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Abstract: The fractional q-calculus is the q-extension of the ordinary fractional calculus and dates back to early 20-th 

century. The theory of q-calculus operators are used in various areas of science such as ordinary fractional calculus, optimal 

control, q-difference and q-integral equations, and also in the geometric function theory of complex analysis. In this article, for 

the first time, we apply certain q-calculus operators to complex harmonic functions and obtain sharp coefficient bounds, 

distortion theorems and covering results. 
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1. Introduction 

The theory of q-calculus operators are used in describing 

and solving various problems in applied science such as 

ordinary fractional calculus, optimal control, q-difference and 

q-integral equations, as well as geometric function theory of 

complex analysis. The fractional q-calculus is the q-extension 

of the ordinary fractional calculus and dates back to early 20-

th century (e.g. see [1] or [2]). For 0 < q < 1 and for positive 

integers n, the q-integer number n, denoted by ���� , is 

defined as 

����=
����
��� � ∑ 
�.�����  

Using the differential calculus, one can easily verify that 

lim���⁻���� � �. 
Let A denote the class of functions that are analytic in the 

open unit disc D:={ z � C: |z| < 1} and let �� be the subclass 

of A consisting of functions h with the normalization 

h(0)=h’(0)-1=0. The q-difference operator of q-calculus 

operated on the function h (e.g. see [3], [4], [5], [6], [7]) is 

defined by 

������ � ����������
������                          (1) 

where 

lim���⁻������ � �����. 
A successive application of the q-difference operator of q-

calculus as defined in (1) yields to what we call Salagean q-

differential operator. Therefore, for functions h �  A of the 

form 

���� � �  ∑ !�"�#                         (2) 

the Salagean q-differential operator of h, denoted by 

$�%����, is defined by 

$��h(z)=h(z),$������ � ������� � ����������
��� , …, 

$�%���� � ���$�%������ � ���� ( ��  ∑ ����%�� �"�#
�  ∑ ����%!� ,"�#                             (3) 

where m is a positive integer and the operator * stands for the 

Hadamard product or convolution of two analytic power 

series. 

The operator $�% is called Salagean q-differential operator 

because 

lim���⁻$�
%���� � �  )�%!�

"

�#
 

which is the famous Salagean operator [8]. 

It is the aim of this article to define the q-difference 
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operator of q-calculus operated on the complex functions that 

are harmonic in D and obtain sharp coefficient bounds, 

distortion theorems and covering results. To the best of our 

knowledge, no such application has yet been published and 

the results presented here are new in their own kind. To this 

end, we consider the family of complex-valued harmonic 

functions f=u+iv defined in D, where u and v are real 

harmonic in D. Such functions can be expressed as f=h+ g ), 

where h � ��  is given by (2) and g � A has the following 

power series expansion 

+��� � ∑ ,�; |,�| < 1,"��                      (4) 

Clunie and Sheil-Small in a remarkable paper [9] explored 

the functions of the form 1 = ℎ + g  that are locally one-to-

one, sense-preserving and harmonic in D. By Lewy's 

Theorem (see [9] or [10]), a necessary and sufficient 

condition for the harmonic function f=h+ g ), to be locally 

one-to-one and orientation-preserving in D is that its 

Jacobian 23 = |ℎ4|# − |+4|# is positive or equivalently, if and 

only if h’(z) is non-vanishing in D and the second complex 

dilatation ω of f satisfies |ω|=|g’/h’|<1 in D. 

We define the Salagean q-differential operator of harmonic 

functions f=h+ g ), by 

$�%f�z� = $�%ℎ��� + �−1�%$�%+���8888888888         (5) 

where $�% is defined by (3) and h and g are of the form (2) 

and (4), respectively. 

For 0 ≤ ∝ < 1 let :�%�∝� denote the family of harmonic 

functions f=h+ g ) so that 

;< =>?@AB3���
>?@3��� C  ≥ ∝,                          (6) 

Where $�%1��� is defined by (5). 

We further denote by :�%88888�∝  the subclass of :�%�∝ ) 

consisting of harmonic functions f=h+ g ) so that h and g are 

of the form 

ℎ��� = � − ∑ !� , +��� = ∑ ,� , ! ≥ 0, , ≥ 0."��"�#   

2. Main Results 

In the following theorem we shall determine coefficient 

bounds for harmonic functions in :�%�∝) and :�%88888(ᾳ). 

Theorem 1. For 0 ≤ ∝ < 1 and f=h+ g ) let 

∑ ����%G����−∝H|!| +"�# ∑ ����%G����+∝H|!| ≤ 1−∝"��  

   (7) 

Where h and g are, respectively, given by (2) and (4). Then 

i) f is harmonic univalent in D and 1 ∈ :�%�∝�  if the 

inequality (7) holds. 

ii) f is harmonic univalent in D and 1 ∈ :�%88888 (∝) if and only 

if the inequality (7) holds. 

