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Abstract 
Transport of vorticity in a magnetic Maxwellian viscoelastic fluid in the presence of 

suspended magnetic particles is considered here. Equations governing the transport of 

vorticity are obtained from the equations of magnetic fluid flow proposed by Wagh and 

Jawandhia in their 1996 study on the transport of vorticity in magnetic fluid. It follows 

from the analysis of these equations that the transport of solid vorticity is coupled with 

the transport of fluid vorticity. Further, we find that because of a thermo-kinetic process, 

fluid vorticity can exist in the absence of solid vorticity, but when fluid vorticity is zero 

then solid vorticity is necessarily zero. We also study a two-dimensional case. 

1. Introduction 

Magnetic fluids are suspensions of small magnetic particles in liquid carrier. Thus it is 

a two-phase system, consisting of solid and liquid phases. The net effect of the particles 

suspended in the fluid is extra dragging force acting on the system. This is due to relative 

velocity between the solid and fluid particles. Saffman (1962) proposed the equations of 

the flow of suspension of non-magnetic particles. These equations were modified by 

Wagh (1991) to describe the flow of a magnetic fluid, by including the magnetic body 

force 0M Hµ ∇ . The transport of vorticity in a magnetic fluid has been studied by Wagh 

and Jawandhia (1996). Yan and Koplik (2009) have studied the transport and 

sedimentation of suspended particles in inertial pressure-driven flow. 

With the growing importance of non-Newtonian fluids in modern technology and in 

various manufacturing and processing industries, considerable effort has been directed 

towards understanding their flow. Widely used theoretical models (models A and B, 

respectively) for certain classes of viscoelastic fluids have been proposed by Oldroyd 

(1958). The stability of a horizontal layer of Maxwell’s viscoelastic fluid heated from 

below was investigated by Vest and Arpaci (1969). The thermal instability of 

Maxwellian viscoelastic fluid in the presence of a uniform rotation has been considered 

by Bhatia and Steiner (1972), where rotation is found to have a destabilizing effect. This 

is in contrast to the thermal instability of a Newtonian fluid where rotation has a 

stabilizing effect. In another study, Bhatia and Steiner (1973) have studied the problem 

of thermal instability of a viscoelastic fluid in hydromagnetics and have found that the 

magnetic field has the stabilizing influence on Maxwell fluid just as in the case of 

Newtonian fluid. Sharma and Sharma (1977) have considered the thermal instability of a 

rotating Maxwell fluid through porous medium and found that, for stationary convection, 

the rotation has stabilizing effect where as the permeability of the medium has both 

stabilizing as well as destabilizing effect, depending on the magnitude of rotation. 

Sharma and Kumar (1996) have considered the Hall effect on thermosolutal instability in 

a Maxwellian viscoelastic  
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fluid in porous medium. The thermal instability of a rotating 

Maxwellian viscoelastic fluid permeated with suspended 

particles in porous medium has been studied by Kumar 

(1997). Kumar and Singh (2008) have studied the stability of 

superposed Maxwellian viscoelastic fluids through porous 

media in hydromagnetics. The problem of double-diffusive 

convection and cross-diffusion in a Maxwell fluid in a 

horizontal layer in porous media is re-examined using the 

modified Darcy-Brinkman model by Awad et al. (2010). In 

another study, Kumar (2013) has studied the thermal 

instability of Maxwellian heterogeneous viscoelastic fluid 

layer through porous medium. Kumar (2013) has also studied 

the slow, immiscible, Maxwellian viscoelastic liquid-liquid 

displacement in a permeable medium. Malashetty and 

Bharati (2016) have studied the onset of double diffusive 

convection in a binary Maxwell fluid saturated porous layer 

with cross diffusion effects using linear and weakly non-

linear stability analyses. Centrifugal instability of a pulsed 

flow in a viscoelastic fluid confined in a Taylor-Couette 

system has been investigated by Riahi et al. (2016). 

Motivation for studying the problem is likely to have some 

industrial and modern technology application on the 

problems of transport of vorticity in magnetic Maxwellian 

viscoelastic fluid-particle mixtures. 

2. Basic Assumptions and Magnetic 

Body Force 

The particles of magnetic material are much larger than the 

molecules of the carrier liquid. Accordingly, we consider the 

limit of a microscopic volume element in which the fluid can 

be assumed to be a continuous medium and the magnetic 

particles must be treated as discrete entities. If we consider a 

cell of magnetic fluid containing a larger number of magnetic 

particles, then we must consider the microrotation of the cell 

in addition to its translations as a point mass. We must 

therefore assign the average velocity dq
�

 and the average 

angular velocity ω�  to the cell. But we here neglect the effect 

of micro rotation as an approximation. We also assume the 

following: 

(i)  Most ferro fluids are relatively poor conductors. 

