

Inverse Rayleigh Distribution. 

4. Determination of the Traditional 

Equivalents to the New Plans 

The OC two-points principles discussed earlier and used 

for building the new plans are also applied to seek traditional 

plans that match ours. In each case, we simply pick the given 

OC points of (AQL, 1-α) and (p0(2), β) and seek the binomial 

distribution and normal distribution sampling plan 

parameters that give that some OC levels. 

For the case of attributes, we need the sample size n' and 

the acceptance number c. The relevant distribution model to 

use here is the binomial distribution with parameters n' and p 

such that if Pa(p) is the probability of acceptance for any 

given proportion p of nonconforming quality and acceptable 

number of nonconforming unites c, i.e.: 

!"�p� = !"�p� ∑ ��� % #-�1 − #��.-/-01                (3) 

We need to solve c for pre-specified (AQL, 1-α) and 

(p0(2), β). But sometimes, because of the discrete nature of 

the model in (1), we can conveniently use the approximating 

system of the following inequalities: 

!"�AQL� ≥ 1 − 5                                (4) 

!"6#(�2�7 ≤ 8                                   (5) 

Noting that the Poisson distribution Po(c, n'p) is a good 

approximation of (3) while the Poisson distribution in turn is 

best approximated by the Chi-square (9:� distribution with 

2(c+1) degrees of freedom, with cut-off point at 2n'p and 

variance 2(c+1), the above system of inequalities above can 

be replaced with: 

Pr�9: > 2�>#|2�? + 1� degrees of freedom�  ≥ 1 − 5   (6) 

Pr�9: > 2�>#|2�? + 1� degrees of freedom�  ≤ β        (7) 

A method by Hald [4, 5] was invaluable in solving for n' 

and c is used, with the solutions defined, thus determining the 

equivalent traditional two-class attribute plan. 

For the case of traditional sampling-by-variables equivalents, 

there are the two common approaches, depending on whether 

or not the lot (or process) standard deviation σ is known. The 

σ-method leads to use of the standard normal distribution, and 

the s-method (where σ is unknown and s is the sample 

standard deviation is used to estimate σ) leads to use of a non-

central Student t-distribution. We know for a fact that sample 

sizes for the σ-method are always smaller than for the s-

method, so it made sense to create equivalent s-method plans 

only for comparison. 

The σ-method plan requires the parameters nσ (the sample 

size) and kσ (the critical cut-off value for acceptance or 

rejection) such that: 

HIJ − K�1.L�M ∗ O�J = PΦ.1�1 − 5�                (8) 

and 

HIJ − K�R�M ∗ O�J = PΦ.1�8�                      (9) 

will give Pa(AQL) = 1-α and Pa(p0(2)) = β corresponding to 

the two points on OC curve for equivalence purposes 

discussed earlier. The above equations solve for nσ and kσ for 

given α and β giving: 
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�J = 6STUV.SW7XJX
6YTUV.YW7X                            (10) 

and 

IJ = 6STUV∗YW.SW∗YTUV7X
6STUV.SW7                      (11) 

where Z1-α and Zβ are the standard normal z-values or 

percentiles. These values of nσ and kσ are the required 

parameters for establishing the equivalent σ-method plan. 

Integral-valued nσ could be a bit problematic; however for 

approximations the general rounding principles will be 

sufficient for our comparison purposes. 

With the OC equivalence principle, Hald [4] suggested an 

iterative approximating procedure for finding the s-method 

decision rules and the parameters of sample size ns and the 

test criterion ks. Hald’s method was advanced by Wetherill 

and Kollerstrom [11] and was checked to be adequate by 

Bravo and Wetherill [2]. Using the same method, our results 

compare well with Bravo and Wetherill’s published results. 

We have found that the iterative process converges relatively 

quickly for the solution values of ns and ks, giving solutions 

for all the cases of equivalent variables s-method plans. 

Given the σ-method plan parameters, nσ and kσ, the plan 

accepts the batch if the sample mean, x̄J  � � PIJ . Now 

for s-method plans, σ is unknown and we need to match the 

two random variables, x̄J � PIJ  and x̄[ � \I[, such that they 

have the same mean and variance. As a result, we get the 

following approximate solutions: 

IJ � I[ �4�[ � 5� �4�J � 4�⁄                  (12) 

�J � �[ �1 � I[
: 2� ⁄                         (13) 

Solving for ns and ks is done via numerical iteration, noting 

from (2) above, that ns would be greater than nσ by an 

incremental factor of 1 � I[
: 2⁄  and an initial value of ks = kσ, 

since the factor �4�[ � 5� �4�J � 4�⁄  is almost 1. So with kσ 

= ks in (1), we can get an approximation of ns which is 

applied to (2), giving a final approximation for ns. Again, this 

is the procedure for obtaining an equivalent s-method plan. 

