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Abstract: Recruitment and sustainability for fish population are renewable natural resources, if correctly managed. The 

basic purpose of fish recruitment and sustainability is to provide advice on the optimum exploitation level of aquatic living 

resources such as fish. We formulate a mathematical model for recruitment and developmental sustainability of fish population 

in the pond by modifying growth model of Verhuls where we incorporate catch equation of Baranov as a function of time in the 

model. Runge-Kutta scheme of fourth order was used to solve the modified model. Furthermore, we collected data from 

Federal University Wukari fish pond to validate our modified model. We coded the Runge-Kutta scheme for our modified 

model by using Octave programming language, results are shown on Table 2 and figure 1, 2, 3, 4 and 5. It was observed that at 

P=1, P=20, P=100 and P=300 the fish recruited started increasing from 1st month to 5th month and at 6th month the fish 

population decrease equally because at 6th month fishes are expected to be harvested and top up. The result show that fish 

population recruited started increasing from first month to fifth month of recruitment and started decreasing equally at sixth 

month. We conclude that fish reach its maturity age at fifth month and our modified model can be use to predict expected fish 

population recruitment and sustainability from its initial recruitments. 
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1. Introduction 

Ecological communities are made up of a vast profusion of 

living things from trees to micro organism. Each species 

differs from every other. Furthermore, individuals within any 

one species are unique. Several factors that are known to 

affect the behaviour of each individual include genetic 

constitution, age, unpredictable changes of life up to that 

moment, and the prevailing conditions in the locality at the 

moment. There are many other influences that affect the 

individual’ physiological processes. A community as a whole 

is being depleted by deaths and replenished by births. Often, 

immigration and emigration are other causes of continual 

turnover of individuals. As a result, the components of a 

community are never the same on two successive occasions. 

Past experience has shown that in the absence of outside 

disturbance most communities either remain in a steady state 

for long periods or pass through an orderly progression of 

successive stages that culminates in a steady state. 

Fish is an important resources both as food (source of 

protein) and as a source of income to the family units and 

foreign exchange to the country. Fish stocks are renewable 

resources if correctly handled. If all mature fish are caught 

before spawning, then there will be no recruitment. 

Therefore, there should be sufficient numbers of mature fish 

in the stock at each time. The problem is to find the 

appropriate middle ground where it is possible to obtain good 

catches for a long time. It is necessary to estimate the size 

and productivity of fish, it is necessary to have measurement 

which relate to the stock size in some way. It is rarely 

possible to count the abundance of a marine species, yet it is 
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known that measurements are made of quantities which are 

only indirectly related to the stock size. 

Due to the profound differences in ecological systems, 

mathematical modelling has been found to play a key role. In 

an effort to determine the processes that permits maintenance 

of a steady state or the gradual orderly succession of states 

and the cause and consequences of sudden departures from 

steadiness, ecologists have found the need to employ 

mathematical models. Population modelling is a relatively 

old field just as the study of ecology is ([2, 3]). Some of the 

earlier works on population modelling include [4] who 

developed a mathematical model of the USA population. 

Later [5] independently applied mathematical models in 

problems of variations and fluctuation in the number of 

individuals and species of fish in Adriatic Sea. The results of 

these two works form the backbone of the modern 

deterministic models. In the 1930s Alexander Nicholson and 

victor Bailey developed a model to describe the population 

dynamics of a coupled predator-prey system. The model 

assumes that predators search for prey at random, and that 

both predators and prey are assumed to be distributed in a 

non-contiguous ("clumped") fashion in the environment. 

In the late 1980s, a credible, simple alternative to the 

Lotka-Volterra predator-prey model emerged and the ratio 

dependent or Arditi-Ginzburg model. The two are the 

extremes of the spectrum of predator interference models. 

According to the authors of the alternative view, the data 

show that true interactions in nature are so far from the 

Lotka-Volterra extreme on the interference spectrum that the 

model can simply be discounted as wrong. They are much 

closer to the ratio dependent extreme, so if a simple model is 

needed one can use the Arditi-Ginzburg model as the first 

approximation. 

The first principle of population dynamics is widely 

regarded as the exponential law of Malthus, as modelled by 

the Malthusian growth model. The early period was 

dominated by demographic studies such as the work of 

Benjamin Gompertz and Pierre François Verhulst in the early 

19th century, who refined and adjusted the Malthusian 

demographic model. A more general model formulation was 

proposed by F. J. Richards in 1959, by which the models of 

Gompertz, Verhulst and also Ludwig von Bertalanffy are 

covered as special cases of the general formulation. 

