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Abstract 
In this paper, we reconstruct the functions describing angular motion of rigid body (in 
particular, spacecraft) under measurements, and we carry out identification of attitude 
control system using discrete measurements. Main task is determination of the 
approximating functions in analytical form and constructing the mathematical model of 
motion. For finding the analytical functions which describe motion of rigid body about 
centre of mass, the method of trained models is used. It is shown that presented 
algorithms of data processing reconstruct continuous functions under discrete 
measurements with minimal error. Also, we have demonstrated the possibilities of 
designed method and its advantages for the solving the problems of identification of 
physical processes and technical systems. Our mathematical instruments can successfully 
be used for analyses of onboard systems of spacecraft. As an example, the problem of 
identification of attitude control system using result of measurements is studied in detail 
for multi-modular spacecraft. The problem of exact identification of a controlled motion 
(including a method of control) and determination of numerical values of main 
parameters of control algorithm at the regime of a programmed turn has been solved. 
High-precision reconstruction of actual controlled motion of a spacecraft allows us to 
make identification of attitude system with big reliability. Designed techniques 
demonstrate better characteristics. Mathematical technology, described in this article, 
was used in official reports on analysis of onboard control system of spacecraft motion 
(including multi-modular orbital station). 

1. Introduction 

During tests and analysis of technical systems we use measurements of different 
parameters under which we can conclude about correctness and quality of performance 
of system. Our field of researches is controlled motion of rigid body. In our application 
interest, we take spacecraft as rigid body, and we consider most complicated case when 
rigid body is multi-modular spacecraft. 

We assume that subject of analysis is rotary motion of a spacecraft and its control 
system of motion. An investigation of attitude control system in different regimes is very 
important. In this article, we reconstruct the functions describing angular motion of rigid 
body under measurements and we carry out identification of attitude control system of 
multi-modular spacecraft by the method of trained models. 

General task is identification of attitude control system of multi-modular spacecraft  
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under discrete measurements of angular motion. In particular, 
it is the finding the analytical functions which describe 
motion of rigid body about centre of mass, and the finding 
the values of key parameters of motion control system with 
high-precision, and also specification of method by which 
maneuver was carried out. For this, it is necessary to solve 
main task which consist in determination of the 
approximating functions in the analytical form which are co-
ordinated with discrete measurements in the best way. For 
achievement of the purpose, first of all it is necessary to 
select model depicting programmed (or nominal) behavior of 
parameters describing motion of spacecraft with respect to 
center of the mass. For solution of the problem, the method 
of trained models was used, as one of the most simple and at 
the same time most floppy and general methods of 
identification [1]. The projections of the vector of absolute 
angular velocity on an axes of spacecraft-bound coordinate 
system were adopted as the measurable parameters of an 
attitude. 

The main results of mathematical processing and analysis 
of measurements about spacecraft motion at a regime of 
spatial turn are below briefly described. After that, the in-
depth enough data of post-flight processing of measurements 
obtained from onboard of spacecraft are adduced, which has 
allowed not only to reconstruct actual motion of spacecraft in 
a turn regime, but also precisely enough to identify a method 
of turn control, which one the manoeuvres implemented. 

The data processing of measurements is done using a 
technique based on identification with the pattern model. 
Within the framework of this technique, the measurements 
executed during some time interval are processed jointly by 
least squares process and integration of equations of 
spacecraft motion around a center of mass. The equations of 
angular motion is written according to the logic of a 
operating of control system which is carried out pursuant to a 
selected mode of turn. At processing, the parameters of a 
mathematical model are updated and the adjustment values of 
parameters of a control algorithm are determined. 

The data, obtained by designed mathematical means in 
result of reconstruction of continuous functions under 
discrete measurements, were placed in official reports on 
analysis of onboard control system of spacecraft motion. 