Hence, the free current density J
�

 is negligible and 

J B×
� �

 is insignificant. 

(ii)  The magnetic field is curl free i.e. 0.H∇ × =
�

 

(iii)  The liquid compressibility is unimportant in many 

situations. Hence, the contribution due to magnetic 

friction can be neglected. The remaining force of the 

magnetic field is called the magnetization force. 

(iv)  All time-dependent magnetization effects in the fluid 

(such as hysteresis) are negligible, and the 

magnetization M
�

 is collinear with H
�

. 

From electromagnetic theory, the force per unit volume (in 

MKS units) on a piece of magnetized material of 

magnetization M
�

 (i.e. dipole moment per unit volume) in 

the field of magnetic intensity H
�

 is ( )0 .M Hµ ∇
� �

, where 

is the free space permeability. Using assumption (iv), we get 

( ) ( )0
0 . . ,

M
M H H H

H

µµ ∇ = ∇
� � � �

 where M M=
�

 and H H=
�

 (1) 

But ( ) ( ) ( ) ( )1 1
. . .

2 2
H H H H H H H H∇ = ∇ − × ∇× = ∇
� � � � � � � �

 

[by assumption (ii)]                            (2) 

Hence ( ) ( )0
0 0

1
. . .

2

M
M H H H M H

H

µµ µ ∇ = ∇ = ∇ 
 

� � � �

 

Thus the magnetic body force assumes the form [Rosensweig 

(1997)]. 

0 .mf M Hµ= ∇                                (3) 

3. Derivation of Equations Governing 

Transport of Vorticity in Magnetic 

Maxwellian Viscoelastic Fluid 

Let , , , , , , , ,ij ij ij ij i i
de p q x and

dt
τ µ λ δΓ  denote 

respectively the total stress tensor, the shear stress tensor, the 

rate-of-strain tensor, the viscosity, the stress relaxation time, 

the isotropic pressure, the Kroneckor delta, the velocity 

vector, the position vector and the convective derivative. 

Then the Maxwellian viscoelastic fluid is described by the 

constitutive relations 

,

1 2 ,

1
,

2

i j i j i j

i j i j

ji
i j

j i

T p

d
e

dt

qq
e

x x

δ τ

λ τ µ




= − + 


  + =  
  

 ∂∂ = + 
  ∂ ∂  

                  (4) 

whereas 0λ =  gives the Newtonian viscous fluid. 

To describe the flow of a magnetic fluid with the body 

force 0M Hµ ∇  acting on the suspended magnetic particles 

taken into account, the Saffman equations for the flow of 

suspensions were modified by Wagh (1991). Now the 

equations expressing the flow of suspended magnetic 

particles and the flow of Maxwellian viscoelastic fluid in 

which magnetic particles are suspended are therefore written 

as 

( )

( )

0.

,

d
d d

d

q
mN q q mNg M H

t

KN q q

µ∂ + ∇ = + ∇ ∂ 

+ −

�

� � �

� �

             (5) 

0µ
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( )

( ) 2

1 . 1

,d

q
q q

t t t

P g KN q q q

λ ρ λ

ρ µ

∂ ∂ ∂     + + ∇ = +    ∂ ∂ ∂     

 −∇ + + − + ∇ 

�

� �

� � � �

        (6) 

where 
( ) ( ) ( )

( )
, , , , , , 0, 0, ; , , ,

, ,

dP q u v w g g q l r s

m N x t

ρ µ −
� � �

 denote, 

respectively, the pressure less the hydrostatic pressure, 

density, viscosity, velocity of the pure fluid, gravity force; 

velocity, mass and number density of the particles; 

( ), , , 6 ,x x y z K πµη η= =  being the particle radius, is the 

Stokes' drag coefficient and mN is the mass of particles per 

unit volume. 

If we assume that the particle has a uniform spherical 

shape and that the particle velocity relative to the fluid is 

small, then in the equations of motion for the fluid, because 

of the presence of suspended particles, an additional force 

term appears proportional to the velocity difference between 

the suspended particles and the fluid. Since the force exerted 

by the fluid on the suspended particles is equal and opposite 

to that exerted by the particles on the fluid, there must be an 

extra force term, equal in magnitude but opposite in sign 

appears in the equations of motion of the suspended particles. 