Most of the earlier models were deterministic non-linear 

representation of the population processes. [6]pointed out 

that the logistic equation of limited growth, the second most 

fundamental aspect of population dynamics, was first derived 

by [7]introduced the concept of limited population growth 

which have population been referred to as the logistic law 

[8]. Kolmogorov demonstrated the use of ordinary 

differential equation on single species interaction, but was 

also improved later by [9, 10], and [11] to include numerous 

species and interaction factors. 

Runge-Kutta method population models was developed by 

two German men Carl Runge (1856 ‒ 1927), and Martin 

kutta (1867 ‒ 1944) in 1901. Carl Runge developed 

numerical method for solving differential equation that arose 

in his study of atomic spectra. In numerical analysis, the 

runge-Kutta methods are a family of implicit and explicit 

iteration methods, which includes the well-known routine 

called the Eulermethod, use in temporal discretization for the 

approximate solution of ordinary differential equation. 

Matrix population have had application in population 

modelling as in [12] who introduced stages of development 

of a species in the model. Runge-Kutta models have also 

been applied in harvesting problems, and also are applied on 

formulation of optimal harvesting policies. [13] found out 

that the stage structured models are more precise than the age 

based in capturing the important demographic characteristic 

and providing insights into a certain dynamical properties of 

a population that cannot be reveal. Stochastic models have 

also been used by various modellers to describe complex 

dynamics in ecological systems. [14] used stochastic model 

to compare patterns of density dependence and relative 

contribution of intrinsic versus extrinsic sources of variability 

to population dynamics. [15] and [16] showed that if two 

population are started at initial densities the smallest fraction 

apart, and if the sequence of stochastic events affecting the 

two populations is the same, then the two population will 

diverge through time if the dynamics are chaotic. Fisheries 

modelling have tended to develop independently from 

general population modelling ([17, 18]). Fish have a highly 

plastic growth and span a wide range of sizes over a single 

age and or stage. [19] have shown that the age estimation in 

fish is relatively easier than other aspects of fish. This is the 

reason why age structured models of fish are sometimes 

preferred to stage structured ones. But, [20] show that size 

dependent interaction provides a unifying framework for 

understanding mechanisms governing survival and 

recruitment in fishes. 

The [21] age structured model only proved useful to 

species with distinct ages like mammals and birds, but such 

models have been shown to demonstrate less robustness 

when applied to species like fish and insect that produce 

large number of offspring and experience low survival rates 

during their early life history. [22] noted that it is extremely 

difficult to precisely fish mortality in the early life history 

stages while [23] developed elaborate models of fish habitat 

choice involving trade‒ offs of predation risk and growth in 

various habitat. A multi structured fishery model comprising 

of age and phase (or size) of population species would, then, 

be more appropriate. [24] applied the Leslie age structured 

population matrix on fish population and derived the 

parameters of the model for application in optimal fish 

harvesting. 

Most of the cited works above are mainly deterministic in 

nature and therefore does not incorporate variability in key 

population parameters such as carrying capacity or natural 

mortality. The approach used in these methods for parameter 

has used classical likelihood-based mathematical theory. The 

problem of computing likelihood function requires high 

dimensional integration because it is necessary to integrate 

over the unobserved process errors [25]. [26] have 

considered both autonomous and non autonomous population 
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models and establish that steady harvesting is for all time 

superior to reckless harvesting even though reckless 

harvesting can sometimes do as good as steady harvesting. 

Base on [29], steady harvesting is where a fixed number of 

fish were removed each year, while periodic harvesting is 

usually thought of as a sequence of intermittent closure and 

openings of different fishing grounds. Advocates of 

inhabitants harvesting have pointed out that constant 

populations of deer, fish, and other game animals, harvesting 

can be used to decrease the quantity of animals that 

needlessly die from hunger or other normal causes. On the 

other hand, free harvesting can lead inhabitants to the point 

of extinction, as is evidenced by well-known examples such 

as the North American Bison (Bison bison) and some 

populations of whales. Harvesting policy has been used to 

calminhabitants in surroundings with restricted resources or 

carrying capacity. According to [30], harvesting tactic that 

optimizes the entire acceptable harvest as maintaining the 

steady population of tilapia fish is logistic periodic (seasonal) 

harvesting tactic. A harvesting tactic using logistic periodic 

(seasonal) harvesting tactic can be used to get better 

productivity, cut down investment return time and decrease 

risk from changes in sale price of tilapia fish and expenses of 

productions of tilapia fish, mainly when relatively short 

return periods are used. The maturity of fish harvesting tactic 

probably can supply the market demand all through the year. 