2. Data of Measurements and 

Methods of Their Processing 

As example, we demonstrate reconstruction of functions 
which describe motion of multi-modular spacecraft under 
discrete measurements using the method of trained models. 
The spacecraft is considered absolutely solid body which 
centre of mass makes uncontrollable elliptic motion. For a 
study, analysis and identification, three-dimensional turn of 
spacecraft is very interesting. Indications of all orientation 
devices are interpreted in so-called building coordinate 
system Oxyz (or body-fixed coordinate system). It is a related 

rigidly with spacecraft a right-hand Cartesian system of the 
co-ordinates where the axes are directed as follows: the axis 
Ox is directed in parallel to longitudinal axis of the central 
(main) block; axis Oz is parallel to rotary axis of solar 
batteries of this block; and the axis Oy supplements system 
Oxyz to right-hand coordinate system. 

For definition of nominal motion of bulky multi-modular 
spacecrafts, the vector of absolute velocity ω were used only. 
The data about ω is obtained by an onboard instrumentation 
system as its projections , ,x y zω ω ω  onto an axis of body-

fixed coordinate system Oxyz, a center by which one 
coincides a center of the spacecraft mass. The measured 
values of different component of absolute angular velocity ω 
are registered independently from each other and 
consequently can fall to the different moments of time. 

At the turn, spacecraft executes a controlled motion, and it 
is provided with a control system by means of jet micro-
engines. A variation of angular velocities  during 

turn of multi-modular spacecraft is shown on Figure 1. They 
are the actually measured values of parameters of angular 
motion. As well as at any turn here there are temporary 
stages, at which one a size of all components of angular-
velocity vector (so also a quantity of angular rate |ω|) 
simultaneously increases (decreases). The concern introduces 
time interval between gaining and damping of angular 
velocity. The character of variation of angular velocity  (i 
= x, y, z) at this time interval also determines the type of a 
kinematical trajectory of turn and control method, applicable 
to it. Further, research of spacecraft rotation we shall conduct 
only at time period between an acceleration and braking of 
spacecraft (at a phase of nominal motion). 

Set of the measurements included in a processing we will 

designate ,  (i = x, y, z; k = 1, 2,... Ni, ). 

Here  is the result of measurement of component ωi of 

vector ω  at time moment . The beginning and the finish 
of processing interval should not get at acceleration and 

braking phases. We believe ,  (i = 
x, y, z), where tac is the time of the ending of acceleration 
phase, tbr is the time of the beginning of braking phase. 

Optimized functional which we should minimize has the 
form 

 

We use a method of the least squares on the basis of the 
following assumption: regular errors in measurements of 
component ωi are identical and equal ∆i (i = x, y, z), and 
random errors in measurements of all components are 
independent and have identical normal distribution with zero 
average value and a standard deviation σ. 

Identification problem is formulated as follows: it is 
necessary to find such calculated approximating functions 
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(t) (not only their mathematical form but also coefficients of 
the functions) which give a minimum for the functional: 

           (1) 

where ; ωi cal is the calculated values of 

component ωi of absolute angular velocity vector ω 
according to functions (t); ∆i is unknown constants (so-
called «displacement of zero»). 

For detection of features of spacecraft motion during turn 
and obtaining of its interesting characteristics, we shall take 
advantage of experience and consequences of analytical 
researches [2-4]. Now three ways of programmed turns of 
spacecraft can be used most frequently: 

a) Series of the turns around spacecraft-fixed axises; 
b) Turn of spacecraft around of the final turn vector (Euler 

turn); 
c) Turn in a form of a precession of solid body (in 

particular, as regular precession). 
At last case, some persistence of axial component angular 

velocity ω1 on the one hand, and form of transverse angular 
velocities ω2 and ω3 are close to harmonious functions of 
time on the other hand, will give a basis to draw conclusion 
about presence of regular properties which have the 
characteristics as motion of spacecraft in relation to a center 
of the spacecraft mass as precessions of solid body around of 
some direction motionless in all-inertial space. Spacecraft is 
gyrated simultaneously around of some motionless axis η 
componented with longitudinal axis ОХ definite angle ϑ, and 
around of a centerline ОХ with angular velocities of 

precession  and of own rotation , accordingly. The 
indicated type of motion is described by following equations: 

, sin sin ϕ(t),  

ωz = cos ϕ(t) 

where ϕ is turn angle of own rotation. 
By virtue of the universality last type of programmed turn 

of spacecraft introduces the greatest concern, though the turn 
of spacecraft along a trajectories of free motion is generally 
possible way [4, 5]. 