The equality in (7) occurs for harmonic functions 

f�z� = z + ∑ ��∝
��?@���?�∝� J� + ∑ ��∝

��?@���?K∝� L�"��888888888888888888888888888"�#   

where ∑ |J| + ∑ |L|"�� = 1"�# . 

As special cases of Theorem 1, we obtain the following two corollaries. 

Corollary 2. For m=0, Theorem 1 yields the results obtained by the author in ([11], Theorems 1 and 2). This can be easily 

verified since 

$��f�z� = $��ℎ��� + �−1��$��+���8888888888 = ℎ��� + +���888888  

Corollary 3. For 
 → 1�, Theorem 1 yields the results obtained in ([12], Theorems 1 and 2) since 

limM→�N $�%f�z� = limM→�N{$�%h�z� + �−1�%$�%+���8888888888} = z + ∑ �%!� + �−1�% ∑ �%!�"��88888888888888888"�#   

In the next theorem we determine the extreme points of the closed convex hull of :�%88888 (∝) denoted by clco :�%88888 (∝). 

Theorem 4. 1 ∈ RSRT :�%88888 (∝) if and only if 

f�z� = ∑ �Uℎ��� + V+���8888888888�"��   

ℎ���� = �,  
ℎ��� = � − ��∝

��?@G��?�∝H �; �� = 2,3, … �,  
+��� = � + �−1�% ��∝

��?@G��?K∝H �; �� = 1,2,3, … �,  
∑ �U + V� = 1, U ≥ 0, V ≥ 0."��                                                                      (8) 

  



 International Journal of Mathematical Analysis and Applications 2018; 5(2): 39-43 41 

 

In particular, the extreme points of :�%88888 (∝) are {ℎ} and 

{+}.  

Finally, we give the following distortion bounds which 

yields a covering result for :�%88888 (∝). 

Theorem 5. If 1 ∈ :�%88888 (∝), then for |z| = r < 1 we have the 

distortion bounds 

�1 − ,��Y − �
�#�?@ = ��∝

�#�?�∝ − �K∝
�#�?�∝ ,�C Y# ≤ |1���|  

and 

|1���| ≤ �1 + ,��Y + �[#]?@ = ��∝[#]?�∝ − �K∝[#]?�∝ ,�C Y#.  
As a consequence of Theorem 5, we obtain the following 

corollary. 

Corollary 6. If 1 ∈ :�%88888 (∝), then 

Z[: |[| < [#]?@AB���G[#]?@��H∝[#]?@�[#]?�∝� =1 − [#]?�∝[#]?K∝C] ⊂ 1�$�.  
Remark 7. The above Theorems 4 and 5 and Corollary 6 

for m=0 yield the results obtained by the author in [11] and 

for 
 → 1� yield the results in [12]. 

3. Proofs 

Proof of Theorem 1. 

Proof of Part (i): First we need to show that f=h+ g ) is 

locally univalent and orientation-preserving in D. It suffices 

to show that the second complex dilatation ω of f satisfies | ω 

|=|g’/h’|<1 in D. This is the case since for � = Y<_` ∈ $ we 

have 

|ℎ′��� ≥ 1 − ) �|!|Y�� > 1 − ) �|!| ≥ 1 − ) [�]�%�[�]�−∝�1−∝ |!|"
�#

"
�#

"
�#  

≥ ) [�]�%G[�]�+∝H1−∝
"

�� |,| ≥ ) �|,| ≥ ) �|,|Y��"
��

"
�� ≥ |+4���|. 

To show that f=h+ g ) is univalent in D we use an argument that is due to author ([11], Proof of Theorem 1). Suppose �� 

and �# are in D so that �� ≠ �#. Since D is simply connected and convex, we have ��c� = �1 − c��� + c�# ∈ $ for 0 ≤ c ≤ 1. 

Then for �# − �� ≠ 0 we can write 

;< 1��#� − 1�����# − �� = d ;< eℎ4G��c�H +⎺�# −⎺���# − �� g'�z�t�� h�
� ic > d j;<ℎ4G��c�H − |+4G��c�H|kic.�

�  

On the other hand, we observe that 

;<ℎ4��� − |+4���| ≥ ;<ℎ4��� − ) �|,| ≥ 1 − ) �|!| − ) �|,|"
��

"
�#

"
��  

≥ 1 − ) [�]�%�[�]�−∝�1−∝ |!| − ) [�]�%�[�]�+∝�1−∝ |,| ≥ 0."
��

"
�#  

Therefore, f=h+ g ) is univalent in D. It remains to show that the inequality (6) holds if the coefficients of the univalent 

harmonic function f=h+ g ) satisfy the condition (7). In other words, for 0 ≤ ∝ ≤ 1, we need to show that 

;< l$�%K�1���$�%1��� m = ;< n$�%K�ℎ��� + �−1�%K�$�%K� g�z�
$�%ℎ��� + �−1�%$�% g�z� o ≥ ∝. 