It also can get better the commercial return to farmers before 

harvesting. The study help in raising the fish such as tilapia 

fishin freshwater ponds for the farmer just like any other 

agricultural activity. Base on [1], model results, maintenance 

of fish health and feed adaptation will need that the 

withholding time for each batch be 10 days since for the first 

10 days, temperature and DO which are the mainly 

significant factors are still within the necessary ranges for 

fish survival. 

But linearity and normality greatly restrict the realism and 

general applicability of the state-space model methodology. 

One way out of this problem would be to use penalized 

likelihood where process errors are treated as fixed 

parameters to be known. But this approach also has a 

problem in that using penalized likelihood to fit generalized 

linear models makes the estimates of fixed effects 

inconsistent when there are limited data per random effect 

[27]. The mathematical model approach uses the Runge-

Kutta techniques for sampling from joint posterior which are 

very general in their application and do not rely on such 

assumption as linearity or normality. Mathematical model 

allows for the inclusion of information from diverse sources 

through use of prior probabilities. The thrust of this study 

will therefore be to attempt to apply this approach in order to 

devise an appropriate mathematical model for assessing stock 

in an aquatic population with application to a specific fish 

population. According to [19] the definitive study was made 

in 1999 by Ransom Myers. Myers solved the problem "by 

assembling a large base of stock data and developing a 

complex mathematical model to sort it out. Out of that came 

the conclusion that a female in general produced three to five 

recruits per year for most fish. Fish managers are interested 

in knowing how a sustainability of fish can be utilised in the 

long run or what will be the likely consequences of a certain 

actions as regarded catches and development of fish stock. A 

good mechanism for monitoring fish stock and putting into 

consideration of fish characteristics such as sex, age, species, 

morphology and even predation effect can help one devise 

technique that will optimize the fish breeding and harvesting. 

Fish production and consumption have attracted some 

significant interest in this 21
st
 century of its low cholesterol. 

Fish producers are interested on the best time to harvest and 

replenish in the pond with minimal or no expenses. In view 

of meeting the public needs, we modified growth model by 

[7] incorporative catch equation of [28] in the model. Where 

the modified model is for recruitment and development of 

fish sustainable at various stages of life and empirical data 

are used to verify the model variables and parameters. 

2. Method 

2.1. Modified Model Equation 

We modified growth model by verhulsts (1838) equation 

(1) by incorporating catch equation (3), here is the modified 

equation (2) 

1
dP P

rP
dt N

 = − 
 

                             (1) 

1
dP P

rP C
dt N

 = − 
 

                           (2) 

Where 

P  = population size of fish in tones 

�= growth rate 

N = carrying capacity 

C =catch of fish 

t= time period 

H = harvesting of fish 

M=Natural mortality 

Where the catch model is given below; 

� =
�

���
�1 − 
��� + ��������                    (3) 

2.2. Assumption of the Modified Model 

In general, the following are the assumptions of our 

modified model. 

(i) If the initial population is less than the environmental 

carrying capacity, population will monotonically 

increase towards the carrying capacity. 

(ii) The supply of resources such as food and space are 

limited. 

(iii) Growth rate decreases as the population is sufficiently 

large. 

(iv) Growth rate increases as the population is sufficiently 

small. 

(v) An increase in growth and size results in a decrease in 
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mortality because mortality is a function of size. 

(vi) Fishes reproduce during the period of consideration 

2.3. Numerical Method 

We use Runge-kutta method to solve the modified aquatic 

population model. Below is the description of the Runge-

kutta method which consists of determine appropriate 

constants so that a formula such as꞉ 

( )1 1 2 3 4

1
2 2

6
n np p k k k k+ = + + + +  

( )1 ,n nk hf x y=  

1
2 ,

2 2
n n

kh
k hf x y

 = + + 
 

 

2
3 ,

2 2
n

kh
k hf x yn

 = + + 
 

 

( )4 3, ,n nk hf x h y k= + +  

3. Results 

Implementation of the Modified Fish Population Model 

In this section, we use data collected from the Federal 

University Wukari fish pond to implement the modified 

model as shown in Table 1. The period of maturity for the 

fish is 5 months and about 80% will survive to maturity. 

Table 1. Data Collected from Federal University Wukari Fish Pond. 

NATURAL MORTALITY (M) 0.1 

CARRYING CAPACITY (N) 2000Kg 

STEP SIZE (h) 0.1 

PERIOD OF TIME (t) 1 to 5 MONTHS 

RATE OF GROWTH (r) 0.5 

HARVESTING OF FISH (H) 0.85 

 

From the data collected from the fish pond in the Federal 

University Wukari, weusingRunge-Kutta scheme to solve 

equation (2). 