The buoyancy force on the particles is also neglected. This 

force is proportional to the quotient of ρ  and the particle 

density, and an analysis for the case of free-free boundary 

conditions shows that its small stabilizing effect is negligible. 

We assume that the distances between particles are quite 

large compared with their diameter, so interparticle reactions 

are also ignored. 

If we use the Lagrange’s vector identities 

( ) ( )2

2
1

1
. , .

2

1
,

2

d d d dq q q q q q

q q

∇ = ∇ − × Ω ∇

= ∇ − × Ω

�

� � � � �

�

�

                 (7) 

equations (5) and (6) become 

( )
( )

2

0 ,

d
d d

d

q
mN q mNgz mN q

t

M H KN q qµ

∂ − ×Ω = − − ∇ ∂ 

+ ∇ + −

�

�

�

� �

             (8) 

( )

( )

1

2 2

1

1
1 ,

2
d

q
q

t t

P gz q KN q q q
t

ρ λ

λ ρ ρ µ

∂ ∂   + − × Ω   ∂ ∂   

∂   = + −∇ − ∇ − ∇ + − + ∇   ∂   

�

�

�

� � �

 (9) 

where dqΩ = ∇ ×
�

�

 and 1 qΩ = ∇ ×
�

�

 are respectively the solid 

vorticity and fluid vorticity. 

Taking the curl of these equations and keeping that the curl 

of a gradient is identically equal to zero, we get 

( )
( )

0

1 ,

dmN q M H
t

KN

µ
 ∂Ω − ∇ × × Ω = ∇ × ∇ ∂ 

+ Ω − Ω

�

�

�

� �

             (10) 

( )

( )

21
1 1

1

1

1 .

q
t t

KN
t

ρ λ µ

λ

 ∂Ω∂ + − ∇× × Ω = ∇ Ω +  ∂ ∂    

∂ + Ω − Ω ∂ 

�

� �

�

� �

        (11) 

By making use of the vector identities 

( ) ( ) ( )
( ) ( )
. .

. . . . ,

d d d

d d d d

q q q

q q q q

∇ × ×Ω = Ω ∇ − ∇ Ω +

∇ Ω − Ω∇ = Ω ∇ − ∇ Ω

� � �

� � �

� � � �

� � � �

             (12) 

( ) ( ) ( )
( ) ( )
1 1 1 1

1 1 1

. . .

. . . ,

q q q q

q q q

∇× ×Ω = Ω ∇ − ∇ Ω + ∇ Ω

−Ω ∇ = Ω ∇ − ∇ Ω

� � � �

� � � �

� � �

� � �

           (13) 

equations (10) and (11) become 

( )
( )

0

1

.

,

d

D
mN M H mN q

Dt

KN

µΩ = ∇ × ∇ + Ω ∇

+ Ω − Ω

�

�

�

� �

                       (14) 

( )

( )

21
1 1

1

1 1 .

1 ,

D
q

t Dt t

KN

t

λ ν λ

λ
ρ

Ω∂ ∂   + = ∇ Ω + + Ω ∇   ∂ ∂   

∂ + + Ω − Ω ∂ 

�

� �

�

� �

           (15) 

where ν  is the kinematic viscosity and ( ).d

D
q

Dt t

∂= + ∇
∂

�

 is 

the convective derivative. 

In equation (14), 

( ) ( ) ( ) .M H M H M H∇ × ∇ = ∇ × ∇ + ∇ × ∇          (16) 

Since the curl of the gradient is zero, the last term in 

equation (16) is zero. Also since 

( ),M M H T= . We have 

.
M M

M H T
H T

∂ ∂   ∇ = ∇ + ∇   ∂ ∂   
                     (17) 

By making use of (17), equation (16) becomes 

( ) M
M H H H

H

M
T H

T

∂ ∇× ∇ = ∇ ×∇ + ∂ 

∂ ∇ ×∇ ∂ 

                    (18) 

The first term on the right hand side of this equation is 

zero, hence 
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( ) M
M H T H

T

∂ ∇× ∇ = ∇ ×∇ ∂ 
.                (19) 

Putting this expression in equation (14), we obtain 

( ) ( )0 1. .d

D M
mN T H mN q KN

Dt T
µΩ ∂ = ∇ ×∇ + Ω ∇ + Ω − Ω ∂ 

�

� � �

�

 (20) 

Here (15) and (20) are the equations governing the 

transport of vorticity in magnetic Maxwellian viscoelastic 

fluid-particle mixtures. 