For determination of motion type and control method of 
spacecraft reorientation, it is necessary to select model 
depicting a dynamics of rotation and programmed (or 
nominal) variation of angular velocities describing motion of 
multi-modular spacecraft. 

3. A choice of Pattern Mathematical 

Model 

Let us consider one of turns of the orbital spacecraft 
representing a large heavy multi-modular construction. Data 
of onboard measurements of angular velocities  

are visually presented by Figure 1. The configuration of 
spacecraft is asymmetrical, therefore it is impossible to 
neglect discrepancy of the principal central axes of the 
ellipsoid of inertia with building axes of a spacecraft. At 
performance of the given regime of orientation, the orbital 
coordinate system (OCS) was basic (as reference basis), 
and a spacecraft was stabilized with respect to it before and 
after a turn. Therefore, before a turn and on its termination 
the magnitude of absolute angular rate is distinct from zero. 

Feature is the unregularity of rotary motion of spacecraft 
which is expressed in dissimilarity of behaviour of angular 
velocities  on their typical change at any of known 

ways of a turn of a solid body. Rotation occurs about all three 
axes Ox, Oy, Oz. However, rotary velocities in relation to 
axes of the body-fixed coordinate system Oxyz are not 
constant, and proportions between them are not constants. 
Hence, the spacecraft turn is not planar [2], and it is not 
executed in the form of planar rotation around a motionless 
axis (Euler's axis) [3]. Thus all three angular velocities 

 change dynamically enough. Any of components 

of absolute angular velocity vector ω  have not constant 
character (or at least close to it). Also, rotation of a spacecraft 
is impossible to consider as free motion [4, 5]. Nevertheless, 
at enough long interval of time, a quantity of angular velocity 
ω changes slightly. Quite probably, that motion of vector 
ω possesses some regular properties, but concerning any 
other rectangular coordinate system Om1m2m3, motionless in 
relation to the body-fixed coordinate system Oxyz (or in 
inertial space). If such coordinate system Om1m2m3 exists, 
spacecraft motion around the centre of mass has regular 
character during an investigated time interval between 
acceleration and braking. 

Let there will be such plane m2Om3, the vector projection 
ω on which monotonously turns with some angular velocity 
distinct from zero. If even thus specified angular velocity has 
almost constant value, it is possible to speak about a 
precession of the vector ω and, accordingly, of a spacecraft. 
Direction Om1 which is orthogonal to plane m2Om3 and 
supplementing the system Om1m2m3 to right coordinate 
system, is an axis of own rotation. In this case, the problem 
of determination of characteristics of spacecraft’s true motion 
around the centre of mass is reduced to definition of mutual 
position of rectangular coordinate systems Oxyz and 
Om1m2m3 (for example, matrix of the directing cosines В=

 3×3 for axes Om1, Om2, Om3 with respect to the axes Ox, 

Oy, Oz), to a transfer of vector ω absolute angular velocity 
from the body-fixed coordinate system Oxyz into coordinate 
system Om1m2m3 related with a direction of an axis of own 
rotation Om1 (to vector display ω on axis Om1, Om2, Om3), 
and to a construction of the valid motion ω (t) and the main 

characteristics (t), (t), (t), (t) ≡ω(t) of 
spacecraft’s angular motion using known methods [1, 7, 8]. 

