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Abstract 
Background: Ischemia cardiomyocyte undergo death or damage has been identified as 

essential process in the progression of heart failure. Under hypoxic conditions, 

mitochondria can represent a threat to the cell because of their capacity to generate toxic 

reactive oxygen species (ROS). Aims: As ROS appear to have a critical role in heart 

failure, there has been considerable interest in identifying the candidate component or 

compound to reduce cell death via oxidative stress inhibition. Methods: In this study, we 

used human cardiomyocyte and embryonic rat heart derived H9c2 cells as cell models to 

speculate the role of ROS in cardiomyocytes. Results: Results showed that hypoxia or 

hydrogen peroxide (H2O2) induced cells Lactate dehydrogenase (LDH) release and 

cytotoxicity. Interestingly, caffeic acid phenethyl ester (CAPE) reverses hypoxia-induced 

LDH release and cell death in human cardiomyocyte, as well as ROS scavenger, Tiron 

also prevents H2O2 induces LDH release and cytotoxicity. Conclusion: Results 

demonstrate that reduction of cell death in cardiomyocytes by CAPE is associated with a 

decrease in cellular LDH level and ROS production. 

1. Introduction 

Coronary artery disease (CAD) are major diseases causing heavy burden of many 

countries and people around the world [1]. It has been reported that the atherosclerosis, the 

main cause of CAD, is involved in endothelial dysfunction and inflammation [2-4]. 

Furthermore, Lavie et al. reported that exercise is a secondary prevention of CAD [5], and 

some reports indicated that exercise seems to be improved the endothelial function [6, 7]. 

Nitric oxide (NO) plays a critical role in regulation of endothelial function. Production of 

NO is either increased by endothelial nitric oxide synthase (eNOS) enzymes [8-10] or 

reduced by reactive oxygen species (ROS) [11]. ROS production is increased in 

mitochondria upon hypoxia, as well as, ischemic preconditioning (IPC) [12, 13]. 

Additionally, hypoxia-inducible factor transcription factors (HIF) is upregulated upon 

hypoxia [14], and triggers the expression of genes involved in oxygen transport, glycolytic 

metabolism, cell death, cell survival, and other processes that can affect cell survival in 

ischemia [13]. 

Caffeic acid phenethyl ester (CAPE) is the major active element of propolis and has an 

anti- proliferative effect on tumor cells [15, 16]. The antioxidative  
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activities of CAPE have been reported in vitro and in 

different biological systems [17, 18]. Moreover, it has been 

reported that administration of CAPE is useful in delaying 

age-related cellular damage in cardiovascular system in vivo 

[19]. However, the effect of CAPE on human cardiomyocyte 

is still unclear. In this study, we investigated the role of CAPE 

on these events. 

2. Materials and Methods 

2.1. Cell Lines and Cell Culture 

Human cardiomyocyte (HCM) (PromoCell GmbH, 

Heidelberg, Germany) were cultured at 37°C in T-25 flasks 

(Corning Glassworks, Corning, N.Y., USA) in Myocyte 

Growth Medium (PromoCell GmbH, Heidelberg, Germany) 

supplemented with 0.05 ml/ml fetal calf serum, 0.5 ng/ml 

epidermal growth factor, 2 ng/ml basic fibroblast growth 

factor, and 5 µg/ml insulin in a 5% CO2/95% air atmosphere. 

The culture medium was replaced every 2 days. Once the cells 

reached 70–80% confluence, they were trypsinized and 

seeded on 6-well plastic dishes for the following experiments. 

Passage 3–9 HCMs were used in the experiment. In addition, 

the embryonic rat heart derived H9c2 cells were cultured in 

cultured at 37°C in T-25 flasks (Corning Glassworks, Corning, 

N.Y., USA) in DMEM (Gibco, New York, N.Y., USA) 

supplemented with 10% fetal bovine serum and 

penicillin-streptomycin (50 U/ml, Sigma, St. Louis, Mo., USA) 

in a 5% CO2 /95% air atmosphere. The culture medium was 

replaced every alternate day. Once the cells reached 70–80% 

confluence, they were trypsinized and seeded on 6- or 24-well 

plastic dishes for the following experiments. 

2.2. Lactate Dehydrogenase (LDH) Release 

and Cytotoxicity Assay 

The analysis was performed using the LDH Cytotoxicity 

Assay Kit (Pierce) according to the manufacturer’s 

instructions. Statistical significance for all the experiments 

was determined by performing the t test. Error bars are used to 

indicate the standard errors of the means and p values of < 

0.01 were considered significant. 

2.3. Western Blotting 

Cells were pelleted and resuspended in ice-cold RIPA buffer 

(20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EGTA, 1 

mM NaF, 2 mM Na3VO4, 1 mM phenylmethylsulfonyl 

fluoride, 1% dilution of Sigma protease cocktail, and 1% 

Triton X-100). Samples were centrifuged at 14,000 g for 20 

min at 4°C to yield cell lysates. Proteins were separated by  

10% or 12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and electrophoresed onto a 

nitrocellulose membrane. Immunoblotting was performed 

using specific primary antibodies and horseradish 

peroxidase-conjugated secondary antibodies (Cell Signaling), 

and peroxidase activity was assessed using an enhanced 

chemiluminescence kit (Perkin-Elmer Life Science, Boston, 

MA, USA). The intensities of the reactive bands were 

analyzed using UVP Biospectrum (UVP LLC, Upland, CA, 

USA). 