With all the equivalent plans established, we are able to 

assess the sample size comparisons and the performance of 

the new method’s plans. 

5. Sample Size Performance 

The sample sizes for all the equivalent plans for different 

AQL levels were computed and compared using the ratio of 

sample size of any of the traditional plans to the sample size 

of their equivalent new plan. The results are reflected in 

Figure 1 where the horizontal broken line indicates the case 

of the new plan. The two bottom curves are the cases of the 

traditional variables sampling plans. The lowest one refers to 

the σ-method plan while the other close one refers to the s-

method plan. Obviously, the top curve is the attribute plan as 

it has the highest sample sizes for all equivalent plans. For 

each B, there is a separate figure for different sample sizes of 

the new method. 

 

Figure 1. Ratio of sample size of the traditional plans to that of their equivalent new plans for given n = 8 and AQL levels, at different B values of 0.7, 1.1, 1.5, 

and 1.9. 

Notes on the figure: 

1. The y-axis represents the ratio of traditional plan sample size to the Ramp (new) sample size 

2. The dotted (broken) line indicates the sample size ratio nj/n of the traditional plans’ nj to the ramp n is unity. 

3. The upper-most curve gives the sample size ratio of the attributes case to that of the new equivalent plan. The second is for the s-method plan while the 

lowest curve is that of the σ-method plan sample size ratio. 

4. AQL is the Acceptance Quality Limit reflecting the quality level that is the worst tolerable process average when a continuing series of lots is submitted for 

acceptance sampling. 

5. The new Ramp plans gets better sample size as B gets larger. 
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As a function of AQL, each figure shows quite clearly that 

the lower the AQL is, the larger the gap is between the 

attributes curve and any other plan’s curve. It is beyond any 

doubt that there is a large savings in sample size under the 

new method as compared to the attributes sampling case. All 

of the curves indicate the new method can act as a transition 

between the attributes and variables sampling methods 

whenever sample size is an issue. 

Figure 1 shows how the new plans fair on sample size 

performance for any B. For low B values, the new plan is 

closer to the attributes plan. While for higher B values, the 

attributes sample size required is quite high. In all cases, the 

new plans compare very well with all traditional plans, and 

interestingly enough, in some cases, they are better than the 

s-method plans as indicated by the graphs for B = 1.5 and 1.7 

when the AQL is less than 0.04. However, as we expected, 

the new plans can never be better than the σ-method variables 

plans (whose n ratio to that of the new plans is shown by the 

lowest graph in each figure). 

6. The Bridging Role of Parameter B 

The parameter B is a very important one in really bridging 

the gap between the variables and attributes methods. The 

smaller the value of B is, the closer our plan resembles the 

attributes plan. Since B approaches A, Q(x) will approach a 

Bernoulli variable. In that case, we would expect a larger 

sample size. On the other hand, as B is increased, a greater 

portion of Q(x) becomes continuous. Thus, the plan becomes 

closer to a variables plan and the sample size will generally 

tend to be smaller. 

7. Discussion 

Having found that the new method faired well with 

encouraging results, with some forthcoming strands of 

research. First, some statistical simulations using various 

non-normal distributions could be conducted to see how the 

four different methods will compare. In other words, further 

robustness studies should be conducted to fully ascertain the 

degree of robustness of the new attri-var method. Secondly, 

more research is needed to establish more diversified 

development and design of new attri-var plans, based on the 

principles laid out by this paper to introduce more 

equivalents to the current traditional ones. Another strand of 

research is to consider non-normality robustness along the 

lines suggested by Zimmer and Burr [12]. 

8. Conclusion 

This paper recommended, developed and also set up some 

new attri-var plans that are equivalent to some of the existing 

attribute and variables plans that compared well with existing 

schemes. Not only that, they bridged the gap between 

variables and attributes plans. Thus they removed the 

variable versus attribute dichotomy that exists in the current 

schemes through use of the parameter B. The smaller B (as it 

approaches 0) the new Ramp becomes an attribute plan, 

while larger values of B lead to variables plans. Sample size 

savings especially for the attribute plans was prominent in 

the new attri-var plans. Moreover, as B increases the new 

Ramp plan becomes more prominently better in sample size 

savings. Both the sample size levels and robustness of the 

new bridge Ramp method lie in between the two classical by-

variables and by-attributes sampling plans 
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