Using the fact that ;<�[� ≥ ∝ if and only if |1−∝ +[| ≥  |1+∝ −[|, it suffices to show that $�%K�1��� + �1−∝�$�%1���p−$�%K�1��� − �1+∝�$�%1���p ≥ 0.                                            (9) 

Substituting for $�%1��� = z + ∑ [�]�%!� + �−1�% ∑ [�]�%,�"��8888888888888888888"�#   

and 
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$�%K�1��� = z + ) [�]�%K�!� + �−1�%K� ) [�]�%K�,�"
��

88888888888888888888888"
�#  

in the left hand side of the inequality (9) we obtain $�%K�1��� + �1−∝�$�%1���p−$�%K�1��� − �1+∝�$�%1���p  
≥ 2�1−∝�|�| q1 − ∑ ��?@G��?�∝H

��∝ |!||�|�� −"�# ∑ ��?@G��?K∝H
��∝ |,||�|��"�� r  

≥ 2�1−∝�|�| q1 − ∑ ��?@G��?�∝H
��∝ |!| −"�# ∑ ��?@G��?K∝H

��∝ |,|"�� r.  
This last expression is non-negative by (7), and so the proof is complete. 

Proof of Part (ii): Since :�%88888 (∝) is a subset of :�%�∝), we only need to prove the "only if" part of the theorem. Let 1 ∈ :�%88888 

(∝). Then by the required condition (6) we must have 

;< Z���∝���∑ ��?@G��?�∝Hs��������t@u�vt ∑ ��?@u�vB ���?K∝�w� ͞��
��∑ ��?@s���K����t@u�vt ∑ ��?@u�vB w� ͞�� ] ≥ 0.  

This must hold for all values of z in D. So, upon choosing the values of z on the positive real axis where 0 ≤ � = Y < 1, we 

must have 

��∝� ∑ ��?@G��?�∝Hs�y�NB�u�vt ∑ ��?@u�vB ���?K∝�w�y�NB
��∑ ��?@s�y�NBKu�vt ∑ ��?@u�vB w�y�NB  ≥ 0.                                                     (10) 

If the condition (7) does not hold, then the numerator in (10) is negative for r sufficiently close to 1. Hence there exists �� = Y� in (0,1) for which the left hand side of the inequality (10) is negative. This contradicts the required condition that 1 ∈ :�%88888 (∝) and so the proof is complete. 

Proof of Theorem 4. For the functions of the form (8) we have 

1��� = ∑ �U + V�� − ∑ ��∝
��?@���?�∝� U� + �−1�% ∑ ��∝

��?@���?K∝� V ͞�"��"�#"�� .  
This yields 

∑ ��?@���?�∝�
��∝ ! +"�# ∑ ��?@���?K∝�

��∝ , = ∑ U + ∑ V = 1 − U�  ≤ 1"��"�#"��   

and so 1 ∈ RSRT :�%88888 (∝). Conversely, let 1 ∈ RSRT :�%88888 (∝). Then by setting 

U = ��?@���?�∝�
��∝ !; �� = 2,3, … �,  

V = ��?@���?K∝�
��∝ ,; �� = 1,2,3, … �,  

where ∑ �U + V� = 1"��  we obtain the functions of the form (8) as required. 

Proof of Theorem 5. We shall only prove the right hand inequality in Theorem 5. The proof for the left hand inequality is 

similar and will be omitted. Let 1 ∈ :�%88888 (∝). Taking the absolute value of f we obtain 

|1���| ≤ �1 + ,��Y + ∑ �! + ,�Y"�#   

≤ �1 + ,��Y + ∑ �! + ,�Y#"�#   

≤ �1 + ,��Y + ��∝
�#�?@G�#�?�∝H ∑ z�#�?@G�#�?�∝H

��∝ ! + �#�?@G�#�?K∝H
��∝ ,{ Y#"�#   

≤ �1 + ,��Y + 1−∝
�2��%�2−∝� ) l�2��%G����−∝H

1−∝ ! + �2��%G����+∝H
1−∝ ,m Y#

"

�#
 

≤ �1 + ,��Y + 1−∝
�2��%G�2��−∝H ) =1 − 1+∝

1−∝ ,�C Y#
"

�#
 

≤ �1 + ,��Y + 1
�2��% ) l 1−∝

�2��−∝ − 1+∝
�2��−∝ ,�m Y#.

"

�#
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4. Conclusion 

The theory of q-calculus has been applied to many areas of 

mathematics and physics such as fractional calculus and 

quantum physics. But research on q-calculus in connection 

with function theory and especially harmonic univalent 

functions is fairly new and not much is published on this 

topic. Finding sharp coefficient bounds for harmonic 

univalent functions defined by q-calculus operators is of 

particular importance since any information can throw light 

on the study of the geometric properties of such functions. To 

date, not much is known about the coefficients of the entire 

class of harmonic univalent functions. Using a technique due 

to the author published in the Journal of Mathematical 

Analysis and Applications (1999), sharp coefficient bounds 

and related extremal functions for certain classes of harmonic 

univalent functions defined by q-calculus operators are 

determined. It is hoped that this can inspire further research 

by other investigators on this topic. 
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