For n=0 

( )1 1 2 3 4

1
2 2

6
n nP P k k k k+ = + + + +  

( )( ) ( )1 1 ℓ
H M tH

C P t
H M

− += −
+

 

( )1.8
1

0.85
1

0.95
ℓC

−= −  

( )1 0.895 0.835C =  

1 0.7473C =  

0
1 0 1

P
k h rP C

N

  = −  
  

 

1 0.04998k =  

1
0

1
2 0

21
2 2000

k
P

k
k h r P C

  +   
 = + −  
      

  

 

2 0.05122k =  

2
0

2
3 0

21
2 2000

k
P

k
k h r P C

  +   
 = + −  
      

  

 

3 0.0513k =  

( ) 0 3
4 0 3 1

2000

P k
k h r P k C

 + = + −  
  

 

4 0.05254k =  

Substitute k1, k2, k3 and k4, 

( )1 1 2 3 4

1
2 2

6
n nP P k k k k+ = + + + +  

( ) ( )( )1

1
1 0.04998 2 0.05122 2 0.0513 0.05254

6
P = + + + +  

1 1.05126P =  

For n=1 

( )2 1 1 2 3 4

1
2 2

6
P P k k k k= + + + +  

( )2 1 2 3 4

1
1.05126 2 2

6
P k k k k= + + + +  
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( )( ) ( )2 11 ℓ
H M tH

C P t
H M

− += −
+

 

( )( )0.95 2
2

0.85
1 1.05126

0.85 0.1
ℓC

−= −
+

 

2 0.800C =  

1
1 1 1

P
k hf rP C

N

  = −  
  

 

( ) ( )
1

1.05126 0.800
0.1 0.5 1.05126 1

2000
k

  
 = −   

  
 

1 0.05254k =  

1
1

1
2 1

21
2 2000

k
P

k
k hf r P C

  +   
 = + −  
      

  

 

( )
1

2

0.05126 0.800
1.05126

20.1 0.5 1.05126 1
2 2000

k
k

  
+     = + −    

  
  

 

2 0.0538k =  

2
1

2
3 1

21
2 2000

k
P

k
k hf r P C

  +   
 = + −  
      

  

 

( )
3

0.0538 0.800
1.05126

0.0538 20.1 0.5 1.05126 1
2 2000

k

  
+     = + −    

  
  

 

3 0.0539k =  

( ) 1 3
4 1 3 1

2000

P k
k hf r P k C

 + = + −  
  

 

( ) ( )
4

1.05126 0.0539 0.800
0.1 0.5 1.05126 0.0539 1

2000
k

  +
 = + −   

  
 

4 0.05523k =  

Substitute k1, k2, k3 and k4 

( )2 1 2 3 4

1
1.05126 2 2

6
P k k k k= + + + +  

( ) ( )( )2

1
1.05126 0.05254 2 0.0538 2 0.0539 0.05523

6
P = + + + +  

2 1.10512P =  

For n=2 

( )( ) ( )3 21 ℓ
H M tH

C P t
H M

− += −
+

 

( )( )0.95 3
3

0.85
1 1.10512

0.85 0.1
ℓC

−= −
+

 

( )2.6850.895 1 1.10512ℓC −= −  

( )0.895 0.9318 1.10512C =  

3 0.922C =  

2
1 2 1

P
k hf r P C

n

   = −       
 

( ) ( )
1

1.10512 0.922
0.1 0.5 1.10512 1

2000
k

  
 = −   

  
 

1 0.05523k =  

1
2

1
2 2

21
2 2000

k
P

k
k hf r P C

  +   
 = + −  
      

  

 

( )
2

0.05523 0.922
1.10512

0.05523 20.1 0.5 1.10512 1
2 2000

k

  
+     = + −    

  
  

 

2 0.05660k =  

2
2

2
3 2

21
2 2000

k
P

k
k h r P C

  +   
 = + −  
      

  

 

( )
3

0.05660 0.922
1.10512

0.05660 20.1 0.5 1.10512 1
2 2000

k

  
+     = + −    

  
  

 

3 0.05664k =  

( ) 2 3
4 2 3 1

2000

P k
k hf r P k C

 + = + −  
  

 

4 0.0581k =  

Substitute k1, k2, k3 and k4 
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( )3 1 2 3 4