A finding of matrix of the directing cosines is a separate 
independent problem. Let the matrix of transition from the 
coordinate system Oxyz to the coordinate system Om1m2m3 is 
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known: В = 3×3, where  is cosine of a angle between 

positive directions of axes Oi and Omj (i = x, y, z; j = 1, 2, 3). 
Then, a display to axes Om1, Om2, Om3 motion of absolute 
angular velocity vector ω in the course of spacecraft’s turn 
can be received using the expressions: 

 = (j = ). 

In our concrete case, the transition matrix B (the directing 
cosines) is 

В =  

Results of the projections recalculation of the vector ω 

from the related coordinate system Oxyz onto axis of system 
Om1m2m3 are shown in Figure 2. The analysis of the received 
data allows to assume that in this case, at a phase between 
acceleration and a braking of angular velocity, rotation of 
spacecraft is in the form of a precession of solid body. In it 
specifies an approximate constancy of longitudinal angular 
velocity ω1 and minor alteration of size of the transverse 

angular velocity . As pattern model, we can 
accept the following equations: 

sin sin , 

                          (2) 

where  is angular velocity of a precession (around some 

motionless axis η in inertial space),  is angular velocity of 
own rotation (about axis Om1, motionless in the body-fixed 
coordinate system Oxyz),  is the angle of deviation of axis 

Om1 from precession axis η. The values , , and  are 
the slowly-varying parameters (as functions of time). 

Character of spacecraft’s motion around the centre of a mass 

is defined by behaviour of elements ,  and  as time 
functions. Therefore, essentially important authentically and 

precisely to estimate a varying during time of parameters , , 
 in the course of turn. Approximation of the measured values 

of angular velocities by expressions (2) is made by splitting of 
the given time-interval of processing into final number of 

subintervals and by a replacement of variable parameters , , 
 inside everyone subinterval by the constants equal to any 

values of the same parameters inside or at boundary of 
considered subintervals. And, initial process with variable 

parameters , ,  at given final interval of time can be 
approximated by a process with piecewise-constant parameters, 
with any degree of accuracy [6]. 

The recovery problem of programmed motion of multi-

modular spacecraft at the site [tac, tbr] consists in a numerical 

determination of parameters of control algorithm , ,  
(and of constant parameters  also), and decision of the 
system (2), which give a minimum for the functional F (as 
the form (1)), when in the formula (1) ωi

(k) is the measured 
values of the projections of a vector ω onto body-fixed axes 
at time moments t

(k) (t(k) < t
(k+1)); ωj (t(k)) is the values of 

component ωj in the projections of axes of coordinate system 
Om1m2m3 which are computed along the decision of model 
system (2); ωi (t(k)) is the calculation values of angular 
velocities  received from the solution ωj (t(k)) of 

system (2). 
Set of the measurements ωi

(k), t
(k) selected for processing 

and reconstruction of spacecraft motion correspond to for 
time moments which are not overstepping the bounds of time 
interval [tac, tbr]. The components ωi (i = x, y, z) are computed 
using the matrix of the directing cosines “В” and the solution 
of the equations (2) ωj (t) as time functions (j = ). 
Obviously, 

(t) = (t) 

where bij is the elements for matrix В = 3×3 of transition 

from the body-fixed coordinate system Oxyz to coordinate 
system Om1m2m3. 

Use the functional F means the hypothesis acceptance, that 
the measurement errors of component ωi of all vectors ω(t(k)) 
in related coordinate system Oxyz are independent random 
variables with identical standard deviation. 

If the tensor of spacecraft inertia is known, the 
identification problem of angular motion can be facilitated. 
In this case, most likely, it is necessary to study motion with 
respect to the coordinate system related with the principal 
central axes of inertia of multi-modular spacecraft. For this, 
we shall enter the right Cartesian system of coordinates 
On1n2n3 formed by the principal central axes of inertia. Thus, 
axis On1 is a longitudinal axis of a spacecraft, and axis On2 
and On3 are directed so that mismatch angles between them 
and axises of the related coordinate system were minimal. 
For a correct choice of reference model of motion, it is 
necessary to compute preliminary angular velocity vector ω 
in projections to the principal central axes of the ellipsoid of 
inertia On1, On2, On3. For vector representation ω in 
projections to the principal central axes of inertia, we should 
have all three components ωi (i = x, y, z) a vector ω for the 
same moments of time. The missing values ωi of component 