In equation (20), the first term in the right hand side

0

M
T H

T
µ ∂ ∇ ×∇ ∂ 

describes the production of vorticity due 

to thermo-kinetic processes. The last term ( )1 .KN Ω − Ω
� �

gives 

the change in solid vorticity on account of exchange of 

vorticity between the liquid and solid. 

From equations (15) and (20), it follows that the transport 

of solid vorticity Ω
�

is coupled with the transport of fluid 

vorticity 1Ω
�

. 

From equation (20), we see that if solid vorticity Ω
�

is zero, 

then the fluid vorticity 1Ω
�

is not zero, but it is given by 

0
1 .

M
T H

KN T

µ ∂ Ω = − ∇ ×∇ ∂ 

�

                   (21) 

This implies that due to thermo-kinetic processes, fluid 

vorticity can exist in the absence of solid vorticity. 

From equation (14), we find that if 1Ω
�

is zero, then Ω
�

is 

also zero. This implies that when fluid vorticity is zero, then 

solid vorticity is necessarily zero. 

In the absence of suspended magnetic particles, N is zero, 

and the magnetization M is also zero. Then equation (20) is 

identically satisfied, and equation (15) reduces to 

( )

21
1

1

1 1

. .

D

t Dt t

q

λ ν λΩ∂ ∂   + = ∇ Ω + +   ∂ ∂   

Ω ∇

�

�

�

�

             (22) 

This equation is vorticity transport equation. The last term 

on the right hand side of equation (22) represents the rate at 

which 1Ω
�

varies for a given particle, when the vortex lines 

move with the fluid (the strengths of the vortices remaining 

constant) and the rate of change of vorticity, which varies for 

a given particle due to stress relaxation time. The first term 

represents the rate of dissipation of vorticity through friction 

(resistance). 

4. Two-Dimensional Case 

Here we consider the two-dimensional case: 

Let
( ) ( )

( ) ( )

ˆ ˆ, , ,

ˆ ˆ, ,

x yd d d

x y

q q x y i q x y j

q q x y i q x y j

= +

= +

�

�

               (23) 

where components , ,
x yd d x yq q and q q are functions of

,x y and t , then 

1 1
ˆ ˆ,z zk kΩ = Ω Ω = Ω

� �

                              (24) 

In two-dimensional case, equation (21) becomes 

( )

0

1 .

z

z z

D M T H H T

Dt mN T x y x y

K

m

µ ε  Ω ∂ ∂ ∂ ∂ ∂ = −  ∂ ∂ ∂ ∂ ∂  

+ Ω − Ω
           (25) 

Similarly, equation (16) becomes 

( )

( )

21
1 1

1

1 ( )

,

z
z z z

z z

D KN

t Dt

KN

t

λ ν
ρ

λ
ρ

Ω∂ + = ∇ Ω + Ω − Ω ∂ 

∂+ Ω − Ω
∂

          (26) 

since it can be easily verified that 

( ) ( )1. 0 . 0.dq and qΩ ∇ = Ω ∇ =
� �

� �

                 (27) 

The first term on the right hand side of equation (26) is the 

change of fluid vorticity due to internal friction (resistance), 

the second term is change in fluid vorticity on account of 

exchange of vorticity between solid and liquid and the third 

term rate of change in fluid vorticity on account of exchange 

of vorticity between solid and liquid due to stress relaxation 

time. Equation (26) does not involve explicitly the term 

representing change of vorticity due to magnetic field 

gradient and/or temperature gradient. But equation (25) 

shows that solid vorticity zΩ  depends on these factors. 

Hence, it follows that fluid vorticity is indirectly influenced 

by the temperature and the magnetic field gradient. 

In the absence of magnetic particles, N is zero and 

magnetization M is also zero, so equation (25) is identically 

satisfied and equation (26) reduces to classical equation for 

the transport of fluid vorticity. If we consider a suspension of 

non-magnetic particles instead of magnetic fluid, then the 

corresponding equation for the transport of vorticity may be 

obtained by setting M equal to zero in the equations 

governing the transport of vorticity in magnetic fluids. If the 

magnetization M of the magnetic particles is independent of 

temperature, then the first term in equations (20) and (25) 

vanishes and so the equations governing the transport of 

vorticity in magnetic fluid become the same as those 

governing the transport of vorticity in non-magnetic 

suspensions. 

If the temperature gradient T∇ vanishes or if the magnetic 

field gradient H∇ vanishes or if T∇ is parallel to H∇ , then 

also the first term in equations (20) and (25) vanishes. Thus, 
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we see that in this case also the transport of vorticity in 

magnetic fluid is same as transport of vorticity in non-

magnetic suspension. 
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