2.4. Establishment of Hypoxic Culture 

Condition 

Hypoxic conditions was assessed using a method 

previously described [20] with some modifications. Briefly, 

cells were grown on 6- or 24- well plastic dishes, in a hypoxia 

chamber and equilibrating for 30 minutes with humidified gas 

containing 1% oxygen, 5% CO2 and 94% nitrogen (Hypoxic 

incubator APM-30D, Astec,. Tokyo). The cell lines were 

maintained under hypoxic conditions for various time courses. 

Control cells were grown in normal oxygen conditions for the 

same duration. 

3. Results 

3.1. Effect of H2O2 on Cell LDH Release and 

Cytotoxicity 

LDH is well known as a biomarker for cell cytotoxicity and 

cytolysis. In addition, loss of intracellular LDH and its release 

into the culture medium has been reported as an indicator of 

irreversible cell death via cell membrane damage [21]. To 

study the effect of oxidative stress on cell cytotoxicity, the 

cells were exposed to extracellular H2O2 as oxidative damage 

[22]. Results showed that H2O2 increased LDH release and 

caused cell cytotoxicity increasing in a dose-dependent 

manner (Fig. 1). 

 

Fig. 1. Effect of different concentrations of H2O2 on (A) LDH release and (B) 

cytotoxicity. 

3.2. ROS Accumulation is Required for 

Hypoxia-Induced Cell LDH Release or 

Cytotoxicity 

It has been reported that ROS accumulation play an 

important role in the initiation of programmed cell death 

during myocardial infarction [23]. We examined the effect of 

ROS scavenger, Tiron on H2O2 -induced LDH release in H9c2 

cardiomyocyte. Our data showed that under H2O2 treatment, 

LDH release and cytotoxicity were dramatically increased but 

diminished by the addition ROS scavenger, Tiron in a 

dose-dependent manner in H9c2 cells (Fig. 2 A and B). 

Interestingly, the similar results were observed in 30 µM 
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CAPE-treated human cardiomyocyte under hypoxia (Fig. 2C). 

These results indicated that CAPE may consider as a potential 

ROS scavenger to protect cell damage or death. 

 

Fig. 2. ROS scavenger, Tiron decreased LDH release (A) and reversed 

cytotoxicity increasing (B) under H2O2-treatment in H9c2 cells. (C) CAPE 

attenuated hypoxia-induced LDH release in human cardiomyocytes (HCMs). 

3.3. Effect of CAPE on p53 Expression Under 

Hypoxia in Human Cardiomyocyte 

It is well known that p53 activation is associated either with 

cell cycle arrest and DNA repair or with apoptosis [24]. 

Results showed that 30 µM CAPE treatment reversed 

hypoxia-induced p53 overexpression (Fig. 3). Therefore, we 

suggested that CAPE controls ROS accumulation and cell 

death in cardiomyocyte. 

 

Fig. 3. CAPE inhibited p53 up-regulation under hypoxia in human 

cardiomyocytes (HCMs). 

4. Discussion 

The aim of tissues engineering is to apply the principles of 

engineering and life science toward the development of 

biological substitutes that maintain, restore, or improve 

tissue [25]. In clinical, new drug and vascular bypass have 

improved the quality of life for patients with cardiovascular 

disease, but have not necessarily decreased morbidity or 

mortality [26]. Furthermore, Tateishi-Yuyama et al. reported 

that autologous transplantation of bone-marrow-derived 

progenitor cells is a potential therapy of angiogenesis for 

patients with limb ischaemia [27]. Autologous cell therapies 

using bone marrow-derived or circulating blood-derived 

progenitor cells are safe and provide beneficial effects to 

therapeutic angiogenesis/vasculogenesis of ischemia 

diseases [28, 29]. Additionally, human embryonic stem cells 

(hESCs)-derived endothelial cell could be beneficial for 

potential applications such as engineering new blood vessels, 

endothelial cell transplantation into the heart for myocardial 

regeneration, and induction of angiogenesis for treatment of 

regional ischemia [30]. However, with regard to ethical 

issues of ESCs, epithelial progenitor cell (EPC)-derived 

from peripheral blood are more considerable as cell source 

for cell therapy [31]. EPC is a potential inexhaustible source 

of functional vascular cells that shows an important feature 

of mature EC for regenerative medicine. However, it is 

difficult to define the EPC generated from different soure, 

because EPC lack a unifying phenotype [32]. Glaser et al. 

suggested that the categories of EPC include the 

colony-forming unit-Hill cells, circulating cells, and 

endothelial colony-forming cells (ECFC) [33]. 

Oxidative stress-induced apoptotic signaling can cause 

several pathological conditions, including the development 

and progression of heart disease, which are a consequence of 

the increases ROS or decreases in antioxidants, as well as a 

disruption in the intracellular redox homeostasis [34-36], 

however, there have been no reports on how CAPE regulates 

ROS production linked to effect of cardiomyocyte. It has been 

reported that H9c2 cells are considered as a cell model to 

study cardiac disease in response to oxidative stress conditions 

[37, 38]. Importantly, we also studied the role of CAPE on 

human cardiomyocyte. 

5. Conclusion 

In the present study, we show that CAPE decrease ROS 

accumulation and cell death in cardiomyocyte by LDH 

releasing and cytotoxicity analysis. Our pharmacological 

findings support further development of CAPE as a novel 

therapeutic agent for treating hypoxia or ischemia -related 

heart disease. 
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