of vector ω for time interval , we receive by interpolation 
of a corresponding set of values. A matrix of transition from 
the body-fixed coordinate system Oxyz to the system On1n2n3 

we will designate A = 3×3, where  is cosine of a angle 

between axises Oi and Onj (i = x, y, z; j = 1, 2, 3). 
If results of recalculation of a vector ω from body-fixed 

coordinate system Oxyz in a projection to axises of system 
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On1n2n3 will show a picture (as variation form) similar to 
those that is studied from Figure 2, then character of change 
of angular rates ω1, ω2, ω3 in projections to the principal 
central axes of the ellipsoid of inertia On1n2n3 that motion of 
a multi-modular spacecraft around the centre of mass 
occurred as the precession of solid body; and we can apply 
the way considered above where instead of system Om1m2m3 
it is necessary to take On1n2n3, and matrix B = A ( = ). 

Some constancy of longitudinal making angular velocity ω1 
on the one hand and variation of transverse angular velocities 
ω2 and ω3 on close by the form to harmonious functions of a 
time, on the other hand, specify in presence of regular 
properties, characteristic for motion in a form precession of 
solid body around some direction, motionless with respect to 
inertial space. Spacecraft rotates simultaneously around some 
motionless axis η is inclined to longitudinal axis On1 by the 
rated angle ϑ, and around longitudinal axis On1 with angular 

velocities of precession  and own rotation  accordingly. 
For such type of motion, equations (2) in which parameters 

, , and ϑ are slowly-varying functions of time are fair. 
Rotation of multi-modular spacecraft can be described by 

mathematical model in the form of dependences (2), in which 
variables ωj (j = 1, 2, 3) are projections of angular-velocity 
vector ω onto axises of system On1n2n3 (On1n2n3  is 
coordinate system related with principal central axes of 
spacecraft inertia). The description of spacecraft motion is 
probably and in angular velocities ωi (i = x, y, z), being 
projections of a vector ωрr of programmed absolute angular 
velocity onto axises of the body-fixed coordinate system 
Oxyz (we have this possibility). For this purpose, it is 
necessary for function ω1 (t), ω2 (t), ω3 (t) which are the 
solution of the equations (2), to transform in functions ωx (t), 
ωy (t), ωz (t) using the matrix of the directing cosines 
between axises of coordinate systems Oxyz and On1n2n3. 

In this case, determination of spacecraft’s rotary motion 
for the segment [tac, tbr] consists in a finding of such 
parameters of motion model (the pattern model) and 
solutions of the equations (2), which allow to coordinate in 
the best way, in a sense of a method of the least squares, the 
measured (counted under onboard information) and 
calculated values of components ωi (i = x, y, z); here tac is the 
time of a termination of acceleration stage; tbr is the time of 
the beginning of braking stage. 

4. Results of a Solving the Problem 

of Reconstruction of Analytical 

Functions 

Let us take for the analysis, processing and solution of the 
identification problem the turn presented at Figure 1. We 
accept, tB is the moment of maneuver beginning, and tE is the 
moment of maneuver ending. Interval from t = tB to t = tE 
represents a interest. We notice, that all time interval [tB, tE] 
can be broken into three basic phases: a increase of angular 
rate (an acceleration), a decrease of angular rate (a braking), 

and an interval between acceleration and braking. It is clearly 
visible from Figure 1. For the moments of time 
corresponding to stages of increase and decrease of angular 
rate, a linear interpolation is sufficient. At time interval 
between the specified stages the number of measurements is 
not great, owing to this a interpolation was carried out by the 
polynomials. 

Feature of the turn chosen for research is the seeming at 
first sight unregularity of angular motion. However such 
behaviour of angular velocities easily to explain and to 
understand, if we will consider that axes of sensitivity of 
measuring instruments of angular velocity do not coincide 
with the principal central axes of the ellipsoid of spacecraft 
inertia. 