1
1.10512 2 2

6
p k k k k= + + + +  

( ) ( )( )3

1
1.10512 0.05523 2 0.05660 2 0.05664 0.0581

6
p = + + + +  

3 1.1618p =  

For n=3 

( )( ) ( )4 31 ℓ
H M tH

C P t
H M

− += −
+

 

( )( )0.95 4
4

0.85
1 1.1618

0.85 0.1
ℓC

−= −
+

 

4 1.017C =  

( )4 3 1 2 3 4

1
2 2

6
P P k k k k= + + + +  

( )4 1 2 3 4

1
1.1618 2 2

6
P k k k k= + + + +  

3
1 3 41

P
k hf r P C

n

   = −       
 

( ) ( )
1

1.1618 1.017
0.1 0.5 1.1618 1

2000
k

  
 = −   

  
 

1 0.0581k =  

1
3

1
2 3 4

21
2 2000

k
P

k
k hf r P C

  +   
 = + −  
      

  

 

( )
2

0.0581 1.017
1.1618

0.0581 20.1 0.5 1.1618 1
2 2000

k

  
+     = + −    

  
  

 

2 0.5951k =  

2
3

2
3 3 4

21
2 2000

k
P

k
k h r P C

  +   
 = + −  
      

  

 

( )
3

0.5951 1.071
1.1618

0.5951 20.1 0.5 1.1618 1
2 2000

k

  
+     = + −    

  
  

 

3 0.0732k =  

( ) 3 3
4 3 3 41

2000

P k
k hf r P k C

 + = + −  
  

 

( ) ( )
4

1.1618 0.0732 1.017
0.1 0.5 1.1618 0.0732 1

2000
k

  +
 = + −   

  
 

4 0.0617k =  

Substitute k1, k2, k3 and k4 

( )4 1 2 3 4

1
1.1618 2 2

6
P k k k k= + + + +  

( ) ( )( )4

1
1.1618 0.0581 2 0.5951 2 0.0732 0.0617

6
P = + + + +  

4 1.4045P =  

Table 2. Show solve data from the Modified Model at various Populations (P). 

TIME OF PERIOD IN 

MONTH (n or t) 
P=1 P=20 P=100 P=200 P=300 

0 1.0000 20.0000 100.0000 200.0000 300.0000 

1 1.0526 21.0624 106.8290 224.9250 390.6505 

2 1.1079 22.1733 113.1424 243.7697 457.7666 

3 1.1662 23.3392 119.3692 259.7484 505.2920 

4 1.2275 24.5647 125.7258 274.6557 542.4638 

5 1.2920 25.8537 132.3218 289.4248 575.0297 

6 1.3600 1.3600 1.3600 1.3600 1.3600 

7 1.4315 1.4315 1.4315 1.4315 1.4315 

8 1.5067 1.5067 1.5067 1.5067 1.5067 

9 1.5860 1.5860 1.5860 1.5860 1.5860 

10 1.6693 1.6693 1.6693 1.6693 1.6693 

11 1.7571 1.7571 1.7571 1.7571 1.7571 

12 1.8495 1.8495 1.8495 1.8495 1.8495 
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Figure 1. Graphof Fish Model at P=1. 

 

Figure 2. Graphof Fish Model at P=20. 

 

Figure 3. Graphof Fish Model at P=100. 

 

Figure 4. Graphof Fish Model at P=200. 

 

Figure 5. Graphof Fish Model at P=300. 

4. Discussions 

We coded the Runge-Kutta scheme for our modified model 

by using Octave programming language, results are shown 

on Table 2 and figure 1, 2, 3, 4 and 5. It was observed that at 

1P = , 20P = , 100P = , 200P =  and 300P = the fish 

recruited started increasing from 1st month to 5th month and 

at 6th month the fish population decrease equally because at 

6th month fishes are expected to be harvested and top up. 

Furthermore, at 1P = , there is increase of one, 20P = , there 

is increase of six, 100P = , there is increase of thirty-two, 

200P = , there is increase of eighty nine and 300P = , here 

is increase of two hundred and seventy five. These 

increments will inform fish producer the amount to add into 

the stock to meet up with initial recruitment. 

5. Conclusion 

In view of the discussion, we conclude that fish reach it 

maturity stage from 5
th

 month of recruitment and harvesting 

should start at that period to enable sustainability of fish 
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cycle in the pond. Our model is only viable for fish in the 

pond were all surviving factors are in place. Also, the model 

can be improved on by considering other aquatic organisms, 

so that the modified model can be generalised for aquatic 

organisms. In conclusion, our modified model can be use to 

predict expected fish sustainability from its initial 

recruitments. 
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