For definition of true character of spacecraft motion, it is 
necessary to check up presence of regular properties of 
rotation during time interval between acceleration (increase 
of angular rate) and a braking (decrease of angular rate). In 
particular, we will ask a question: whether there is a direction, 
motionless in the related coordinate system with respect to 
which the vector of absolute angular velocity ω is rotated 
with almost constant angular velocity? If yes, it makes sense 
to determinate and investigate more in detail motion of the 
vector ω in new coordinate system Om1m2m3 which axises 
are directed as follows: axis Om1 coincides with the specified 
direction, around which a vector ω does precession; axes 
Om2 and Om3 are in a plane which is perpendicular to axis 
Om1; they supplement system Om1m2m3 to right coordinate 
system and are located so that the angle of final turn between 
the coordinate systems Oxyz and Om1m2m3 was minimal. 

In example shown by Figure 1, the motionless axis around 
which the vector of absolute angular velocity ω  does 
precession exists. We take the mathematical model (2) as the 
pattern model (for use the method of trained models [6]). 
Pattern model in the form of dependences (2), where 
variables ωj are projections of a vector of angular velocity ω 
onto axes of system Om1m2m3 (j = 1, 2, 3), is closest to real 
process. After recalculation we have data about the vector 
ω as projections onto axis of system Om1m2m3 in the form 
demonstrated at Figure 2. 

Programmed spacecraft motion is described by the 
variables ωi (i = x, y, z), which are translated from the 
functions ω1 (t), ω2 (t), ω3 (t), being the solutions of the 
equations (2), in functions ωx (t), ωy (t), ωz (t) using the 
matrix of the directing cosines between axises of coordinate 
systems Oxyz and On1n2n3. Resulting functions for this 
concrete example of spacecraft turn are shown in the Figure 
3. A construction of approximation of spacecraft’s actual 
motion with respect to center of mass at the segment [tac, tbr] 
consists in a finding of parameters , ,  and the 
solution of the system (2), delivering a minimum of the 
functional 
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The use of the functional Φ fairly because in our case (for 
our concrete sensors of angular velocity) the measurement 
errors of components of all vectors ω (t (k)) in the system 
Oxyz are independent random variables with zero average 
value and an identical standard deviation. If systematic error 
of measurements of component ωi is distinct from zero then 
we include it into the approximating function (t) as one 
more unknown constant parameter. 

Earlier we has shown that is better to describe the motion 
of rigid body as simultaneous rotation about some motionless 
axis in the inertial space, making with a longitudinal axis of a 
spacecraft a calculated angle ϑ, and about longitudinal axis 
of a spacecraft with some angular velocities of precession  

and of own rotation  (such type of motion is described by 
the analytical model (2)). For this case of realization of a 
programmed turn, we had following indicators of angular 

motion: = −0.03933 deg/s, = 0.1769 deg/s, ω= 0.5518 
deg/s. Turn angle has made α = 158.5 degrees. Thus, 

received values , ,  are equal to nominal values of 
parameters of control law of a turn. Key problem is the 
constructing the functions ϑ (t) and ϕ (t) with minimal 
discrepancies between the reconstructed functions ωx (t), ωy 

(t), ωz (t) and the measurements  in discrete moment of 

time . Nominal value of nutation angle (its estimation): ϑ 
= 118.6 degree. If to accept the sought function ϕ (t) in the 
form of polynomial dependence, for example, ϕ (t) = ϕ0 + ϕ1 
t + ϕ2 t

2 + ϕ3 t
3, required values of approximation coefficients 

will turn out the following: 

= −38.56 degree, = −0.03933 deg/s, ≈ −3⋅10 −7 
deg/s2, = 0.000 deg/s3 

Actual values of the elements , , ,  during the 
turn of an orbital spacecraft are practically constant (  is 
modulus of angular velocity). Presence of insignificant 
deviations from their nominal values points out that control 
system is not ideal. It is considered to be, a measure of 
inconstancy of the estimated parameter Р is a relative 
deviation δР from its average value . Degree of a 

constancy of the parameters , ,  is defined by the 
standard technical norms: δР ≤ 0,05, where δР − the 
maximum relative deviation of parameter Р from the set of a 
rating values. A constant value, satisfying to an inequality, is 
considered: 

Pmax – Pmin ≤ 0,05│Pmax + Pmin│ 

where Pmin = min P (t), and Pmax = max P (t) are the 
minimum and maximum values of parameter P. 

In the accepted designations, we have following indicators 
of realization quality of control method of turn (they is 
received by results of processing of the available 
measurements): 

δ  = 0.030, δ  = 0.005, δ  = 0.028 

As criterion of reliability of identification of spacecraft’s 
motion type in the form of the precession of solid body 
around some motionless direction in space η with constant 

angular velocities  and  we accept conditions: 

, ,  inside the time interval 

with duration tnom, under condition , 

where tnom is supervision time; T is general time of a turn; τ ac 
is the duration of acceleration phase; τ br is the duration of 
braking phase. 

Programmed motion ωpr (t) restored after the solution of 
the identification problem of angular motion has a form: 

1
0

2
0

3

( ) 0.03933 0.1769cos ( ),

( ) 0.1769sin ( )sin( 0.03933 38.56 ),

( ) 0.1769sin ( )cos( 0.03933 38.56 )

t t

t t t

t t t

ω ϑ

ω ϑ

ω ϑ

= − +

= − −

= − −

      (3) 

Returnable recalculation of the vector ωpr from the 
coordinate system Om1m2m3 into body-fixed coordinate 
system Oxyz will give the required functions  which 

reflect programmed motion of spacecraft during a turn. The 
Figure 3 gives visual representation of results of 
reconstruction of calculated motion of spacecraft at the phase 
of nominal rotation. Continuous lines correspond to 
spacecraft motion by the method [9] (they correspond to 
analytical model (2)); the markers correspond to direct 
measurements of angular velocities . The given 

figure demonstrates that the consent of the measured values 
with a modeled variation of parameters of rotary motion is 
high enough. Root-mean-square deviations (as approximation 
errors) have turned out equal to: 

x = 0.0006 deg/s, y = 0.0018 deg/s, z = 0.0023 deg/s. 

The resulted estimates x, y, z include measurement 
errors and errors of control (including the execution errors of 
control commands). Taking into account that an admissible 
error of attitude system ∆ω = 0.007 deg/s, we receive 
acknowledgement of the accepted law of motion: 

3 < ∆ω 
As result, analytical form of the reconstructed functions 

 is 

= 0.698847533 ω1 (t) – 0.2198905795 ω2 (t) + 
0.6806322492 ω3 (t) 

= 0.3087457564 ω1 (t) + 0.9510947314 ω2 (t) 

= −0.6473457462 ω1 (t) + 0.2101423186 ω2 (t) + 
0.73256049 ω3 (t) 
where ω1 (t), ω2 (t), ω3 (t) are computed by the equations (3), 
and ϑ (t) is constructed by formula 
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with use the interpolating functions for variables ω1, ω2, ω3 
which are calculated taking into account the transition matrix 
B and the interpolating polynomials for  (for the 

set of the measurements , ). 
Oscillatory character of the constructed functions ωi near 

their programmed values is caused by inconstancy, in 
particular, fluctuations of parameter ϑ which are caused by 
errors of execution of control commands and by nonlinearity 
of actuators of spacecraft's attitude system. The range of 

change of key parameters , , ω is insignificant, and we 
can conclude about their insignificant fluctuations which can 
be neglected. 

We have considered the dynamics of turns of the multi-

modular spacecraft which moments of inertia are not known 
precisely, and we have investigated a character of its motion. 
Data processing of onboard measurements was executed by a 
method of trained models [6]. As a result of processing of the 
information on angular motion of multi-modular spacecraft, 
actual motion around the centre of mass in the course of a 
three-dimensional turn is reconstructed. The presented 
processing results of data about angular velocities of 
spacecraft allow to conclude that its reorientation has been 
made in the form of solid-body precession at which the 

angular velocities ,  are constant, and the angle of 
nutation ϑ varies slightly. Actually takes place nearly-regular 
precession of multi-modular spacecraft as solid body. 

 

Figure 1. Angular velocities of multi-modular spacecraft. 

 

Figure 2. Result of recalculation of angular velocities. 
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Figure 3. Result of identification and approximation. 

5. Conclusions 

In this article, the methods of mathematical analysis and its 
numerical methods are used for describing the controlled 
motion of rigid body (in particular, rotation of multi-modular 
spacecraft) in analytical form using results of measurements. 
The study of rotary motion of rigid body by methods of 
mathematical analysis has allowed to solve two primary 
tasks: a) restoration of nominal motion of angular-velocity 
vector formed according to a law realized by a control 
system; b) identification of control mode of spacecraft turn. 
Not less important problem consisting in a definition of 
numerical values of parameters of control algorithm of an 
orbital spacecraft in the regime of the spatial turn, defining a 
steered (a targeted) motion, has been in passing solved. For 
finding the analytical functions which describe motion of 
rigid body about centre of mass, the method of trained 
models is used. 

Results of processing of the measuring information about 
parameters of angular motion on turns of multi-modular 
spacecraft are adduced. The development of a method of 
trained models has allowed to reconstruct programmed 
motion of multi-modular spacecraft in a regime of a spatial 
turn and authentically to identify a method by which the turn 
was carried out. Results of mathematical processing of 
onboard measurements convincingly show that the 
perspective method [9] has been used for turns. Is better to 
describe spacecraft motion inside main site of a turn 
(between a acceleration and a braking) as simultaneous 
rotation about some motionless axis in the inertial space, 
making with a longitudinal axis of a spacecraft a calculated 
angle ϑ, and about longitudinal axis of a spacecraft with 
quasi-constant angular rates of precession  and of own 
rotation . Control of a turn of orbital spacecraft was carried 

out by jet engines of orientation (as attitude control means) 
which operate in an impulse regime. Because of it occurrence 
of errors of working off by a control system of programmed 
angular velocities is inevitable. Estimations show that 
deviations of actual angular rates from their calculated values 
caused by nonlinearity of actuators can reach 0.005 − 0.01 
deg/s for orbital station. For this reason, all deviations 
between the reconstructed functions of angular velocities and 
their measured values, not exceeding this size, can be fairly 
carried to errors of execution by attitude system of operating 
commands. Comparison of the analysis results of processes 
of orbital spacecraft turn leads to a conclusion that control of 
spacecraft reorientation was executed with necessary 
accuracy. High-precision reconstruction of controlled motion 
of a spacecraft allows to make identification of attitude 
system with the big reliability. Exact determination of 
numerical values of parameters of control algorithm of 
programmed turn of difficult spacecrafts is important for the 
practice. 

The methods of attitude control which use rotation of solid 
body in the form of Euler-Poinsot motion are known [10]. 
Results of made research are important for investigation of 
this rotations, and the chosen model (2) is ideal for 
description of angular velocity functions when two moment 
of inertia have equal value (or they are close). Notice, 
optimal rotation obtained in the work [11] corresponds to the 
model (2) if , , and  are constant. Also, the solution 
described in [12] satisfies the model (2) if two coefficients of 
the optimized functional are equal. This fact specifies 
significance of solved problem and topicality of it. 

Note, the data which were obtained as result of 
reconstruction of continuous functions under discrete 
measurements by mathematical instruments, described in this 
article, was used in official reports of Korolev Rocket Space 
Corporation on analysis of onboard control system of 

ɺψ
ɺφ

ɺφ ɺψ ϑ
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spacecraft motion (including multi-modular orbital station). 
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